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Abstract

Life history of organisms is exposed to uncertainty generated by internal and external stochasticities. Internal stochasticity is
generated by the randomness in each individual life history, such as randomness in food intake, genetic character and size
growth rate, whereas external stochasticity is due to the environment. For instance, it is known that the external
stochasticity tends to affect population growth rate negatively. It has been shown in a recent theoretical study using path-
integral formulation in structured linear demographic models that internal stochasticity can affect population growth rate
positively or negatively. However, internal stochasticity has not been the main subject of researches. Taking account of
effect of internal stochasticity on the population growth rate, the fittest organism has the optimal control of life history
affected by the stochasticity in the habitat. The study of this control is known as the optimal life schedule problems. In order
to analyze the optimal control under internal stochasticity, we need to make use of ‘‘Stochastic Control Theory’’ in the
optimal life schedule problem. There is, however, no such kind of theory unifying optimal life history and internal
stochasticity. This study focuses on an extension of optimal life schedule problems to unify control theory of internal
stochasticity into linear demographic models. First, we show the relationship between the general age-states linear
demographic models and the stochastic control theory via several mathematical formulations, such as path–integral,
integral equation, and transition matrix. Secondly, we apply our theory to a two-resource utilization model for two different
breeding systems: semelparity and iteroparity. Finally, we show that the diversity of resources is important for species in a
case. Our study shows that this unification theory can address risk hedges of life history in general age-states linear
demographic models.
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Introduction

Environmental stochasticity is one of the problems which

organisms face in their life schedule because it brings uncertainty

to their maturity and reproduction timing. Demographers

examine the effect of stochasticity on population dynamics by

using linear demographic models (LDM), such as transition matrix

models (TMM), integral projection models (IPM), and partial

differential equations (PDE). As a consequence, they showed that

stochasticity affects population growth rate negatively [1–6].

Empirical researchers are devoted to estimating the effect of

external stochasticity on the life history of organisms [7–9].

However, there actually exists a twofold stochasticity in their

models, that is, internal and environmental stochasticity (i.e.,

external stochasticities). For example, in TMM used by ecologists,

the internal stochasticity yields a set of transition probabilities to

other states and is generated by the dispersion of each individual

life history, such as the dispersion of feed intake, genetic character,

and size growth rate; whereas external stochasticity annually

modifies the value of these transition probabilities. It is difficult to

distinguish one stochastic effect from the other. Research on

internal stochasticity is limited because the effect is different

among formalizations of LDMs and we have not had the proper

methods to analyze the effect of internal stochasticity on the

dominant eiganvalue.

In a recent study, Oizumi and Takada (2013) obtained the

methodology to show that internal stochasticity could increase and

decrease population growth rates depending on the breeding

system [10]. Additionally, the study provided a way to analyze the

effect of the internal stochasticity on the population growth rate by

using formulae of stochastic differential equations. Life history

with internal stochasticity generates a population density function

(population vector) that can be expressed by an age-size structured

LDM. Then, the effect of internal stochasticity appears as a

diffusion term in the LDM. The dominant eigenvalue of LDM is

called intrinsic rate of natural increase, or fitness (which this paper

uses) in theoretical demography, and is derived from the

characteristic equation of the LDM, so called Euler–Lotka

equation. The equation is composed of the breeding system,

mortality, and the physiological growth process affected by

internal stochasticity. In nature, it is considered that species

control those three elements to become optimal in the habitat.

Finding the optimal control is called ‘‘optimal life schedule

problem’’ (OLSP) in theoretical biology. The analysis of LDM and

OLSP was unified by Taylor et:al (1974) and Leon (1976) for

deterministic life history via methods of dynamical programming

[11,12]. Oizumi and Takada (2013) extended the proof to a life
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history with stochastic growth via a novel method that is called

path-integral formulation; besides, they showed by their method

that internal stochasticity serves as a significant factor involved in

persistence of species as well as external stochasticity [10].

Considering control of the stochasticity is hence concerned with

not only various issues on conservation ecology, but evolution of

life history. Internal stochasticity has a lot of ground to cover as

mentioned above, even though their theory deal with optimal

breeding timing in life history affected by an internal stochasticity

only. To take account of multifaceted parts in life history, their

theory should extend to multi–stage LDMs affected by several

numbers of internal stochasticities and be able to analyze not only

optimal control of reproductive timing but also of each transition

rate. In this paper, we focus on unifying ‘‘Stochastic Control

Theory’’ into multi–stage LDMs for that reason. This theory is

extension of dynamical programming to control of stochastic

process, i.e. we examine the theorem of Taylor et:al (1974), Leon

(1976), Oizumi and Takada (2013) to adapt not only optimal

reproductive timing but also the whole control of life history with

internal stochasticity.

Stochastic control theory is normally used in control engineer-

ing and mathematical finance. In mathematical finance, it is

applied to the analysis of optimal risk management in personal

assets, where the optimal control determines utilization of

investment between investment trust and loss insurance for the

personal utility maximization [13,14]. Mathematical economists

define a function, called utility function, and search for the optimal

control maximizing it. The function normally belongs to a class of

concave functions and is assumed by it. Their convexity is a key

point finding the optimal strategy because this property provides

some extreme values related to the strategy. The idea of

economists resembles that of an organism utilizing resources for

its own maintenance and reproduction. In fact, mathematical

biologists studying OLSP use functions, called reproductive value,

similar to utility functions used by economists [15,16]. Those

functions are generally called objective functions in control theory.

To unify OLSP with internal stochasticity into LDMs, an

optimized objective function in biology must yield the maximum

fitness. However, reproductive values which appear in their

analysis are not always clear relation with the fitness. Studies of

Taylor et:al (1974) and Leon (1976) postulated only age–

structured LDM and is obscure in LDMs incident to their

objective function, respectively. Under internal stochasticity,

Oizumi and Takada (2013) asserted that the objective function

should be the Laplace transform of the expectation of the

reproductive success (ERS), because it is generated by the

Euler–Lotka equation in the age-size structured model. The

function has the same meaning as the one used in Taylor et:al and

Leon. Although Oizumi and Takada mentioned the relationship

between path-integral formulation and other LDMs, they were not

enough to elucidate the correspondence to all formulation of

LDMs.

In this paper, we address control of a life history having d-states

affected by N internal stochasticities as extension of the previous

work [10]: besides, we show the relationship between path–

integral formulation and other LDMs in the life history. We unify

OLSP and LDMs at the life history via an optimized objective

function derived from an important equation from control theory

(Hamilton–Jacobi–Bellman equation). Applying our theory to

analysis of a simple risk control problem (two-resource utilization

model) in two distinct breeding systems, we discuss the meaning of

the maximized objective function and the relationship between the

optimal strategy and the structure of population.

Analysis

Configuration of individual life history
Several stochasticities in life history have been assumed by

diffusion process such as migration of population [17,18], size

growth [10,19], personal assets in human society as well [13,20].

We assume to categorize them with effect of internal stochasticity

and construct the configuration of two types of breeding systems

(semelparity and iteroparity) as general stochastic control process

in this section.

States transition processes. We consider individuals hav-

ing d-state Xa[A(Rd d§1ð Þ at age a, A being the domain of

each state. They are assumed to be fluctuated by the N internal

stochastisities. Then, the growth rate of each state is provided by

the following Ito’s SDE:

dX j
a~gj Xa,vað Þdaz

PN
k~1 sjk Xa,vað ÞdBk

a 1ƒjƒd

X
j
0~xj

(
ð1Þ

where xj 1ƒjƒdð Þ represents an initial state of j-th state, X j
a. In

this study, we assume all individuals have the same inital state x.

On the right-hand side, the first drift term represents deterministic

rule of growth process of the element, whereas the second term

represents fluctuation at X j
a, and Bk

a denotes an element of N-

dimensional Brownian motion. We set

v~va : ~ v1 að Þ,v2 að Þ, � � � ,vl að Þð Þ[V5Rl l§1ð Þ

which represents a control vector and V is a compact convex set of

Rl .

Fertility function and breeding systems. We introduce a

general fertility which F : A? 0,?ð Þ has integrability with respect

to a probability measure P y[dyð Þ as follows:

ð
A

F yð ÞP y[dyð Þv?: ð2Þ

Semelparous and iteroparous breeding systems are defined as

types of fertility function.

