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Abstract

Background: Originating from Primordial Germ Cells/gonocytes and developing via a precursor lesion called Carcinoma In
Situ (CIS), Germ Cell Cancers (GCC) are the most common cancer in young men, subdivided in seminoma (SE) and non-
seminoma (NS). During physiological germ cell formation/maturation, epigenetic processes guard homeostasis by
regulating the accessibility of the DNA to facilitate transcription. Epigenetic deregulation through genetic and
environmental parameters (i.e. genvironment) could disrupt embryonic germ cell development, resulting in delayed or
blocked maturation. This potentially facilitates the formation of CIS and progression to invasive GCC. Therefore, determining
the epigenetic and functional genomic landscape in GCC cell lines could provide insight into the pathophysiology and
etiology of GCC and provide guidance for targeted functional experiments.

Results: This study aims at identifying epigenetic footprints in SE and EC cell lines in genome-wide profiles by studying the
interaction between gene expression, DNA CpG methylation and histone modifications, and their function in the
pathophysiology and etiology of GCC. Two well characterized GCC-derived cell lines were compared, one representative for
SE (TCam-2) and the other for EC (NCCIT). Data were acquired using the Illumina HumanHT-12-v4 (gene expression) and
HumanMethylation450 BeadChip (methylation) microarrays as well as ChIP-sequencing (activating histone modifications
(H3K4me3, H3K27ac)). Results indicate known germ cell markers not only to be differentiating between SE and NS at the
expression level, but also in the epigenetic landscape.

Conclusion: The overall similarity between TCam-2/NCCIT support an erased embryonic germ cell arrested in early gonadal
development as common cell of origin although the exact developmental stage from which the tumor cells are derived
might differ. Indeed, subtle difference in the (integrated) epigenetic and expression profiles indicate TCam-2 to exhibit a
more germ cell-like profile, whereas NCCIT shows a more pluripotent phenotype. The results provide insight into the
functional genome in GCC cell lines.
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Introduction

Type II (testicular) germ cell tumors, here referred to as Germ

Cell Cancers (GCC), are the most common malignancy in

Caucasian adolescents and young adults, and their incidence is

still rising [1–3]. GCC originate from primordial germ cells or

gonocytes, and are subdivided into seminomas (SE) and non-

seminomas (NS), with carcinoma in situ (CIS) of the testis as their
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common precursor lesion [1], also known as Intratubular Germ

Cell Neoplasia Unclassified (IGCNU) [3]. In contrast to CIS and

SE, the stem cell component of NS (i.e., embryonal carcinoma,

EC) is characterized by pluripotent potential [4]. EC can

differentiate into somatic lineages and extra–embryonic tissues

(teratoma vs yolk sac tumor and choriocarcinoma, respectively),

including the germ cell lineage [4]. Various clinical, environmental

and genetic risk factors for GCC have been identified, although

the exact role of these factors is not completely clear. Clinical risk

factors constitute urological/andrological/gonadal aberrations [5–

8], while environmental factors focus on endocrine disruptors and

androgen - estrogen balance [9–11]. Genetic risk factors include a

number of susceptibility Single Nucleotide Polymorphisms, likely

related to early gonadal development [12–15] and an association

with familial predisposition [16]. Somatic mutations are rarely

found in GCC [17]. There are strong indications that the micro-

environment of the developing testis is of significant importance in

the pathogenesis of GCC. Patients with Testicular Dysgenesis

Syndrome (TDS) and specific forms of Disorders of Sex

Development (DSD) are known to have an increased risk of

developing GCC due to abnormal gonadal development, i.e.

hypovirilization [18].

Epigenetic processes have a clear role in both the initiation and

protection of pluripotency [19]. Deregulation of these tightly

controlled processes is known to be involved in the formation and

progression of various cancer types [20–24], including GCC [25].

During physiological germ cell formation and maturation,

epigenetic processes (e.g. DNA methylation, histone modifications)

guard homeostasis by regulating the accessibility of the DNA to

facilitate transcription [25,26]. The epigenome is highly dynamic,

and changes occur depending on cell type and developmental

stage, influenced by/reflecting the (micro-) environment. In spite

of this knowledge, little is known about the role of histone

modifications and DNA methylation regarding gene expression in

GCC in general, and the possible similarities and differences

between SE and EC [25,27]. Epigenetic deregulation through

genetic and environmental parameters (referred to as genviron-

ment) could disrupt physiological embryonic germ cell develop-

ment, resulting in delayed or blocked maturation, thereby

facilitating the formation of CIS, and potentially progression to

an invasive GCC [25,28–30]. Therefore, determining the epige-

netic and functional genomic landscape in GCC cell lines could

provide insight into the pathophysiology and etiology of GCC.

The results could provide guidance for targeted functional

experiments.

In this study, epigenetic footprints of SE and EC cell lines were

identified by studying the interaction between gene expression,

DNA methylation and histone modifications. Two well charac-

terized GCC-derived cell lines were used, one representative for

SE (TCam-2) [31,32] and the other for EC (NCCIT) [33]. Two

types of epigenetic modifications were investigated and related to

genome wide expression analysis: CpG DNA methylation status,

and enrichment of activating histone marks (H3K4me3,

H3K27ac).

Methods

Cell culture
TCam-2 [31,32,34] and NCCIT [33] cells were cultured in

DMEM medium (#31966-021, Thermo Fisher Scientific/Life

Technologies, Carlsbad, CA, USA) containing 10% fetal calf

serum (FCS, GE Healthcare Life Sciences, HyClone Laboratories,

Utah, USA) in T75 cm2 flasks to 75–90% confluence. For RNA

preparation, fresh medium was added 24 hours before harvest.