In semelparous species, denoting mature state D5LA[A where

LA is boundary of A and the mature age a� such that

Xa�[D, a� : ~ inf
a

a[ 0,?ð �DXa[Df g, ð3Þ

the fertility, FS yð Þ, is defined by

FS yð Þ : ~
w yð Þ y[D

0 y D

�
ð4Þ

where the fertility rate function satisfies w yð Þw1 at a mature state

y[D. From biological point of view, x should be x6[D. While, we

define an iteroparous fertility function FI yð Þ as continuous, and

measurable function given by Eq.(2). Then, the species can

reproduce at any time during their growth state.

We use fertility, Eq.(2), as a general breeding system if the

analysis is common to semelparous and iteroparous breeding

systems.

Mortality and survivorship. Semelparous and iteroparous

species have different survivorship. We set a common mortality

function, m : Rd|Rl?Rz, depending on y as follows:

Stochastic Life Histories and Population Dynamics

PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e98746

6[



0vm0ƒm y,vð Þ,

in both types of species. A general survivorship S að Þ until age a is

written as

S að Þ~ exp {

ða

0

dtm Xt,vtð Þ
� �

: ð5Þ

Since semelparous species die upon reproduction, we can write

the survivorship as

SS að Þ : ~1 a[ 0,a�½ �f gS að Þ, ð6Þ

by using an indicator function and the general survivorship, Eq.(5).

While, we assume that iteroparous species have a limit of lifespan.

Letting aƒ? be the limit of lifespan, the iteroparous survivorship

is written as

SI að Þ : ~1 a[ 0,a½ Þf gS að Þ ð7Þ

If the maximum lifespan follows a~?, the species only die by

accidental death and Eq.(7) corresponds to Eq.(5).

Difference of life history between semelparity and

iteroparity. We here call Eqs.(1), (2), and (5) as life history.

Then, we define a semelparous and an iteroparous life history

following Eqs.(4) and (6), and FI yð Þ and Eq.(7) under the growth

rates Eq.(1), respectively. In other words, we identify each life

history with their difference in fertility and survivorship.

LDM and objective function
In order to analyze that two life histories influence each

population dynamics, we unify the individual life history into its

population density function formalized by path-integral: after that,

we demonstrate similarities among LDMs via the path-integral

formulation in this section. In this study, we refer to this sort of

population density function parametarized by time, age, and states

as ‘‘population vector’’.

Age-state structured model with internal

stochasticity. Setting x : ~(x1,x2, � � � ,xj , � � � ,xd ) as an initial

state vector of Eq.(1), we consider the following quantity:

ua xð Þ : ~Ex F Xað ÞS að Þ½ �, ð8Þ

where this function represents the expectation of the product of

fertility and mortality at age a, and we refer to it as an expectation

of reproductive success (ERS) wich is identical to net reproduction

function in demography [21]. The expectation in Eq.(8) is given by

the probability measure which Eq.(1) generates. Oizumi and

Takada showed, in d~1 and N~1, that a characteristic equation,

yl� xð Þ~1, ð9Þ

is composed of the Laplace transform of Eq.(8), which is

yl xð Þ : ~

ð?
0

da exp {laf gua xð Þ, ð10Þ

and provides the fitness l� of age-size structured model [10].

According to this consequence, we then can expect to find a

general age-states structured population model composed of the

life history, Eqs.(1), (2), and (5). From Feynman–Kac formula (e.g.,

S1 in File S1), ERS satisfies the following equation:

L
La

ua xð Þ~{ �HHv
xua xð Þ

�HHv
x : ~{

Xd

j~1

gj x,vð Þ L
Lxj

{
1

2

Xd

j,j
0
~1

c
jj
0 x,vð Þ L2

LxjLxj
0 zm x,vð Þ

c
jj
0 x,vð Þ : ~

XN

k~1

sjk x,vð Þs
j
0
k

x,vð Þ

u0 xð Þ~F xð Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð11Þ

Setting Ka x?yð Þ represents a transition rate (including survivor-

ship) from initial state x to final state y at age a (projection

function), ERS can be written by

Ex F Xað ÞS að Þ½ �~
ð

A

dyF yð ÞKa x?yð Þ, for F yð Þ[C2
0 :

It is then known that there is a relationship between Q[C2
0 and K

from partial integration, such that

ð
A

dyQ yð Þ L
La

Ka x?yð Þ~{

ð
�A

dy �HHv
yQ yð ÞKa x?yð Þ

~{

ð
A

dyQ yð ÞHv
yKa x?yð Þ,

ð12Þ

where Hv
y denotes the adjoint Hamiltonian of �HHv

y (Fokker–Planck

Hamiltonian),

Hv
y : ~

Xd

j~1

L
Lyj

gj y,vð Þ{ 1

2

Xd

j,j
0
~1

L2

LyjLyj
0 c

jj
0 y,vð Þzm y,vð Þ: ð13Þ

From the arbitrariness of Q, the projection function K satisfies the

following Fokker–Planck equation:

L
La

Ka x?yð Þ~{Hv
yKa x?yð Þ

lim
a;0

Ka x?yð Þ~dd x{yð Þ,

8><
>: ð14Þ

where dd x{yð Þ is d-dimensional Dirac’s delta

dd x{yð Þ : ~P
d

j~1
d xj{yj
� �

,

This consequence suggests that the dominant characteristic root of

Eq.(10) and the projection function, Ka x?yð Þ, can compose the

population vector, Pt a,x?yð Þ, at time t and age a with transition

from x to y satisfying the following a stable demographic model,

L
Lt

z
L
La

� �
Pt a,x?yð Þ~{Hv

yPt a,x?yð Þ

Pt 0,x?yð Þ~nt xð Þdd x{yð Þ
P0 a,x,yð Þ~P a,x,yð Þ,

8>>><
>>>:

ð15Þ

because the dynamics of Eq.(11) is provided by the Fokker–Planck

operator generating the cohort dynamics [10]. P a,x,yð Þ is

Stochastic Life Histories and Population Dynamics
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assumed by

P 0,x,yð Þ~P xð Þdd x{yð Þ ð16Þ

The integral equation of this vector in offspring dynamics is

nt xð Þ~
ð?

0

da

ð
A

dyF yð ÞPt a,x?yð Þ, ð17Þ

where nt xð Þ and n0 xð Þ represent offspring number at time t and

the initial number of offspring, respectively. In comparison with

Oizumi and Takada’s work [10], the population vector should be

decomposed into the initial offspring number and projection

function, such that

Pt a,x?yð Þ~
nt{a xð ÞKa x?yð Þ t{aw0ð

A

dj Jt,a j?yð ÞP a{t,x,jð Þ a{tw0:

8<
: ð18Þ

In awt, the projection fuction represents projection of states from

a{t to a and let it satisfy limt;0 Jt,a j?yð Þ~dd j{yð Þ. Eq.(18) is

generalization of boundary condition with respect to age a in

continuous age structured models and we describe their expres-

sions later [22]. The above decomposition can be proved in more

general configuration (in non-autonomous system) of the life

history by the formal solution of Eq.(15) (e.g., S1 in File S1).

Setting the inner product

{iqt
: _XX t~{i

Xd

j~1

qj
t

_XX
j

t,

the projection function by a path-integral formalization becomes

Ka x?yð Þ~
ðXa~y

X0~x

D xð Þ
ð

Rd
D qð Þ exp

ða

0

dt
{iqt

: _XX t{Hvt

{iqt,Xtð Þ

 !( )
ðXa~y

X0~x

D xð Þ
ð

Rd
D qð Þ : ~

ð
� � �
ð

A

1
Z
P

t[ 0,að Þ
dXt

ð
� � �
ð

Rd
P

t[ 0,að Þ
dqt

Hvt {iqt,Xtð Þ : ~{
Xd

j~1

iqj
tgj Xt,vtð Þz 1

2

Xd

j,j
0
~1

qj
tqj
0

t c
jj
0 Xt,vtð Þzm Xt,vtð Þ

K0 x?yð Þ~dd x{yð Þ,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð19Þ

where _XX a, qt[Rd , and Z denote the formal differential of Xa with

respect to a, the adjoint vector, and the normalization factor of

transition probability which gives

ð
A

dyKa x?yð Þ~Ex S að Þ½ �,

respectively. Jt,a j?yð Þ denotes the projection function in tva

and is defined by

Jt,a j?yð Þ : ~ðXa~y

Xa{t~j

D xð Þ
ð

Rd
D qð Þ exp

ða

a{t

dt {iqt
: _XXt{Hvt {iqt,Xtð Þ

� �� �
:

ð20Þ

When transition of all states follows autonomous system, such as

Eq.(1), this function have translational symmetry with respect to

age a because of strong Markov property in the SDE as follows:

Jt,a j?yð Þ~Kt j?yð Þ: ð21Þ

The path integral is a summation over an infinity of possible

growth curves connecting x with y with the sieve of mortality to

compute the density in Eq.(5). Eq.(19) is known in physics as the

Hamiltonian expression. The algebric form of Fokker–Planck

Hamiltonian, Hvt {iqt,Xtð Þ, actually appears in the action

integral of this expression. Substituting Eq.(18) into Eq.(17), we

obtain a renewal equation of offspring dynamics as follows:

nt xð Þ ~Gt xð Þz
ðt

0

da nt{a xð Þua xð Þ

Gt xð Þ : ~

ð?
t

da

ð
A

djP a{t,x,jð Þut jð Þ

~

ð?
t

ð
A

ð
A

da dj dyP a{t,x,jð ÞF yð ÞJt,a j?yð Þ:

8>>>>>>><
>>>>>>>:

ð22Þ

Since the ERS is always nonnegative and bounded for all age a

(lima:? ua xð Þ?0) in biological assumption (Eqs.(2) and (5)),

Eq.(22) corresponds with the mathematical form of the classical

renewal equation which appears in McKendric equation [21].