Cells were washed once with Hanks balanced Salt Solution

(HBSS, #14175-053, Thermo Fisher Scientific/Life Technolo-

gies, Carlsbad, CA, USA), and lysed with 7 ml of ice-cold RNA-

Bee (#Cs-105B, TEL-TEST Inc, Friendswood, Texas, USA). For

methylation, gene expression (biological duplicates) and ChiP-seq

analyses, different cultures of cells from a single source were used

(LEPO lab, Department of Pathology, Erasmus MC Rotterdam).

Biological replicates were started as independent cultures at

different days and processed similarly.

Methylation profiling
DNA was isolated using the DNeasy kit according to

manufacturer’s instructions (#69504, QIAGEN, Hilden, Ger-

many). Bisulfite conversion (EZ DNA Methylation Gold Kit,

Zymo Research, Irvine, CA, USA) and methylation detection was

performed at ServiceXS (ServiceXS B.V., Leiden, The Nether-

lands). Illumina’s HumanMethylation450 BeadChip was used

(Illumina, Inc., San Diego, CA, U.S.A, processing and hybridiza-

tion according to the manufacturer’s instructions). Image process-

ing took place on the iScan system and the data was extracted

using GenomeStudio, using default analysis settings (including

background correction and normalization based on internal

controls) and v 1.2 of the annotation manifest (http://support.

illumina.com/downloads/humanmethylation450_15017482_v12.

ilmn). Further processing was carried out in R using the LUMI

(http://www.bioconductor.org/) package [35] following the opti-

mized ‘‘lumi: QN+BMIQ’’ pipeline [36] This includes exclusion of

poorly performing probes (p,0.01), color adjustment, quantile

normalization and correction for probe type bias (Infinium I vs II)

using the BMIQ algorithm [37]. All raw and processed data files

are submitted as a GEO SuperSeries and accessible via GSE56454

(http://www.ncbi.nlm.nih.gov/geo/). Differentially methylated

regions were identified using the DMRforPairs algorithm using

the default settings [38]. DMRforPairs is available via Biocon-

ductor: (http://www.bioconductor.org/packages/release/bioc/

html/DMRforPairs.html). Briefly, DMRforPairs defines genomic

regions using local probe density and optionally functional

homogeneity (e.g. all probes in a region should be gene associated).

It quantifies, tests and visualizes (differential) methylation patterns

between unique samples. Differences were calculated as NCCIT

versus TCam-2.

Gene expression profiling
Approximately 20 mg of RNA was treated with RNase-free

DNaseI (#2238, Ambion, Ambion Inc., Austin, TX, U.S.A.) for

30 minutes at 37uC and subsequently purified using the RNeasy

mini kit (#74104, Qiagen, Hilden, Germany) according to the

manufacturer’s instructions. Pure RNA was eluted in 50 ml of

water, and quantified using a Nanodrop (Thermo Scientific).

Quality control, RNA labeling, hybridization and data extraction

were performed at ServiceXS B.V. (Leiden, The Netherlands)

according to their in-house protocol. Biotinylated cRNA was

prepared using the Illumina TotalPrep RNA Amplification Kit

(#AMIL1791, Ambion Inc., Austin, TX, USA) according to the

manufacturer’s specifications with an input of 200 ng total RNA.

Per sample, 750 ng of the biotinylated cRNA was hybridized onto

the Illumina HumanHT-12 v4 (Illumina, Inc., San Diego, CA,

U.S.A.) according to the Illumina Manual ‘‘Direct Hybridization

Assay Guide’’. Image processing took place on the iScan system

and the data was extracted using GenomeStudio (default settings).

Further processing was carried out in R using the LUMI package

(http://www.bioconductor.org/) [35]. Following the guidelines

presented in [39], robust spline normalization was applied to the

log2 transformed intensity values. Probes with pdetection.0.05 in
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.50% of the samples were excluded from the analysis (n = 27,964

out of 47,323). Average log2 intensities of biological replicates and

per gene were used to assess expression levels (GEO accession

number GSE56454). Log2 ratios (R) of the average intensities in

the two cell lines (NCCIT/TCam-2) were used to identify

significantly differentially expressed genes. Genes with expression

levels outside the 99% confidence interval (CI) of this log ratio

were identified as differentially expressed between NCCIT and

TCam-2.

Histone modification profiling (H3K27ac, H3K4me3)
The ChIP assay was performed according to the low cell

number ChIP protocol from Diagenode (Liege, Belgium), with

minor modifications. In brief, 16106 cells were cross-linked for

eight minutes by addition of formaldehyde to a final concentration

of 1%, followed by neutralization with 1.25 M glycine. The cells

were then lysed, and chromatin was sheared to ,500 bp

fragments using the Covaris sonicator under the following

conditions; duty cycle 20%, peak incident power 200 watts,

cycles/burst 200, time 5 min, temperature 4uC. Protein A-coated

Dynabeads (#10002D, Invitrogen, Thermo Fisher Scientific/Life

Technologies, Carlsbad, CA, USA) were incubated with 7 mg of

the following antibodies: H3K4me3 (Diagenode pAb-003-050) or

H3K27ac (Ab4729, Abcam, Cambridge, UK). The beads were

combined with chromatin from 16106 cells overnight on a

rotating wheel. The immunobeads were washed, and DNA was

purified using the iPure DNA purification kit (AL-100-0100,

Diagenode, Liège, Belgium) according to manufacturer’s instruc-

tions. DNA fragments were sheared a second time using a Covaris

sonicator (duty cycle 10%, peak incidence power 175 watts,

cycles/burst 200, time 5 minutes, temperature 4uC). Massively

parallel sequencing of ChIP DNA (ChIP-Seq) was performed

using the 5500xl SOLiDTM sequencing platform (Applied

Biosystems, Foster City, CA, USA) at the Monash Health

Translation Precinct Medical Genomics Facility. The sequencing

experiments were single-end with 50 nt read length (300 nt

average fragment size). Sequencing reads were aligned to the

complete hg19 human genome (UCSC version, February 2009)

using LifeScopeTM Genomic Analysis Software v2.5 (http://www.

lifetechnologies.com/lifescope). ChIP-Seq experimental samples

were normalized to a total of 107 uniquely mapped sequencing

tags. Data was processed in HOMER ([40], http://homer.salk.

edu/homer/chipseq/) to detect peaks and motif enrichments using

the default settings (except ‘‘fold enrichment over input’’; used 2;

threshold for p-value 0.01) (GEO accession number GSE56454).