Therefore, we can adopt Feller’s methods [23] to solve Eq.(22)

because this equation satisfies all conditions to use Sharp–Lotka–

Feller theorem [21]. The population vector, Eq.(18), then is

Pt a,x?yð Þ~

Cx exp l� t{að Þf g 1zO exp {g t{að Þf gð Þ½ �Ka x?yð Þ

:from Sharp� Lotka� Feller theorem gw0ð Þ

Cx : ~{

ð?
0

dt exp {l�tf gGt xð Þ

d

dl
yl xð Þjl~l�

w0: ð23Þ

Then, l� is provided by the dominant characteristic root of Eq.(9)

(e.g., P.80 at [10]). Consequently, yv
l xð Þ satisfies the theorem

proved by Taylor et: al (1974) and Leon (1976) because the

function is monotonically decreasing in l [11,12]. The theorem

shows that a strategy maximizing yv
l xð Þ is equivalent to

maximizing the fitness, l�. Therefore, we can adopt yv
l xð Þ as

objective function in optimal life schedule with stochastic

development. Hereafter, we call yv
l xð Þ ‘‘objective function’’.

Correspondence of path-integral formulation to other

LDMs. In this part, we show the correspondence of Hamilto-

nian and projection function in our formalization to elements and

parameters in the other formalization of LDMs: IPM, PDE, and

TMM. Mathematical correspondence among those three models

is introduced in some text books once in a while, such as [1,24].

For instance, Takada and Hara provided an example that

elements of a size structured TMM (Lefkovitch matrix) can

generate size structured PDE (Fokker–Planck equation) at

d~1,N~1 [25].

In our formalization, the projection function composing the

solution of Eq.(15) can serve as the following IPM because of its

Markov property [10]:

Ptz" az",x?yð Þ~
ð

A

djK" j?yð ÞPt a,x?jð Þ: ð24Þ

Stochastic Life Histories and Population Dynamics
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On the other hand, We can show an age-size TMM corresponding

to Eq.(22) at d~1 and N~1. Let

a : ~ 0,1,2, � � � ,a, � � � ,að Þ
y : ~ y0,y1,y2, � � � ,ym, � � � ,yMð Þ

and v be the age vector, the size-vector, and v~a Mz1ð Þz1,

respectively. Setting a compact set ÂA[Rz and size interval h

deviding ÂA into M categories, ym represents m-th size category.

When Ptz1 a,yð Þ denotes a population vector in the TMM, we can

show the following v|v TMM:

Ptz1 a,yð Þ~LPt a,yð Þ, ð25Þ

where

L~

f0 F � � � F � � � F

K0 O � � � O � � � O

0 K1 � � � O � � � O

..

.
O P O � � � O

0 � � � O � � � Ka{1 O

2
6666666664

3
7777777775

, ð26Þ

is a candidate of the discretized Eq.(24) in d~1 and N~1. This

TMM is common with Leslie matrix on the mathematical form,

however, each element (vital rate) is composed of the following

matrices: F, O, and Ka are Fa~ f0 � � � fm � � � fMð Þ,
Mz1ð Þ| Mz1ð Þ zero matrix, and Mz1ð Þ| Mz1ð Þ size

transition matrix if and only if K0 : ~ k0,0, � � � ,k0,m, � � � ,k0,Mð ÞT,

respectively.

Suppose that Ya is a stochastic process of the size growth

generated by the following parameterized collection of random

variables,

Yaf ga[ 0,a½ � : ~ ya,m að Þ
� 	

a[ 0,a½ �, m 0ð Þ~0ð Þ: ð27Þ

The fitness follows the characteristic equation of L (e.g., S1 in File S1)

1~
Xa

a~0

Ey0
f Yað ÞS að Þ½ �l{a{1

0 : ð28Þ

This characteristic equation parallels Eq.(9) and represents the

generalized Euler–Lotka equation in the TMM to age-size model.

Thus, path-integral expression is hence one of formulation in LDMs.

There are two reasons for adopting Hamiltonian expression of the

path-integral; The first is easy to treat any cases even if gj Xa,vað Þ and

cj,j’ Xa,vað Þ are not differentiable and including zero, such as

sjk Xa,vað Þ~0, respectively and the other is of use to deal with the

relationship among Hamiltonians involved in the states transition

and the optimal schedule problem in the next section.

HJB equations and analysis
We suppose

~yyl xð Þ : ~ sup
v[V

ð?
0

da exp {laf gEx F Xað ÞS að Þ½ �, ð29Þ

from Eq.(10) in this section, because the theorem of optimal life

schedule (e.g., S2 in File S1) shows that optimal strategy of life

history is equivalent to finding a function ~yyl xð Þ. This function is

called ‘‘value function’’ in control theory. We adapt Bellman’s

dynamical programming represented by PDE in stochastic control

theory to find optimal control in both types of life history, and,

address differences of the optimal control between semelparous

and iteroparous species. This approach is not so famous method

compared with ‘‘optimal life schedule problem’’ (OLSP) associated

with ‘‘Maximum Principle (MP)’’. Although there are some

reasons, precursors pointed out that Bellman’s approach needs

the value function having sufficient smoothness to use partial

differential in the analysis (e.g., Pontryagin’s classical text book

[26]). On the other hand, the famous approach which is MP does

not need this sort of smoothness. However, the situation is

changed by the appearance of viscosity solution in 1980’s [27–29].

That is an extension of solution in differential equation and can

eliminate the smoothness from the necessary condition in Bell-

man’s approach. Moreover, it is enable for us to proof the

equivalence relationship between both approaches via Hamiltoni-

ans appeared in both analyses (e.g., S3 in File S1) [30,31]. Those

two approaches have different biological points of view that

Bellman’s approach is to find optimal behavior as cohort dynamics

represented by PDE, whereas MP is to find that as individual states

transition represented by SDE. As mentioned previously, math-

ematicians showed that those approaches produced the same

consequence without their intention. In this section, we adapt

known mathematical consequenses of Bellman’s dynamical

programming to the value function and derive general biological

interpretations from that value functions in semelparous and

iteroparous species are characterized by different equations. In the

next subsection, we handle the relationship between the stochastic

control theory involved in dynamical programming and OLSP.

HJB equation and OLSP. In oreder to analyze the value

function, Eq.(29) and derive the equation what it obeys, we

introduce ERS with exp {laf g

wl,a xð Þ : ~ exp {laf gua xð Þ, ð30Þ

and a new value function described by age backward is;

~wwl,a xð Þ : ~ sup
v[V

exp {l a{að Þf gEx F Xa{að ÞS a{að Þ½ �f g, ð31Þ

to use the following relationship:

~wwl,a0
xð Þ~ sup

v[V
exp {l a{a0ð Þf gEx ~wwl,a Xa{a0


 �
S a{a0ð Þ

h in o
,

ð32Þ

where 0ƒa0ƒaƒa. This equation implies that value function

controlled from a0 to a corresponds with ~wwl,a0
xð Þ by using Eq.(31)