Peak heights from HOMER were corrected for background

(lowest peak height detectable). Heights were then summed per

gene (SP) as annotated by HOMER and genes without any

detectable peak were set to 0. The difference in summed peak

heights (DSP =SPTCam-2-SPNCCIT) was used to quantify differ-

ences between the cell lines. Genes with significantly differential

histone modification patterns were identified for both marks

separately (outside 99% CI of DSP). Association of a peak with

TSS was used as annotated by HOMER (1 kb upstream of the

TSS - 100 bp downstream).

MLPA-DNaseI analysis
MLPA probes were designed following previously described

criteria [41]. Based on differential modification patterns in NCCIT

and TCam-2 probes were designed for the following loci: NCCIT:

chr3:181425532-181425720, chr5:146699813-146699953, chr3:

181577755-181577830, chr6:15240050-15240160, chr15:93191596-

93191696, chr3:178908801-178908966, chr5:101550991-101551125,

TCam-2: chr11:10613134-10613220, chr1:201278163-201278251,

chr12:3091402-3091483, chr19:13985162-13985322, chr2:38323813-

38323931, chr9:843018-843110, chr5:140762378-140762475.

MLPA-DNaseI was performed as previously described [42], with

minor modifications. In brief, nuclei from 16106 cells were isolated,

and treated with a range of DNaseI concentrations (0; 2 and 5

Units). Digested genomic DNA was purified, and 50–100 ng was

used in an MLPA reaction. Following PCR amplification of ligated

probes, products were separated on an ABI3700 DNA sequencer.

Data was analyzed as previously described, with a reduction to 75%

of peak height in undigested DNA used as a threshold for defining

DNaseI-hypersensitivity [43].

Software
Analyses were performed in R 3.0.1 (Windows 7664) and

2.15.2 (Redhat Linux 664). The networks/enrichment analyses

were performed in IPA (IngenuityH Systems, www.ingenuity.com).

Genomic positions reported in this manuscript are based on the

GRch37/hg19 assembly.

Results

To investigate epigenetic characteristics of SE and EC and their

relationship to gene expression, genome-wide histone modification

and DNA methylation patterns were investigated in the cell lines

TCam-2 (SE) and NCCIT (EC), and matched to gene expression

profiles. The differences between the two cell lines with regard to

histone modification and DNA methylation status were first

investigated separately. Subsequently, the resulting datasets were

integrated to identify (target) genes with a strong relationship

between primed DNA configuration and higher expression levels.

Histone modification
Histone modification patterns were assessed using chromatin

immunoprecipitation combined with high throughput sequencing

(ChIP-seq). Data analysis was performed as described in the

materials and methods section. Alterations in H3K4me3 and

H3K27ac were investigated, which are markers associated with

promoter activation (transcription start site (TSS), H3K4me3 and

H3K27ac) and enhancer activation (primarily H3K27ac) [44,45].

In addition to the analysis of (differential) modification patterns,

motif enrichment of the modified regions was investigated and

compared between the cell lines.

H3K4me3 and H3K27ac do not show differential

enrichment near transcription start sites and their peak

heights correlated within genes. Depending on the cell line,

10.2/11.3% of the H3K27ac enriched loci were located within

1 kb of a TSS against a comparable 14.7/16.8% of the H3K4me3

loci (TCam-2/NCCIT). This is in line with observations in other

cell types showing that, even though H3K4me3 is directly related

to promoter activation, a large majority of the H3K4me3 loci are

located distally of the TSS [46]. H3K27ac has no reported

preferential localization to TSS [47]. The level of summed peaks

per gene (SP, see Methods) was used to compare histone

modification patterns between the two histone marks. There was

significant correlation in both cell lines between the peak levels at

genes where both were present (rTCam-2 = 0.62, pTCam-2,0.001,

nTCam-2 = 1837; rNCCIT = 0.37, pNCCIT,0.001, nNCCIT = 746;

Spearman’s r). This is in line with their overlapping function:

open chromatin configuration is associated with both marks

[19,22] and allowed us to combine the histone modification results

in the subsequent analysis.

H3K4me3 and H3K27ac enrichment patterns in TCam-2

and NCCIT are in accordance with known SE/EC markers

specificity. We previously showed that active chromatin
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modification patterns for SOX17 and SOX2 in the cell lines TCam-

2 and NCCIT match the expected pattern, based on gene and

protein expression and histological constitution (SOX17 active in

TCam-2, SOX2 active in NCCIT) [25]. In line with this, SOX17

and SOX2 were differentially enriched for both H3K4me3 and

H3K27ac in TCam-2 and NCCIT respectively (Figure 1). OCT3/

4 showed no enrichment within the coding sequence, however

there was enrichment of both markers close to the TSS in NCCIT

and TCam-2. This is consistent with known OCT3/4 mRNA and

protein expression in both cell lines [31,48]. NANOG was more

enriched for both markers in TCam-2, in line with differences in

expression level (see below).

On a genome-wide scale, 29,428 H3K4me3 enriched loci were

identified in TCam-2 and 19,015 in NCCIT. 25–41% more

enriched loci were identified for H3K27ac than for H3K4me3

(nTCam-2 = 41,569, nNCCIT = 23,763). Genes with significant dif-

ferences in summed peak height per gene (DSP, see Methods) were

selected for further analysis. For TCam-2, genes showing

differential histone modifications were higher in number for

H3K27ac (nTCam-2 = 433, NNCCIT = 28). For NCCIT, there were

substantially more genes selected for H3K4me3 compared to

H3K27ac (nTCam-2 = 215, NNCCIT = 325). For both marks, 86/11

genes overlapped between top differentiating lists in TCam-2 and

NCCIT respectively. These included the SE marker SOX17 in

TCam-2 and the EC marker SOX2 in NCCIT (Figure S1, Table

S1). Functionally, the gene lists of both cell lines showed significant

enrichment for (embryonic) stem cell maintenance/pluripotency

(Table S2). Enrichment of biological functions in TCam-2

indicated similarity to more mature germ cells, which was lacking

in the list of NCCIT (GO categories TCam-2 included develop-

ment of normal testis morphology and germ cell maintenance).

Moreover, two germ cell-specific canonical pathways IGF1

signaling (logp = 3.42) and germ cell-Sertoli cell Junction Signaling

(logp = 2.11)) showed enrichment. In TCam-2, two functional

networks were identified incorporating the AR pathway and lipid

metabolism (Table S2).

Germ cell markers AP-2a and AP-2c are top enriched

motifs in TCam-2, while embryonic stem cell specific

motifs SOX2/OCT4/TCF/NANOG are enriched in both

cell lines. Significantly enriched motifs were identified for each

cell line and histone mark (HOMER tool, see Methods). There

was strong overlap between the top-ranked enriched motifs in

NCCIT and TCam-2. This was true for both activating markers.

For example, for H3K4me3 the top enriched motif was MAZ for

both TCam-2 and NCCIT, a transcription factor associated with

MYC (binds to two sites in its promoter) and known to be involved

in transcription initiation as well as termination [49] (Figure 2A,B;

Table S3).

A limited number of markers showed differences in enrichment

between the cell lines (Figure 2C,D, Table S3). For H3K4me3,

five motifs were identified which showed sufficient difference. Four

were higher ranked in TCam-2 and one higher in NCCIT. The

top ranked TCam-2 motifs presented in this differentiating list

were EBF1 (role in developmental processes), AP-2a and AP-2c
(known germ cell markers) and OCT4/SOX2/TCF/NANOG

(pluripotency motif). For NCCIT, E2F1 (cell cycle control, action

of tumor suppressor proteins, cell proliferation) was ranked higher.

For H3K27ac, there were four differentiating motifs, of which

Figure 1. Display of H3K4me3 and H3K27ac tracks for both NCCIT and TCam-2. (A) SOX17, (B) SOX2, (C) OCT3/4 (POU5F1), (D) NANOG.
Arrows indicate direction of transcription. Green boxes indicate markers specific for the histological subtype represented by the cell line. Black boxes
= no difference between the cell lines; red boxes = not a marker for that cell type. Note the different ranges on the y-axis for H3K4me3 and H3K27ac.
doi:10.1371/journal.pone.0098330.g001

Genome-Wide Epigenetic Footprints of GCC Cell Lines

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e98330



three were ranked higher in TCam-2 and one higher in NCCIT.

The OCT4/SOX2/TCF/NANOG motif was the most signifi-

cantly enriched motif for H3K27ac in NCCIT (ranked 20 in

TCam-2). This motif is known to be predominantly enriched in

embryonic stem (ES) cells [50] as well as embryonic germ cells,

which is in line with the stem cell-like origin (EC) of NCCIT and

the germ cell-like origin of TCam-2 respectively. Moreover, for

H3K27ac, AP-2a and AP-2c were ranked as 3rd and 4th most

Figure 2. Motif enrichment in histone modification data. All motifs were significantly enriched in target over background sequences (p,0.01).
Fold enrichment is indicated relative to background. (A,B) Top ranking motifs in both cell lines showed strong overlap (top 10). (C,D) Motifs that
differed strongly between the cell lines with regard to their enrichments were selected. A motif was assessed favorably if its ranking was high (#20)
for one cell line and low for the other cell line (or was absent in the other list of enriched motifs). Score: The difference in ranking was assessed based
on the difference in relative position in the list (|1-(rTCam-2/nTCam-2)–1-(rNCCIT/nNCCIT)|$15%, n = nr of enriched motifs, r is the rank of a specific motif in
the list of enriched motifs for either cell line).
doi:10.1371/journal.pone.0098330.g002
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enriched motif in TCam-2 (compared to 29th and 31st in NCCIT)

reflecting their (embryonic) germ cell origin (Figure 2C,D). For ES

cells the enrichment rankings for these two motifs were 87th and

105th [50]. These observations fit with the proposed more

differentiated (germ cell lineage) cell of origin of SE as compared

to EC [28], and are in line with the findings of related histone

peaks (see Discussion section).