(known as Bellman principle). Note that ~wwl,0 xð Þ represents the

value function at age a in the original variable of a. Then, Eq.(29)

is rewritten as

~yyl,a xð Þ~
ða

0

da ~wwl,a xð Þ: ð33Þ

Due to Eq.(9), the population growth of the fittest species

asymptotically follows the fitness, ~ll, which is characteristic root of

~yy~ll,a xð Þ~1: ð34Þ

Applying Feyman–Kac formula to Eq.(32), we have
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0~ sup
v[V

exp {l a{a0ð Þf gEx ~wwl,a Xa{a0


 �
S a{a0ð Þ

h in o
{~wwl,a0

xð Þ

~ sup
v[V

Ð a{a0
0 dr exp {l rð Þf gEx

L
La

~wwl,a0zr Xrð Þ{ �HHv
xzl

� 

~wwl,a0zr Xrð Þ


 �
S rð Þ

h in o
,

ð35Þ

Cosidering a limit

lim
h;0

1

h
sup
v[V

Ð h

0
dr exp {l rð Þf gEx

L
La

~wwl,a0zr Xrð Þ{ �HHv
xzl

� 

~wwl,a0zr Xrð Þ


 �
S rð Þ

h in o
~0

ð36Þ

where h~a{a0, it provides an important equation (e.g.,

proposition and its proof on pp.182–183 in [31]) that the value

function holds as follows:

L
La

~wwl,a xð Þ{ inf
v[V

�HHv
xzl

� 

~wwl,a xð Þ

� 	
~0

~wwl,a xð Þ~F xð Þ

(
ð37Þ

This equation is known in control theory as Hamilton–Jacobi–

Bellman equation (HJB equation) and essential of this study. When a

control v� satisfies Eq.(37) or ~wwl,a xð Þ exists under the control, v� is

optimal [14,32]. Eq.(37) is, however, nonlinear and ~wwl,a xð Þ generally

does not have sufficient smoothness; the value function is interpreted

as a ‘‘viscosity solution’’ in Eq.(37) (e.g., S4 in File S1 and [30,31]).

Since v� has a degree of freedom with respect to l and has to hold

Eq.(34), the unique optimal control is given by ~vv : ~v�Dl~~ll. Those

two procedures are biologically essential because the optimal control

depending on l means optimizing not only the ERS but also the

speed of alternation of generations. In other words, to maximize the

objective function is to maximize the ERS of precocious individuals of

which has small reduction by exp {laf g. Since ~wwl,a xð Þ depends on

age and states, it suggests that an optimal control, ~vv a,xð Þ, also

depends on both state x and age a. Therefore, species having the

optimal state transition at the original age, a, (age forward) becomes

d ~XX j
a ~gj

~XX a,~vv a{a, ~XX a

� �� �
daz

XN

k~1

sj,k
~XX a,~vv a{a, ~XX a

� �� �
dBk

a

~XX 0 ~x,

8><
>:

ð38Þ

from Eq.(1). Due to Eq.(38) being non-autonomous system, the

projection function requires more general form than Eq.(19) as

follows:

~KKa[ 0,að Þ x?yð Þ ~ð ~XXa~y

~XX0~x

D xð Þ
ð

Rd
D qð Þ exp

ða

0

dt {iqt
: _~XX~XX t{ ~HH t,{iqt, ~XX t

� �
 �� �
~HH t,{iqt, ~XX t

� �
: ~

{
Xd

j~1

iqj
t ~ggj t,Xtð Þz 1

2

Xd

j,j’~1

qj
tqj’

t~ccj,j’ t,Xtð Þz~mm t,Xtð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð39Þ

where

~ggj a, ~XX a

� �
: ~gj

~XX a,~vv a{a, ~XX a

� �� �
~cc

j,j
0 a,Xað Þ : ~c

j,j
0 ~XX a,~vv a{a, ~XX a

� �� �
~mm a, ~XX a

� �
: ~m ~XX a,~vv a{a, ~XX a

� �� �
:

ð40Þ

This path-integral formulation admits a case that terms, ~ggj a, ~XX a

� �
,

~ssj,k a, ~XX a

� �
, and ~mm a, ~XX a

� �
are not always differentiable everywhere.

Stationary control problem of life history. If species die

only by accidental death or programed death after their

reproduction (such as semelparous life history or life history

having sufficiently long lifespan), the case can adapt to their

analysis, we can deal with the optimal control in a case a~?, i.e.,

~yyl xð Þ~ lim
a:?

~yyl,a xð Þ, ð41Þ

from Eq.(33). Since a~? contain all mature ages individually

fluctuated by internal stochasticity, we adopt this assumption to

analysis of semelparous species in the next subsection. Addition-

ally, it is known that the value function, Eq.(41), is the solution (in

the viscosity sense) of another HJB equation:

{ inf
v[V

�HHv
xzl

� 

~yyl xð Þ

n o
zF xð Þ~0, ð42Þ

[32]. Analysis of the optimal control which satisfies this equation is

known as ‘‘stationary control problem’’ in control theory. This

control is essentially distinct from one satisfied Eq.(37), because

Eq.(42) does not depend on age. Consequently, the optimal state

transition becomes the autonomous system as follows:

d ~XX j
a ~gj

~XX a,~vv ~XX a

� �� �
daz

XN

k~1

sj,k
~XX a,~vv ~XX a

� �� �
dBk

a

~XX 0 ~x:

8><
>: ð43Þ

As Eq.(42) directly provides the value function, this case requires

only two equations: Eqs.(34) and (42).

Optimal life histories and HJB equations in semelparous

and iteroparous species. As mentioned above, semelparous

optimal control is categorized as stationary control problem on

account of the random mature age. Due to the strong Markov

property of the SDE, Eq.(43), the objective function of semelpar-

ous species, yS
v
l,x� xð Þ, can be generally written as

yS
v
l,x� xð Þ~

ð?
0

da exp {laf gEx FS Xað ÞSS að Þ½ �

~Ex exp {la�f gw Xa�ð ÞS a�ð Þ½ �,
ð44Þ

we can simplify this equation if and only if d~1 and the boudary

is one point (e.g., S4 in File S1). Then, semelparous species have

two optimal life schedule problems: (1) how to determine the

optimal mature state and (2) how to control the growth rate until

that states are reached. The former is known as the ‘‘Optimal

stopping problem’’ in probability theory, as mentioned in [10]. To

simplify the latter problem, we assume in this subsection that the

optimal mature state exists and given. Setting the optimal mature

age, ~aa, a value function of semelparity becomes
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~yySl xð Þ : ~ sup
v[V

sup
x�

yS
v
l,x� xð Þ~ sup

v[V
Ex exp {l~aaf gw X~aað ÞS ~aað Þ½ �:

ð45Þ

This equation suggests that the optimal control optimizes the

expectation of survivorship until the mature age, ~aa. In other words,

the evolution of a semelparous life history implies the optimization

of life span.

From Eqs.(4) and (42), the semelparous value function satisfies

the following Dirichlet boundary value problem of HJB equation:

{ inf
v[V

�HHv
xzl

� 

~yySl xð Þ

n o
zFS xð Þ~0: ð46Þ

When Eq.(46) has a unique solution in the viscosity sense, we can

obtain an optimal control v�l xð Þ, such that

yS
v�
l xð Þ~~yySl xð Þ ð47Þ

from the theorem on p.228 in [31]. From the semelparous fertility

function, Eq.(4), the value function satisfies

~yySl ~xxð Þ~w ~xxð Þ ~xx[D:

Therefore, the optimal control of semelparous species, ~vvS xð Þ, (a

Markovian control) becomes

~vvS Xað Þ~~vv ~xx,Xað Þ: ð48Þ

As shown in the previous subsection, the optimal cotrol does not

depend on the age.

On the other hand, iteroparous species reproduce during their

growth: the value function becomes

~yyIl xð Þ : ~ sup
v[V

ð?
0

da exp {laf gEx FI Xað ÞSI að Þ½ �

~ sup
v[V

ða

0

da exp {laf gEx FI Xað ÞS að Þ½ �:
ð49Þ

Therefore, the iteroparous value function is given by the solution

in the viscosity sense of Eq.(37) and the characteristic equation

Eq.(34). In other words, the evolution of iteroparous species

implies the temporary optimization of the ERS which is different

from the semelparous breeding system. Moreover, the maximum

age a, provides a terminal condition to the ERS, which introduces

complexity to the analysis of iteroparous species.

Density of breeding age structure in fittest. We demon-

strate, here, that this unification theory of OLSP and LDM can

address the statistical characteristics of population structure

associated with the optimal life history. We focus on statistics of

breeding age; Oizumi and Takada showed objective function

directly implied cumulant generating function (CGF) of that [10].