Verification of the H3K4me3 & H3K27ac enrichment-

based open chromatin configuration was independently

confirmed using DNaseI-hypersensitivity. As the investigat-

ed chromatin marks (H3K4me3 & H3K27ac) are considered to be

associated with active chromatin, we explored whether their

presence was associated with another characteristic of active

chromatin: DNaseI-hypersensitivity [51]. Using a DNaseI-MLPA

approach [43] we targeted 14 regions which showed the greatest

differences in either H3K4me3 and/or H3K27ac enrichment

between the same two cell lines. Six of seven enriched regions in

NCCIT (Figure S2A: N1,N2,N3,N4,N6,N7), and five of seven

enriched regions in TCam-2 (Figure S2B: S1,S2,S5,S6,S7),

showed significant DNaseI-hypersensitivity in the respective cell

lines. In contrast, only one H3K27ac-negative locus in NCCIT

(Figure S2A, S1), and no H3K27ac-negative loci in TCam-2

(Figure S2B), showed DNaseI-hypersensitivity.

CpG Methylation
The DMRforPairs algorithm was used to identify differentially

methylated regions (DMR) [38]. The algorithm was set to detect

strong differences, i.e. using stringent settings. Regions containing

a minimum of four probes within 200 bp distance of each other

were considered for further analysis (n = 30,306). Regions in which

median methylation levels (M-values) between the samples differed

at least |1.4| (n = 5,139) were tested for statistical significance

(significant: p,0.05; Bonferroni adjusted, Wilcoxon-rank-sum test,

n = 143) (Output DMRforPairs: File S1).

Methylation patterns at DMRs are in line with marker

positivity in SE and EC. Because of the activating histone

modifications investigated, we focused on hypo- or absence of

DNA methylation. Global methylation levels were in line with the

hyper- and hypomethylated global status of NS and SE

respectively, and the previously shown intermediate status of

TCam-2 (Figure S3) [52,53]. After DMR identification using

DMRforPairs, a total of 99 DMRs (annotating to 170 unique gene

symbols) were hypomethylated in TCam-2, compared to 44 in

NCCIT (annotating to 64 unique gene symbols) (Table S1). In line

with the histone modifications (see above), the SOX2 promoter

region was found to be strongly hypomethylated in NCCIT

(Figure 3A). SOX2 was partly methylated in TCam-2, in line with

findings illustrating that TCam-2 can differentiate and become

SOX2 positive after extra-gonadal injection in mice [54]. A 220 bp

region directly upstream of the TSS of SOX2 (chr3:181429712) has

previously been shown to be completely hypomethylated in

TCam-2 [55]. This is in line with our findings as a consistently

hypomethylated region (chr3:181429233-181430485) is shown

directly upstream of the TSS while a 652 bp long DMR

(chr3:181428046-181428697) between NCCIT and TCam-2 is

detected by DMRforPairs in a region ca. 800 bp upstream of the

region sequenced by Nettersheim et al. SOX17 did not show a

significant differential methylation pattern, indicating that it is, in

principle, accessible for transcription in both cell types (Figure 3B).

Indeed, SOX17 expression can be induced in NCCIT (unpublished

observation). In line with known gene expression in both cell lines,

OCT3/4 showed an inconsistent, but non-differential methylation

pattern (Figure 3C). The TSS of NANOG was hypomethylated in

both cell lines (Figure 3D), in line with the expression data and

previous reports [56]. In the list of top DMRs, the miR-371/2/3

cluster stood out by significant differential hypermethylation in

NCCIT (Figure 3E). The promoter region of GATA4 was

significantly hypermethylated in TCam-2 (Figure 3F). In general,

33% (47/143) DMRs were annotated to TSSs (File S1, according

to Illumina’s manifest) which is similar to the fraction of TSS

associated regions identified by DMRforPairs (12,652/30,306).

Functionally, the DMR list of both cell lines showed enrichment

for (embryonic) stem cell maintenance/pluripotency. Biological

functions indicating similarity to more mature germ cells were

enriched in TCam-2 (Table S2).

DMRs were significantly enriched for imprinted genes,

and 59% (51/86) of all imprinted genes showed loss of

methylation around their TSS in one or both cell

lines. From the list of verified imprinted human genes (n = 88

retrieved from geneimprint.com), 82 were also annotated in

Illumina’s manifest (total of 21,243 unique gene symbols

annotated) and 10 were present in the top DMRs between

TCam-2 and NCCIT. This overrepresentation of imprinted genes

in the list of DMRs was significant (p,0.0001, x2 test). When

investigating the region surrounding the TSS of the 86 imprinted

genes with known genomic localization, 14 showed a differential

status between the cell lines (8/6 hypomethylated in NCCIT and

TCam-2 respectively). In total, 37 imprinted genes displayed a

hypomethylated status in both cell lines, compared with 12

hypermethylated genes (Figure 4). In summary, these results

indicate an overall erased status of the imprinted regions in both

cell lines. Regarding genes with a differential methylation status,

there is no clear difference in number of hypermethylated genes

that would indicate a difference in maturation status or

environmental disruption.

Expression
Expression levels of markers matched histological origin

of both cell lines. In total, 257 genes were expressed higher in

TCam-2, compared to 149 in NCCIT (Table S1). Greater than

3.65 fold difference in expression level (99% confidence interval

(CI) of log2-ratio of intensities) was considered significant. The

expression levels were in agreement with the classification of the

cell lines: SOX17 was higher in TCam-2 compared with NCCIT,

with the opposite observed for SOX2 [57] (Figure 5). OCT3/4, a

general marker for the stem cell components (SE/EC) of GCC,

was expressed at equal levels in both cell lines. NANOG was

expressed higher in TCam-2, which is in line with the open histone

configuration (Figure 1D, transcription possible in both cell lines).

Functionally, the gene lists of both cell lines showed enrichment for

(embryonic) stem cell maintenance/pluripotency, and Wnt/b-

catenin signaling. Enrichment of biological functions consistent

with more mature germ cells was present in TCam-2, and absent

in NCCIT. In addition, network analysis revealed the androgen

pathway in TCam-2, represented by both the AR and testoster-

one, thus showing major overlap between the networks found by

genes that had differential histone modification patterns (Table

S2).