We then extend their consequence to our configuration. Let a be

breeding age. The CGF is written as a Taylor series of the

logarithm of objective function with respect to {l as follows:

Hl xð Þ : ~ log yl xð Þ

~
X?
k~0

{lð Þk

k!
Sa T kð Þ

x :
ð50Þ

Probability density A að Þ, generating the CGF, is composed of

basic reproductive number (known as R0) and ERS by using

Eq.(10) such that

A að Þ~ 1

2pi

þ
dl exp laf gyl xð Þ

y0 xð Þ~
ua xð Þ
y0 xð Þ : ð51Þ

If we can obtain the fittest R0, ERS, and cumulant generating

function of breeding age directly from the value function, as for an

objective function, analyzing the fittest population structure is

useful. When one applies Eq.(29) to the cumulant generating

function as an objective function in the optimal control, Eq.(29)

should be a Laplace transform of the ERS. This means that the

optimal control should not be a function of l because expanding

the logarithm of Eq.(29) into a Taylor series as Eq.(50) causes a loss

of the meaning of the objective function in the optimal control.

This holds true as long as maximizing the ERS is equivalent to

maximizing fitness. The key point to calculate in the case is the

second term of the RHS of another expression of the value

function, Eq.(31):

~wwl,a xð Þ~

F xð Þ{ inf
v[V

Ex

ða{a

0

dt �HHv
xzl

� 	
exp {ltf gF Xtð ÞS tð Þ

� �
,

ð52Þ

obtained by integrating both sides of Eq.(37) for age a (Dynkin’s

formula [31]). In the iteroparous breeding system, we can show a

condition that the value function can compose statistics of

breeding age. Differentiating the integrant of the second term in

Eq.(52) with respect to v, we obtain the condition that v� satisfies;

Ex +v
�HHv

xzl
� 	

exp {ltf gFI Xtð ÞS tð Þ
� 


Dv~v�

~Ex +v
�HHv�

x FI Xtð Þ

 �

S tð Þ{ �HHv�
x zl

n o
FI Xtð Þ

Ð t

0
ds+vm Xs,v

�ð ÞS tð Þ
h i

~0,
ð53Þ

where +v : ~
Pl

j~1 L=Lvj and F Xtð Þ~FI Xtð Þ. This equation

illustrates that the optimal control does not depend on l if and

only if the mortality does not include the control vector. In other

words, deriving the optimal control maximizing the ERS from

Eq.(52) without calculating the Euler–Lotka equation directly is

sufficient in this case. From a biological point of view, individuals

of the species do not control their life spans in this case: mortality is

not susceptible to mutation or strategy change, or is already

optimized. In general, an optimal control provides the adaptive

ERS and life span because altricity and precocity increase the

fitness in r-selection [33,34]. In other words, v� being unconnected

to l means excluding the control of precocity. According to the

analysis of optimal control in semelparous breeding timing [10],

precocity serves as a positive influence on persistence of the species

under internal stochasticity. This consequence was explained by

the following reason: the internal stochasticity yields individuals

having precocity and late-maturing. The former individuals

accelerate alternation of generation, namely, they contribute to

increase their fitness. Since the others are exposed by higher risk of

death, their contribution affects on the fitness and the R0

negatively. Proportion of both individuals is given by their

maturity, such as mature body size and fertility, and affects on

their persistence. In contrast, empirical researchers reported that

short-lived species had vulnerability for external stochasticity by

sensitivity analysis in a geometric mean of each dominant
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eigenvalue of interannual TMMs (long-term population growth

rate) [8,35]. When species has control strategies excluding that of

mortality, long-lived iteroparous species (a is large) should be

adaptive because R0 is monotonically increasing in a. This

consequence seems to consist with those reports. However, the

other cases remain a distinct difference between the effect of

internal and external stochasticities because the short-lived species

can be adaptive under the former. Although this paper handles

only internal stochasticity, there may exist a trade-off between

both adaptations for stochasticities for evolution of long-lived and

iteroparous species. When mortality is not controlled, the value

functions can directly compose the cumulant generating function

of breeding age a in the fittest population structure such that

~HHl xð Þ : ~ log ~yyl xð Þ

~
X?
k~0

{lð Þk

k!
Sa T kð Þ

x ,
ð54Þ

and

S~aa T kð Þ
x : ~ lim

l?0
{1ð Þk Lk

Llk
~HHl xð Þ

" #
: ð55Þ

By using the original age, the density of a in the fittest population

structure is given by the following function:

~AA að Þ : ~ lim
l?0

~wwl,a{a xð Þ
~yyl xð Þ

, ð56Þ

where ~yy0 xð Þ means R0.

In the next section, we examine several specific models in

semelparous and iteroparous breeding systems and discuss their

differences.

Applications
We show analysis of specific models in this section. Oizumi and

Takada (2013) showed that internal stochasticity causes both

increase and decrease of fitness [10]. Focusing on the latter case,

the stochasticity is a kind of risk for species. We suppose that

species have a choice to utilize two resources. Traits of these

resources are different from each other, such that one of these

gives the effect of ‘‘high risk and high return’’ and that the other

gives the effect of ‘‘low risk and low return’’ on the individual size

growth. As application of our theory, considering the optimal

utilization of those resources, we show the effect of the utilization

on the fitness. Accordingly, the species suitably averting risk

maximizes the fitness in their habitat.

Two-resource utilization model. We consider a simple size

growth model as an application of our theory. When Xa[Rz is a

body size at age a, we assume that the species can choose two

kinds of resources: the species using a resouce, R1, have the

following growth rate of size such that

dX 1
a ~c1X 1

a dazs1X 1
a dB1

a

X 1
0 ~x,

(
ð57Þ

and another resouce, R2, also being

dX 2
a ~c2X 2

a dazs2X 2
a dB2

a

X 2
0 ~x:

(
ð58Þ

Thus, we assume that resources R1 and R2 operate life histories of

individuals via their growth rate of size. Let va be utilization

frequency which represents a frequency of utilization in both

resources. The individual growth rate of size, then, follows

dXa ~ c1 1{vað Þzc2va½ �Xadaz s1 1{vað ÞdB1
azs2vadB2

a

� 

Xa

X0 ~x,

(
ð59Þ

We assume c1[Rzwc2[R (c2 could be negative), s1ws2§0 i.e.,

R1–specialists (va~0) have higher risk and the expectation of

growth rate than R2–specialists(va~1). Conversely, R2–specialist

has the other risk that the individuals have lower survivorship until

mature age than R1–specialists because of slower growth rate on

the average. Therefore, individuals should find an optimal

‘‘utilization frequency’’ ~vv[ 0,1½ � to minimize the Hamiltonian with

l under the environment (e.g., Fig. 1).

Eq.(59) is well-known as typical ‘‘optimal portfolio selection

problem’’ in mathematical finance and economics. Economists

apply the problem to find an optimal investment of their wealth

[13].

We assume a mortality in Eq.(5) such that

m y,vð Þ~const:,

where we set

m y,vð Þ~m0, ð60Þ

which does not have control. We are interested in difference of the

optimal utilization ~vv of Eq.(59) in different breeding systems. As

preparation for analyzing the optimal utilization, the adjoint

Hamiltonian of Eqs.(59) and (60) becomes

Figure 1. A resource utilization problem. This figure illustrates
how a fish wavers in its choice. R1 represents high risk but high
expected growth rate, while both quantities are low in R2. These
resources fluctuate independently of each other. In other words, the
two resources provide individuals with different internal stochasticities.
The fish should optimally choose the best utilization of both resources.
doi:10.1371/journal.pone.0098746.g001
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�HHv
x~{ c1 1{vð Þzc2v½ �x d

dx
{

1

2
s1 1{vð Þð Þ2z s2vð Þ2

� 

x2 d2

dx2
zm0:

ð61Þ

Let Q xð Þ[C2 Rzð Þ provide an extreme value of �HHv
xzl

� 

Q xð Þ with

respect to v such that

L
Lv

�HHv
xzl

� 

Q xð ÞD

v~v{~0: ð62Þ

Then, the value satisfies

v{ Q xð Þð Þ~ s2
1

s2
1zs2

2

z
c1{c2ð Þ d

dx
Q xð Þ

s2
1zs2

2

� �
x

d2

dx2
Q xð Þ

, ð63Þ

and we obtain a nonlinear operator by substituting Eqs.(63) into

(61) as follows:

Hl Q xð Þð Þ : ~ �HHv
xzl

� 

Q xð ÞD

v~v{

~{
c1s2

2zc2s2
1

s2
1zs2

2

� �
x L

Lx
Q xð Þ{ 1

2

s2
1s2

2

s2
1zs2

2

x2 L2

Lx2
Q xð Þ

z 1
2

c1{c2ð Þ2
L
Lx

Q xð Þ
� �2

s2
1
zs2

2


 � L2

Lx2
Q xð Þ

z m0zlð ÞQ xð Þ:

ð64Þ

Hereafter, we use frequently those equations, Eqs.(63) and (64), in

our analysis.

Reproductive timing in semelparous species. This sub-

section describes results optimal reproductive timing in [10]. They

used a case that Eqs.(57), (4) and (60) (or (58)). The objective

function ySl xð Þ then staisfies

{ �HH1
xzl

� 

ySl xð ÞzFS xð Þ~0, ð65Þ

where �HH0
x~

�HHv
xDv~0

. The solution of this is

ySl xð Þ~ x

x�


 �r

w x�ð Þ

r~
1

2
1{

2c1

s1
2

� �
z

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

2c1

s1
2

� �2

z
8m0

s1
2
z

8l

s1
2

s
:

ð66Þ

Analysis of the above objective function showed that the optimal

mature body-size ~xx satisfies

log w ~xxð Þ
log ~xx

x

~ sup
x�

log w x�ð Þ
log x�

x

, ð67Þ

It is convenient for analyzing Eq.(59) that the optimal mature age

does not depend on parameters such as, c1, s1, and m0. Therefore,

the model has the same optimal body-size and age irrespective of

the control parameter, v. Setting

~rr : ~
log w ~xxð Þ

log ~xx
x

, ð68Þ

they showed the fitness by using ~rr as follows:

l�~~rr
s1

2

2
~rrz c1{

s1
2

2

� �� �
{m0: ð69Þ

It was shown that the stochasticity decreases the fitness if and only

if ~rr is less than one. In other words, the optimal utilization possibly

exists at ~rrv1 in the model. If ~rr is more than one, ~vv of Eq.(59) is

obviously equal to zero because the stochasticity affects the fitness

positively. In persistent species, large ~rr makes species advanta-

geously at any parameters.

Results

Semelparous optimal resource utilization
From Eq.(46), the value function satisfying Eqs.(4), (59), and (60)

is generated by the following HJB equation:

{ inf
v[V

�HHv
xzl

� 

~yySl xð Þ

n o
zFS xð Þ~0, ð70Þ

where w ~xxð Þ : D5Rz\ 0,xð Þ? 1,?ð Þ in this case. Since Eq.(70) is a

quadratic function of v (e.g., Eq.(61)), the extreme value is

determined by v{ ~yySl xð Þ

 �

from Eq.(63). Substituting the value

into Eq.(70), we obtain a nonlinear ODE from Eq.(64) as follows:

Hl
~yySl xð Þ

 �

zFS xð Þ~0: ð71Þ

To find the solution of Eq.(71), we assume a solution ~yySl xð Þ~Cxr

C=0ð Þ at xv~xx, and substitute it into Eq.(71) as follows:

c1s2
2
zc2s2

1

s2
1
zs2

2


 �
2
4

3
5rz

1

2

s2
1s2

2r r{1ð Þ
s2

1zs2
2

{
1

2

c1{c2ð Þ2r

s2
1zs2

2

� �
r{1ð Þ

{ m0zlð Þ

2
4

3
5Cxr

~0: ð72Þ

Setting rl to satisfy Eq.(72), we obtain

~yySl xð Þ~ x

~xx


 �rl
w ~xxð Þ ð73Þ

and the constant, C, is given by

w ~xxð Þ~xx{rl

to satisfy the boundary condition in Eq.(46), i.e.,

limx:~xx
~yySl xð Þ~w ~xxð Þ. Eq.(73) can provide an unique optimal

frequency ~vv (e.g., the theorem on pp.228–232 in [32]) despite that

rl possibly have three different values, because the characteristic

equation Eq.(9):

x

~xx


 �r~ll w ~xxð Þ~ exp log w ~xxð Þ{r~ll log
~xx

x

� �
~1,

gives the following relationship
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~rr~r~ll, ð74Þ

from Eq.(68). Furthermore, Eqs.(72) and (74) can provide a unique

fitness to be mentioned later. If ~rrv1, we can find the optimal

control from Eq.(63) because the value function, ~yySl xð Þ, becomes

a concave function.

Substituting Eqs.(73) and (74) into Eq.(63), the optimal

utilization, ~vvS , becomes

~vvS xð Þ~ max
s2

1

s2
1zs2

2

{
c1{c2

s2
1zs2

2

� �
1{~rrð Þ

,0

( )
: ð75Þ

This optimal utilization is constant, and it means that the species

should conserve a frequency of resources during its lifetime.

Regarding ~vvS as a function of ~rr, ~rr is an important index to

determine the utilization. If the index is large, it shows that the

semelparous species has a tendency toward risk appetite (e.g.,

Fig. 2) because ~vvS is small. Then, the optimal resource utilization

continuously changes with respect to ~rr. Since the continuity of

optimal control with respect to ~rr is provided by the second-order

term of v in the diffusion term of the Hamiltonian, Eq.(61), it is

different from the bang–bang controls appearing in deterministic

models, which do not have second-order terms of control

parameters.

From Eqs.(69), (72), and (74), we obtain the fitness of the fittest

as follows:

~llS ~rrð Þ~

~rr
s1

2

2
~rrz c1{

s1
2

2

� �� �
{m0 if ~vvS ~rrð Þ~0

~rr
c1s2

2zc2s2
1

s2
1zs2

2

{
1

2

s2
1s2

2 1{~rrð Þ
s2

1zs2
2

z
1

2

c1{c2ð Þ2

s2
1zs2

2

� �
1{~rrð Þ

" #
{m0 if 0v~vvS ~rrð Þv1

8>>>><
>>>>:

,
ð76Þ

from the RHS of Eq.(72) (e.g., Fig. 3). If ~llS ~rrð Þ is non-negative, the

species is persistent. In that case, the fittest becomes R1-specialist or

generalist and R2-specialist is never selected because of magnitude

correlation of each parameter in our definition. Nature selects

generalist when ~rr is within

0v~rrv1{
1

s2
1

c1{c2ð Þ, ð77Þ

otherwise R1-specialist is selected.

The dependence of utilization on ~rr can be explained by a trade-

off between the alternation of generation and R0. It was shown in

[10] that the internal stochasticity increases the number of

precocious individuals, however, decreases that of mature

individuals. A large value of ~rr expresses a small difference

Figure 2. Semelparous optimal utilization for each ~rr. This figure
shows the semelparous optimal resource utilization, Eq.(76), depending
on ~rr. Two distinct types of feeding habitat exist. A small or intermediate

value of ~rr[ 0,1{
1

s2
1

c1{c2ð Þ
� �

makes the species a generalist: the

larger the value of ~rr, the more the species favors risk and becomes
specialist. Parameters are c1~0:16, c2~0:1, s1~1:0, s2~0:12, and
m0~0:01.
doi:10.1371/journal.pone.0098746.g002

Figure 3. Fitness of optimal utilization in semelparous species.
We calculate the value of the fitness of semelparous species with
respect to ~rr between zero and 1. The vertical dashed line represents the
boundary between specialists and generalists as given by Eq.(77). The
fitness is always a monotonically increasing function of ~rr in the

persistent region of the species (~llS ~rrð Þ§0). It is remarkable that a large
~rr causes individuals to favor risk and increase their fitness. This figure
shows the optimal resource utilization actually having advantages over
specialists of each of the resources. Parameters are the same as in Fig. 2.
doi:10.1371/journal.pone.0098746.g003

Figure 4. Transition of the mature age distribution. Whenever ~rr
becomes large (~rr1v~rr2v~rr3), the mature age distributions of every
utilization behavior are shifted to younger ages than those under smaller
~rr as in [10]. If the fittest species is a generalist, the change in distribution
becomes extreme. Then, the age distribution is provided by S5 in File S1.

We chose w yð Þ~Ryl= xl
czyl

� �
as the fertility rate function. This function

has a unique ~rr with respect to x, and the optimal body size, ~xx, is obtained

by calculating the derivative of ( log w ~xxð Þ½ �= log ~xx=x½ �)0~0 with respect to
~xx. We substitute the RHS of that equality into x of the distribution. Then,
we obtain this figure by changing ~xx. Then, ~rr becomes inversely
proportional to ~xx in this fertility function. Parameters are R~10, xc~1:0,
l~2, ~xx~1:1, 1.3, 1.5, with the others being the same as in Fig. 3.
doi:10.1371/journal.pone.0098746.g004

(76)
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between a mature body size and the initial body size, a large

fertility w ~xxð Þ or both, and makes the reproduction number of

precocious individuals compensated for the decrease of number of

mature individuals. Small ~rr makes the opposite consequence that

the reduction of the number of mature individuals exceeds the

reproduction number of precocious individuals (e.g., Fig. 4 and

Fig. 5).