Integration of epigenetic and expression data
Differential gene lists from histone modification,

methylation and expression data showed limited

overlap. Differentiating gene lists from the separate analyses

discussed above were matched based on Gene Symbol to assess the

relationship between active histone modifications, the absence of

CpG methylation and gene expression. Overlap between gene

expression and one of the epigenetic regulatory mechanisms is of

interest as expression of a specific gene does not need to be

Genome-Wide Epigenetic Footprints of GCC Cell Lines
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regulated by both mechanisms. Figure 6 shows the overlap of the

different variables for the differentiating gene lists between TCam-

2 and NCCIT. In general, little overlap between relative

hypomethylation/histone marker enrichment and relatively high

expression is observed, but this overlap was significant (Figure S4).

In TCam-2, one gene, PRAME, was present in all three differential

lists. H19 and CHCHD5 were differentially hypomethylated in

TCam-2 and showed high expression compared to NCCIT, but

no differential enrichment for H3K27ac or H3K4me3. There

were 62 genes with overlapping active chromatin marks and

expression, including SOX17 and NANOG. In NCCIT, three genes

showed overlap between the histone marks, hypomethylation and

expression. Significantly, one of these genes was SOX2. An

additional 18 genes showed overlap between active chromatin

marks and expression.

Enrichment of both histone marks in general and absence

of DNA methylation around the TSS is related to higher

expression levels. Higher expression levels are present when

genes are more enriched for either histone mark. Quantification of

the fraction of genes with higher than median expression at

various intervals of summed peak heights confirmed the general

trend towards higher expression at higher levels of enrichment

(Figure 7A). DNA methylation levels were only correlated to

expression around the TSS: a fully methylated TSS is predom-

inantly associated with low gene expression levels while low

methylation status is not predictive of expression level (Figure 7B).

NCCIT and TCam-2 show a largely overlapping

epigenetically open network with specific elements that

are differentially regulated based on cell type. Histone

modification, methylation and gene expression data were analyzed

together using hierarchical clustering. This unsupervised clustering

procedure revealed specific groups of genes with a profile poised

for transcription. These gene clusters showed active histone marks,

combined with an activating methylation landscape and are

hypothesized to contain genes accessible for transcription (e.g.

epigenetically ON = transcription possible, Figure 8). Functionally,

the ON network for both cell lines showed a large degree of

overlap (related to the androgen pathway, lipid metabolism and

pluripotency) (Table S2). There was considerable overlap between

the genes found in this separate analysis and the differential gene

lists (Figure 6, overlap indicated by gene symbols in Figure 8).

Discussion

Histone and DNA methylation signatures were studied to

explore the epigenetic differences between representative cell lines

for the GCC histological subtypes and their relation to expression.

TCam-2 and NCCIT cells were used as representatives of SE and

EC respectively. Our study includes the generation, integration

and interpretation of genome-wide profiles for histone marks

(H3K4me3 and H3K27ac), DNA methylation and gene expres-

sion. H3K4me3 and H3K27ac are well-characterized markers for

Figure 3. Methylation patterns of known germ cell markers (A–D) and significant DMRs for both cell lines (E, F). Dots depict individual
CpGs and black boxes denote DMRs identified by DMRforPairs. Percentages below indicate average CG density in the plotted regions (calculated
using the Repitools R package, gcContentCalc function (http://www.bioconductor.org/)). (A) SOX2 [44%], (B) SOX17 [46%], (C) OCT3/4 (POU5F1), [52%]
(D) NANOG, [44%] (E) miR-371/2/3 cluster, [49%] (F) GATA4 [53%].
doi:10.1371/journal.pone.0098330.g003
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active promoter and enhancer sites, respectively. Analysis of the

histone marks matched the classification of the cell-lines: SOX17 was

strongly enriched for H3K4me3 and H3K27ac in TCam-2

compared to NCCIT cells, whereas the opposite pattern was

observed for SOX2. Motifs for germ cell-specific transcription factors

AP-2a/c were enriched in TCam-2, but not in NCCIT.

Methylation profiling showed SOX2 to be in the top DMRs, being

more methylated in TCam-2 as expected. In addition, SOX2 and

SOX17 expression levels confirmed and matched the previously

described patterns in SE and EC [2]. General SE/EC markers

(NANOG and OCT3/4) showed expression patterns compatible with

their epigenetic configurations [58]. Moreover, imprinting patterns

confirm the suggested overall erased status of genomic imprinting in

both cell lines, in line with the situation in early germ cells [59].

The cell lines were studied for their differences with regard to

epigenetic marks and expression. In line with the early germ cell

origin of both cell lines (NCCIT more stem cell-like than TCam-2)

canonical pathways related to stem cell maintenance and

regulation were significantly overrepresented for all three variables

studied (NCCIT more pronounced than TCam-2). In TCam-2

(differential histone modification) there was strong overrepresen-

tation of genes involved in IGF1 signaling, a pathway that is

implicated in maintenance of spermatogonia [60]. Moreover,

genes involved in germ cell – Sertoli cell junction signaling were

significantly overrepresented in this cell line, fitting with a more

mature type of germ cell depending on the Sertoli cell niche [2]. In

the list of top DMRs, the miR-371/2/3 cluster stood out by

significant differential hypermethylation in NCCIT. These miRs

have shown to be specific biomarkers for GCC in serum and

tumor tissue [61–65]. Even though GCCs are reported to express

these embryonic miRs [63,66,67], NCCIT has been shown to

exhibit low expression levels due to the absence of a functional

TP53 pathway (i.e. lacking the need to inactivate this pathway by

miR-372/3 expression via LATS2 inhibition) [67].