Iteroparous optimal utilization
In this subsection, changing from the breeding system of Eq.(4)

to FI yð Þ, we compare the optimal strategy of semelparity with that

of iteroparity. We use the value function from Eqs.(31) and (49),

and the same Hamiltonian as in Eq.(61).

We assume the fertility function to scale with body-size

allometric law, such as for the biomass of shoots and body size

in trees [36], as follows:

FIb yð Þ : ~byb 0vbv1ð Þ, ð78Þ

where b and b represent the fertility rate and an allometric

exponent within the domain (0,1), respectively. Using the

Hamiltonian, Eq.(61), we can obtain an optimal utilization of

the iteroparous species identical to the one of the semelparous

species. From Eqs.(37) and (63), the value function in Eq.(31),

becomes a solution of the nonlinear PDE

L
La

~wwl,a xð Þ{Hl ~wwl,a xð Þð Þ~0

~wwl,a xð Þ~bxb,

8<
: ð79Þ

because

Hl ~wwl,a xð Þð Þ~ inf
v[V

�HHv
xzl

� 

~wwl,a xð Þ

� 	
,

and the optimal utilization satisfies

~vvI xð Þ~ max min v{ ~wwl,a xð Þð Þ,1
� 	

,0
� 	

, ð80Þ

from Eq.(63). To derive the solution of Eq.(79), we assume

~wwl,a xð Þ~ exp gl a{að Þf gbxb, ð81Þ

and substitute it into Eq.(79). Then, gl becomes

gl~

b
s1

2

2
bz c1{

s1
2

2

� �� �
{m0{l if ~vvI bð Þ~0

b
c1s2

2zc2s2
1

s2
1zs2

2

{
1

2

s2
1s2

2 1{bð Þ
s2

1zs2
2

z
1

2

c1{c2ð Þ2

s2
1zs2

2

� �
1{bð Þ

" #
{m0{l if 0v~vvI bð Þv1

8>>>><
>>>>:

:
ð82Þ

Eq.(81) is guaranteed as an unique solution of Eq.(79) from the

uniqueness of the viscosity solution [28]. Namely, gl can be

expressed by using the function of semelparous fitness, Eq.(76),

such that

gl~
~llS bð Þ{l: ð83Þ

This suggests that the iteroparous optimal utilization has common

and different characteristics compared to the semelparous one. We

here use the expression, Eq.(83), to emphasize the common

characteristics between semelparous and iteroparous optimal life

histories. Substituting Eqs.(79) and (82) into Eq.(80), we obtain the

optimal utilization as follows:

~vvI xð Þ~ max
s2

1

s2
1zs2

2

{
c1{c2

s2
1zs2

2

� �
1{bð Þ

,0

( )
, ð84Þ

without having to solve the Euler–Lotka equation, as the mortality

does not include control parameters. When we regard the

utilization, Eq.(84), as a function of b, the functional form

resembles the optimal utilization of semelparous species, (Eq.(76)).

Then, the exponent, b, serves as ~rr in semelparous species.

Using Eqs.(49), (81) and (82), the iteroparous value function in

Eq.(49) becomes

~yyIl xð Þ~
ða

0

da exp gl a{að Þf gbxb~
bxb

gl

exp glaf g{1ð Þ: ð85Þ

Since Euler–Lotka equation, Eq.(9) being composed of Eq.(85)

becomes transcendental, we cannot find the fitness of the

iteroparous species explicitly. Then, we use the following

inequality

~llI a,bð Þƒ~llS bð Þzbxb, ð86Þ

where the RHS of Eq.(86) is the dominant characteristic root of

lim
a:?

~yyIl� xð Þ~{
bxb

gl�
~1

from the Euler–Lotka equation, Eq.(9), applying the ‘‘Basic

optimal life schedule theorem’’ (S2 in File S1) to a. Since

individuals in initial states normally contribute little to reproduc-

tion in nature, we roughly assume that bxb is sufficiently small.

Considering the persistence of the species (~llI a,bð Þ§0), ~llS bð Þ
should be non-negative. In this model, the optimal utilization is

supposed to maximize not only the fitness but also the ERS of the

original age:

Figure 5. Transition of the R0. This figure shows changes in the R0

with respect to ~rr. The R0 of the fittest species increases as ~rr increases;
however, it decreases when ~rr reaches the RHS of Eq.(77), which means
that the growth strategy changes from the conservation of the R0 to a
hasty alternation of generation time. Utilizing R1 usually, the R0 of the
fittest is higher than that of v~0. We simulate the R0 under the same
parameters as in Fig. 4. To show the proportional connection between
~rr and theR0, we change the variable (~xx?3:5{y) and simulate it within
(0, 3.5) because ~rr is in inverse proportion to ~xx. Parameters are the same
as in Fig. 4.
doi:10.1371/journal.pone.0098746.g005

(82)
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~ww0,a xð Þ~ exp ~llS bð Þa
n o

bxb a[ 0,að Þ ð87Þ

Additionally, if the fitness, ~llI a,bð Þ, is a monotonically increasing

function in b, b has an identical meaning to that of ~rr in

semelparous species. To prove this, we show that the ERS

increases monotonically in b. Since ~llS satisfies

L
Lb

~llSw0 Vb[ D0v~vvIð Þv1f g,

and Eq.(69) is a monotonically increasing function of ~rr in l�~xx§0,

we conclude the proof.

From Eqs.(56), (87), and the R0:

~yyI0 xð Þ~ bxb

~llS bð Þ
exp ~llS bð Þa
n o

{1

 �

, ð88Þ

the breeding age density becomes

AI að Þ~

~llS bð Þ exp ~llS bð Þa
n o

exp ~llS bð Þa
n o

{1

 � ~llS bð Þw0

1

a
~llS bð Þ~0:

8>>>><
>>>>:

ð89Þ

If ~llS bð Þ is positive, the age density shows that it skews toward older

ages. In this case, the contribution of older individuals to

reproduction is important for the persistence of the species. Even

if ~llS bð Þ is equal to zero, the contribution is not negligible because

the density has a uniform distribution. Since Eq.(76) maximizes

the fitness of semelparous species, ~llS ~rrð Þ, the optimal utilization of

iteroparous species also maximizes ~llS bð Þ. Although for large

values of ~rr and b species in both breeding types favor more risky

behavior, their breeding age structures are different, such that the

semelparous mature age density is L-shaped and that the other is J-

shaped (e.g., Fig. 4 and Eq.(89)). Consequently, the optimal

utilization of iteroparous species enhances the contribution of

older individuals to reproduction and differs from that of

semelparous species because their longevity provides them with

many opportunities for reproduction and with sufficient time to

reach a large size.

Considering the persistence of the species (~yyI0 xð Þ§1) with

respect to the maximum age, a, the following relation should be

satisfied

a§

1

~llS bð Þ
log 1z

~llS bð Þ
bxb

" #
, ð90Þ

from Eq.(88). Since Eq.(85) increases monotonically in a and

Eq.(86) is proved by using the basic optimal life schedule theorem,

iteroparous fitness is a monotonically increasing function in a.

Therefore, iteroparous species evolve to have optimal utilization

and to survive as long as possible, as found for trees.

Discussion

This theory generalizes from the previous study [10] and

extends to general OLSP in LDMs. The path-integral formulation

is more suited to address controlled life history than the others

(PDE, TMM, and IPM) because it conserves continuity of states

and does not require differentiablity of parameters: g :ð Þ and s :ð Þ.
These parameters represent statistics of stage transition rate in

TMM; they appear as components of Hamiltonian in the path-

integral formulation. This Hamiltonian has a significant meaning

in OLSP because the optimal control of life history minimizes or

maximizes it depending on fertility function. There are two

approaches in control theory that are to solve the HJB equation

and maximum principle (MP). The analysis of optimal stochastic

control using the HJB equation has been developed in various

fields, including engineering and finance. However, many

theoretical biologists commonly have used the MP approach in

the analysis of OLSP [15,16,37,37]. The stochastic MP is proved

by Peng (1990) [39], but it is not overwhelmingly popular in

theoretical biology. According to Yong and Zhou (1999) [31], both

methods are formalized by the common Hamiltonian. There are

two different viewpoints in those approaches. Idea of MP is

originated from Hamilton’s canonical system which is based on

dynamics of a particle system in classical mechanics; i.e., OLSP

based on MP describes an individual optimal life history. On the

other hand, the idea of HJB equation is originated from

Hamilton–Jacobi equation (PDE); it describes the optimal life

history as optimizing cohort dynamics. These two approaches are

equivalent in the sense that solutions of one can be represented by

those of the other. Additionally, the correspondence of the HJB

equation to the stochastic MP was shown via the idea of a viscosity

solution by precursors [28–31,40]. They showed that the value

function and its derivatives in the HJB equation correspond to the

co-state variables in the stochastic MP. The Hamiltonian, which

mathematical biologists use in the OLSP associated with MP

approach, was merely one of the mathematical procedures for the

analysis. The Hamiltonian now forms an important element of the

demographic model. The path-integral formulation unifies

stochastic control theory and LDMs via the Hamiltonian, and

we showed that optimal strategies usually minimize �HHv
xzl. This

Hamiltonian, �HHv
x, forms a counterpart of the Fokker–Planck

Hamiltonian, referred to the ‘‘adjoint Hamiltonian’’ in Eq.(11). In

physics, the Hamiltonian refers to the total energy of the system.