Pathway analysis using IPA revealed a network including the

androgen receptor (AR) and testosterone targets enriched for open

chromatin configuration marks in TCam-2. Such enrichment was

also identified based on the expression data of TCam-2, and to a

lesser extent in NCCIT. Despite of this observation, no differential

AR expression was present between the cell lines, and no

Figure 4. Methylation patterns in promoter regions of imprinted genes. Localization of TSS was retrieved from Ensembl and manually
corrected for genes with multiple transcripts to select a region with representative coverage on the Illumina BeadChip (nprobes varied between the
genes: median = 10, inter-quartile range 6–21). Promoter region was defined as TSS-1000–TSS+100 (or opposite on reverse strand). Genes with .0.25
difference in median b and a consistent (stable) methylation pattern were identified as differentially methylated at the TSS between the two cell lines.
Median methylation ,25% for both cell lines was interpreted as a hypomethylated state in both cell line. Median methylation .75% was interpreted
as hypermethylation. No probes were annotated around the TSS of TCEB3C (M), RNU5D (P), SNORD108 (P), SNORD109A (P) and SNORD109B (P). SANG
and GNAS-AS1 are known aliases but separate entities on geneimprint.com and are depicted separately to preserve consistency. P = paternally
imprinted/expressed, M = maternally imprinted/expressed, I = isoform-dependent imprinting.
doi:10.1371/journal.pone.0098330.g004

Figure 5. Expression levels of known GCC markers match the
histological subtype from which the cell lines originate.
doi:10.1371/journal.pone.0098330.g005
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enrichment of DMRs in AR targets was identified. Future

experiments are needed to validate the differential role of the

AR pathway between NCCIT and TCam-2 and their in vivo

counterparts. A second network was closely related, focused on

lipid metabolism (LEP central, late germ cell differentiation and

survival [68]). Androgens are well-known environmental and

physiological factors that influence epigenetic marks and phenotypes.

They are related to GCC risk and are considered to be crucial for

Figure 6. Overlap between top differentiating genes (methylation/histone modification/gene expression). (Hypo) methylation, (high)
gene expression and histone marker (enrichment) should be interpreted relative to the other cell line. Criteria for selection are described in the main
text. Briefly, significant differential methylation of regions with sufficient probe density was identified by DMRforPairs (frequently, but not necessarily
close to, the TSS). The difference in histone modification enrichment was assessed by significant differences in summed peak heights between the
cell lines. Finally, a fold difference of 3.65 (boundary of 99% CI) was used as cutoff for differential gene expression. Gene lists are presented in Table
S1, and overlap was determined based on matching gene symbol.
doi:10.1371/journal.pone.0098330.g006

Figure 7. Relation between histone modification level (summed peak heights per gene) and expression level. Top and bottom right
images depict the percentage of highly (.p50) expressed genes calculated for an interval of summed peaks. For example, 5% of genes with a
log2(summed peak height) of <5.5–7.5 were highly expressed. (B) Relation between CpG methylation (TSS/no TSS) and gene expression.
doi:10.1371/journal.pone.0098330.g007
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Figure 8. Heat map of epigenetic markers and gene expression profiles. Genes with quantified methylation status around their TSS (based
on Illumina annotation) and valid (see Materials & Methods) measurement of their expression level were included (n = 11,620). Log-2 summed peak
heights per gene were used as an estimate of histone marker enrichment. Variables scaled between 0 and 1. Hierarchical clustering was performed
using complete linkage. Clusters of interest were identified based on a consistent enriched state for one or more of the active histone markers and a
hypomethylated state around the TSS. Number of genes in the displayed right panel (zoomed in heat maps, topRbottom): 899/892 (TCam-2) and
1,224/37/308 (NCCIT). Gene expression was allowed to vary within clusters, but clusters with almost absent expression levels (completely red) were
not selected. Gene symbols indicate genes that overlap with the analysis of top differentiating genes between the cell lines (Figure 6). Gene symbols
are listed alphabetically. An indication of the level for each gene in each column is presented by the color/shade and a blue line (for each column:
left = 0, right = 1).
doi:10.1371/journal.pone.0098330.g008
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the progression of germ cell development [28] Ammerpohl et al.

found significant enrichment of hypermethylated AR target genes in

androgen insensitivity syndrome (AIS) patients versus controls [69].

This is consistent with earlier reports that diminished gene

activation (due to an AR mutation) results in subsequent increased

DNA methylation of target genes [70,71], linking DSD and GCC at

the epigenetic level.

On the other hand, functional analysis for NCCIT predom-

inantly revealed genes involved in embryonic stem cell maintenance

(less pronounced in TCam-2). More specifically, an interaction

between SOX2 and DMRT1 was the most important network

identified. Both are involved in stem cell maintenance in embryonic

(mouse) germ cells [28]. It has been reported that Dmrt1 can bind

the mouse Sox2 promoter, and Dmrt1 controls expression of Sox2

and other pluripotency genes (such as Nanog and Oct3/4) in the

embryonic testis, in part via transcriptional repression [72]. In

addition, DMRT1 has a role in sex determination, as it prevents

female reprogramming in the postnatal mammalian testis [73]. A

study by Murphy et al confirmed the influence of DMRT1 on SOX2

expression while no change in expression of SOX17 was observed

[74]. However, these observations in mice are not necessarily

representative for the human situation. No consistent networks

related to progression of germ cell differentiation (as with AR in

TCam-2) were identified in NCCIT.

As stated above, motif enrichment based on the histone

modification data showed that the AP-2a and AP-2c motifs were

enriched in TCam-2 only. The ETS family was enriched in both

TCam-2 and NCCIT. AP-2c is a known germ cell marker,

abundantly expressed in CIS and SE, and heterogeneously

expressed in NS and somatic tumors [75,76]. AP-2y and KIT are

co-expressed in gonocytes [76], which could point to a direct

regulation loop which supports proliferation, and agrees with the

observation that TCam-2 is more germ cell-like than NCCIT. AP-

2y would then serve as a molecule that keeps fetal germ cells in a

pluripotent state by suppressing differentiation and supporting

proliferation [76,77]. AP-2y expression is induced by estrogens [78]

and AP-2a and AP-2y are able to induce changes in the chromatin

structure known to be associated with ERa (ESR1) transcription

[79]. The importance of the androgen-estrogen balance is also

indicated by the strongly androgen/estrogen-centered gene net-

works identified in this study. Additionally, the ETS family was

present in the top motif enrichments for both TCam-2 and NCCIT.

Recently it was shown that overexpression of ETS, combined with

loss of PTEN, increases AR binding and restores AR transcriptional

activity in prostate [80]. Indeed, disruption of the PTEN pathway

has been suggested to be part of the pathogenesis of GCC [81].

Conclusions

In conclusion, this study provides an integrated analysis of the

functional genome in GCC cell lines. Our data show that known

germ cell markers are not only present and differentiating between

SE and NS at the expression level, but also in the epigenetic

landscape. The overall similarity between TCam-2/NCCIT

support an erased embryonic germ cell arrested in early gonadal

development as common cell of origin although the exact

developmental stage from which the tumor cells are derived

might differ. Indeed, subtle difference in the (integrated) epigenetic

and expression profiles indicate TCam-2 to exhibit a more germ

cell-like profile, whereas NCCIT shows a more pluripotent

phenotype. Future research has already been initiated to

investigate primary cancer samples from patients to confirm and

further expand the integrated epigenetic EC and SE footprints

identified in this study.

Supporting Information

Figure S1 Number of top differentially modified regions

between TCam-2 and NCCIT, and their overlap between

H3K27ac and H3K4me3 based on associated genes. Genes with

significant differences (outside 99% confidence interval) in

summed peak height per gene (DSP) were identified as top-

differentially modified.

(TIF)

Figure S2 Normalized ratios for each of the 14 loci tested in the

MLPA-DNaseI assay. A threshold of ,0.75 was defined for

DNaseI-hypersensitivity. N = enriched in ChIP-seq analysis in

NCCIT (non-seminoma cell model), S = enriched in ChIP-seq

analysis in TCam-2 (seminoma model). (A) Analysis of NCCIT

cells. (B) Analysis of TCam-2 cells. (C) Overview of loci and

interpretation of results. DNaseI hypersensitivity is indicated if

present in the cell line in which marker enrichment was also found

in the ChIP-seq analysis.

(TIF)

Figure S3 Visualization of global methylation patterns in both

cell lines. Depicted is a violin plot of the distribution of methylation

values (b) for both cell lines. In general, NS are considered globally

hypermethylated in comparison to SE but TCam-2 is known to

show an intermediate phenotype with regard to global methylation

status (see Wermann et al 2010 and Netto et al 2008 in reference

list). Indeed, significantly lower methylation levels were detected in

TCam-2 but the quantitative difference in methylation distribution

was very moderate (p,0.01, Mann Whitney U test, medianb (1st–3rd

quantileb): 51%TCam-2 (46%–84%) versus 63%NCCIT (58%–87%)).

(TIFF)

Figure S4 Venn diagrams analogous to Figure 6 corrected for

gene symbols that are not represented by valid measurements in

the expression or methylation data (histone modification =

genome wide assessment). NCCIT: 33 genes differentially

methylated were not annotated in the expression data. 17

overexpressed genes were not annotated in the methylation data.

97 genes showing differential histone modifications were not present

in the expression or methylation data. For TCam-2 these numbers

were 101/28/198. Based on an empirical probability distribution

we assessed random overlap using 10,000 draws from simulated

genelists with nexpression (EXPR) = 14,525, nhistone-modification (HM) =

22,000 and nmethylation (MEHTY) = 21,243 genes. These numbers

correspond with the number of genes with valid measurements on

the arrays (histone modification: genome wide proxy). Significant

overlap indicates more overlapping genes identified in these venn

diagrams than would we expected based on random subsets of

genes. Significant overlap is indicated with a * (p,0.05). p-values

TCam-2: pEXPR_HM = ,0.0001, pEXPR_METHY = 0.0370–0.1604,

pHM_METHY = 0.3229–0.6860, pall3 = 0.0003–0.0167. p-values

NCCIT: pEXPR_HM = 0–0, pEXPR_METHY = 0.0001–0.0007,

pHM_METHY = 0.3110–1.0000, pall3 = ,0.0001. (P-values are ranges

if in the repeated random draws used to construct the empirical

cumulative distribution function a specific count of overlapping

genes occurred more than once).

(TIF)

Table S1 Top differentiating genes in histone modification,

CpG methylation and gene expression analyses.

(XLSX)

Table S2 Results of IPA/functional analysis of (differentiating)

gene lists. IPA was performed using the default settings including

‘‘testis’’ as specific tissue of interest, and only incorporating

experimentally observed evidence. Green fill indicates overlap
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between TCam-2 and NCCIT. Reported log(p) values are the

result of IPA’s internal enrichment tests.

(XLSX)

Table S3 Detailed results of motif enrichment analysis (HO-

MER) per cell line and per histone mark.

(PDF)

File S1 ZIP file containing DMRforPairs output for significant

regions. Please start from the html files.

(ZIP)
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