Using this analogy, we can interpret Hamiltonian as a biological

energy, whereby individuals consume energy throughout their

lifetime. Then, the value function derived from the HJB equation

represents the lowest energy consumption over the lifetime, and

the Euler–Lotka equation converts the life history into population

dynamics. Therefore, we can omit the analysis of population

dynamics in the LDM because the theory in this study showed that

the following equations provide the unification of OLSP and

LDM:

L
La

~wwl,a xð Þ{ inf
v[V

�HHv
xzl

� 

~wwl,a xð Þ

� 	
~0

~wwl,a xð Þ~F xð Þ
~yyl xð Þ~

ða

0

da~wwl,a xð Þ~1,

8>>>><
>>>>:

or another HJB equation:

{ inf
v[V

�HHv
xzl

� 

~yyl xð Þ

n o
zF xð Þ~0

if and only if the species does not have a terminal condition, such

as maximum age, from Eq.(37).

The two-resource utilization model shows that optimal strate-

gies behave differently depending on breeding systems and fertility
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functions, even if a species occurs in the same habitat. Then, the

convexity of the objective function is the keyword of all of the

optimal strategies analyses in this study. To explain the importance

of the convexity, we introduce Jensen’s inequality. Let f yð Þ be a

concave function with respect to y[R, such as f
0

yð Þw0 and

f
00

yð Þv0. Then, the function satisfies the following inequality for

an arbitrary random variable Xa,

Ex f Xað Þ½ �ƒf Ex Xa½ �ð Þ:

Incidentally, as for the convex function, the inequality becomes an

opposite magnitude correlation. As Jensen’s inequality suggests,

the exposure of a species to risk becomes advantageous when the

objective function has high convexity. Since the convexity depends

on life history, semelparous and iteroparous species possibly have

different growth strategies even if they share several elements of

life history, such as Eq.(1), and m x,vð Þ in the habitat. In this case,

the difference in fertility yields different convexities of the objective

function and strategies. In other words, the breeding system

determines what the species optimize.

In semelparous species, the parameter, ~rr, represents an index of

convexity degree in the value function. Although the previous

study [10] did not mention the convexity, the positive effect of

internal stochasticity is caused by the strength of the index. As

Oizumi and Takada (2013) reported, there was a trade-off

between precocity and altricity in the OLSP. The stochasticity

yields both precocious and slow-growing individuals. The former

makes alternation of generations faster, while the latter decreases

R0 by increasing the risk of death. The paper showed that the

index, ~rr, determines the sensitivity of R0 in the stochasticity.

Especially, a small ~rr decreases R0 in the domain, ~rr[ 0,1ð Þ.
Consequently, species having a small ~rr utilizes smaller risk, such as

R2. The optimal utilization, ~vvS , continuously decreases with ~rr.

Then, nature selects a species of specialists or of generalists in

resources depending on ~rr.

The risk appetite of semelparous species depends on ~rr,

composed of the mature body size and w ~xxð Þ in the optimal

utilization, while that of iteroparous species depends on the

allometric exponent b. This has the same characteristic as the

index ~rr in the optimal utilization of semelparous species. If a

species has a large value of b, the fitness is also high. Those

parameters characterize the convexity of the objective function. As

Jensen’s inequality shows, the convexity determines the effect of

internal stochasticity on fitness. A large value of ~rr or b makes the

objective function close to a convex function. When they have the

same convexity, ~rr~b, semelparous and iteroparous species have

the same risk appetite and the optimal utilization.

In contrast, the breeding age distribution of iteroparous species

is different from that of semelparous species. The trend in age

distribution depends on ~llS bð Þ. If ~llS bð Þ is positive, the breeding

age distribution skews toward older ages (e.g., Eq.(89)). Then, the

persistence of the species is determined by the maximum age a.

Therefore, long-lived individuals are important for population

growth in this case.

Another meaning of ~rr and b, from a biological point of view,

represents the efficiency of conversion from adult body size to

number of offspring. For example, a large value of ~rr means a

mature individual producing many offspring and/or having a low

ratio of mature body size to initial body size. Therefore, the risk

appetite is determined by the efficiency of conversion. The

evolution of generalists is considered to be related to a portfolio

effect in our resource utilization model. The portfolio effect is a

species diversifying its resource utilization and diet to reduce risk

[41]. This effect has been reported in various cases, such as in

ascent of salmons [42]. This study shows that the diversification of

resource is important for species susceptible to internal stochas-

ticity (i.e., when ~rr and b are small), which may provide an

explanation for the evolution of the portfolio effect.

Our application shows several kinds of optimal growth strategies

depending on breeding systems in a simple stochastic growth

process. However, our theory (Eqs.(9), (10), (37), and (46)) is

applicable to other events and trade-offs in the life histories of

organisms. The controls maximizing the objective function and

R0 have basically different meanings. The control of objective

function simultaneously optimizes the ERS and generation time.

In contrast, the latter control of R0 maximizes only the R0.

Therefore, the optimal control that maximizes the objective

function is more complicated control than the latter. Conversely,

Eq.(53) shows that both types of controls accord in iteroparous

species when the mortality does not depend on the control

parameter. The analysis of iteroparous species does not need to

consider the effects of control on generation time because the

model satisfies the condition mentioned above. Considering the

mortality controlled, another trade-off occurs between the risk of

stochasticity and survivorship. The methods presented in this study

are suitable for use in addressing such issue and provide a basis for

such future research.

Supporting Information

File S1 Supporting material. S1:Analysis involved in path-

integral. S2:Basic theorem of life strategy. S3:Viscosity solution.

S4:Derivation of a general yu
l(x) in semelparous species.

S5:Mature age density of semelparous species.

(PDF)

Acknowledgments

The author is deeply grateful to Takenori Takada for his helpful comments

and advice toward the accomplishment of this study. The auther thanks

Nobuhiko Fujii, Hisashi Inaba, Joe Yuichiro Wakanoa, and Akira Sakai for

mathematical advice, and François Feugier, Motohide Seki, Jordan

Sinclair, and Jacob Korte for checking and improving this manuscript.

We thank Hiroko Oizumi, Kumiko Aoki, Yuma Sakai, Yuuki Chino,

Kunihiro Aoki, and the SDE reading circle members for supporting and

encouraging him. The author thanks his laboratory and Sakai’s group

members for checking calculations. The author dedicates this thesis with

his gratitude to his colleague Shoichi Yamada, who died before achieving

his ambition.

Author Contributions

Conceived and designed the experiments: RO. Performed the experiments:

RO. Analyzed the data: RO. Contributed reagents/materials/analysis

tools: RO. Wrote the paper: RO.

References

1. Caswell H (2006) Matrix population models. Wiley Online Library.

2. Easterling MR, Ellner SP, Dixon PM (2000) Size-specific sensitivity: applying a

new structured population model. Ecology 81: 694–708.

3. Ellner S, Rees M (2007) Stochastic stable population growth in integral

projection models: theory and application. Journal of mathematical biology 54:

227–256.

4. Allen E (2009) Derivation of stochastic partial differential equations for size-and

age-structured populations. Journal of Biological Dynamics 3: 73–86.

5. Allen E (2008) Derivation of stochastic partial differential equations. Stochastic

Analysis and Applications 26: 357–378.

Stochastic Life Histories and Population Dynamics

PLOS ONE | www.plosone.org 13 June 2014 | Volume 9 | Issue 6 | e98746



6. Tuljapurkar SD (1982) Population dynamics in variable environments. iii.

evolutionary dynamics of r-selection. Theoretical Population Biology 21: 141–
165.

7. Lauenroth W, Adler P (2008) Demography of perennial grassland plants:

survival, life expectancy and life span. Journal of Ecology 96: 1023–1032.
8. Morris W, Pfister C, Tuljapurkar S, Haridas C, Boggs C, et al. (2008) Longevity

can buffer plant and animal populations against changing climatic variability.
Ecology 89: 19–25.
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