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Abstract

The increasing quantity and quality of functional genomic information motivate the assessment and integration of these
data with association data, including data originating from genome-wide association studies (GWAS). We used previously
described GWAS signals (‘‘hits’’) to train a regularized logistic model in order to predict SNP causality on the basis of a large
multivariate functional dataset. We show how this model can be used to derive Bayes factors for integrating functional and
association data into a combined Bayesian analysis. Functional characteristics were obtained from the Encyclopedia of DNA
Elements (ENCODE), from published expression quantitative trait loci (eQTL), and from other sources of genome-wide
characteristics. We trained the model using all GWAS signals combined, and also using phenotype specific signals for
autoimmune, brain-related, cancer, and cardiovascular disorders. The non-phenotype specific and the autoimmune GWAS
signals gave the most reliable results. We found SNPs with higher probabilities of causality from functional characteristics
showed an enrichment of more significant p-values compared to all GWAS SNPs in three large GWAS studies of complex
traits. We investigated the ability of our Bayesian method to improve the identification of true causal signals in a psoriasis
GWAS dataset and found that combining functional data with association data improves the ability to prioritise novel hits.
We used the predictions from the penalized logistic regression model to calculate Bayes factors relating to functional
characteristics and supply these online alongside resources to integrate these data with association data.
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Introduction

Genome-wide association studies (GWAS), which investigate

the association between genetic variation and phenotypic traits,

have identified many genes associated with human diseases [1].

However, despite considerable advances, much of the estimated

heritability remains unaccounted for. Purcell et al. [2] showed that

single nucleotide polymorphisms (SNPs) from GWAS with sub-

threshold p-values account for a considerable proportion of the

variance in independent samples suggesting that they are enriched

for causal SNPs or their proxies. The issues of small sample size,

low minor allele frequency, and lack of linkage disequilibrium (LD)

between genotyped SNPs and the un-genotyped causal SNPs

present challenges to detecting truly causal variants among near-

significant genetic associations.

Emerging experimental data from various sources have

suggested that the functional characteristics of specific genomic

regions, such as histone modifications, DNase I hypersensitive

sites, transcription factor binding sites, and expression quantitative

trait loci (eQTL) among others, could offer biological explanations

for many variants found to be associated with disease (for example:

[3,4,5]). In September 2012, a series of publications from the

ENcyclopedia of DNA Elements (ENCODE) Project Consortium,

had the key message that much of the human genome, including

non-coding and intergenic regions, overlaps with at least one

functional element that may be active in certain cell types, under

defined physiological conditions [6]. Furthermore, putative

disease-causing variants show significant enrichment for multiple

functional characteristics from the ENCODE Project [7]. For

example, GWAS variants or variants with which they are in

perfect LD are more frequently localized to DNase I hypersen-

sitive sites than would be expected by chance [8].

Various tools are available that allow one to summarise the

functional characteristics of variants in a given region. For

instance, Boyle et al. developed RegulomeDB, a web-based
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interface that provides an easily interpretable score from an

amalgamation of many functional characteristics derived from a

variety of sources to annotate non-coding variants [9]. Other

programs such as HaploReg [10] and SNPnexus [11] perform

similar functions and account for LD. Although these programs

provide facile access to summary information about the location of

variants, they are only able to provide a relatively arbitrary and

crude ranking of functional significance. The ranking scale used in

RegulomeDB is based on the number of categories into which a

variant falls with the highest scores given to those variants that fall

into both an eQTL and a transcription factor binding site,

regardless of cell type or specific transcription factor.

The central challenge in the interpretation of genetic associa-

tions lies in the processing and meaningful integration of a hugely

diverse range of information. Having derived a score for a region

containing a candidate variant, it has to be integrated with

association evidence. We proposed the use of empirically derived

weightings within a Bayesian framework [3]. More recently

Schork et al. suggested the use of stratified False Discovery Rate

(sFDR) and Darnell et al. proposed multi-thresholding in a

manner that they say is equivalent to varying the significance

threshold at each marker depending on the prior information

[12,13]. In order to implement these approaches one needs to

define appropriate weights. For instance, Schork et al. [12] used

an LD-weighted scoring algorithm, and Kindt et al. [14] recently

published a multivariate logistic regression approach. However,

neither of these approaches is easily scalable to the very large

number of functional characteristics that are becoming available.

The primary objectives of this study are to describe an

empirically justified method to identify which functional charac-

teristics are best correlated with GWAS hit SNPs, to provide clues

to the etiology of such traits, and to develop and implement a

method to incorporate functional characteristics with statistical

information in association studies. To achieve these objectives we

use a machine learning approach, elastic net (a regularized logistic

regression), to predict causality of a SNP based on information

from 439 functional characteristics. We explore models based on

all GWAS significant SNPs and also subsets of significant SNPs

selected on the basis of phenotype and p-value. Functional

characteristics are considered individually or in groups. We report

a) the accuracy of the predictions to demonstrate the utility of the

method and to investigate the behaviour of the different models, b)

the frequency, correlation between and coefficients of the

functional characteristics providing insight about their functional

relevance to disease, c) a prediction score for each SNP, and d)

details of how to combine this score with association statistics in a

formal Bayesian framework.

We provide online scripts that can be employed so the method

can be used by other researchers using additional functional

characteristics (http://www.camh.ca/en/research/

research_areas/genetics_and_epigenetics/Pages/Statistical-

Genetics.aspx). For the best models we provide the probability of

causality (the prediction score) for each SNP, the corresponding

Bayes factor (BFannot) and scripts to combine BFannot with GWAS

association signals.

Results

Functional Enrichment in GWAS Hits
Frequencies of functional characteristics in GWAS hits com-

pared to non-hits were compared using Fisher’s exact test. Our

analyses indicate that GWAS hits are enriched for most functional

characteristics compared to GWAS non-hits, except for splice sites

and micro RNA (miRNA) targets, perhaps due to the very low

frequency of these two classes of functional characteristics

compared to the others (Table 1 and Table 2).

The histone modification data from the Broad Institute had the

highest frequencies in GWAS hits, and the lowest p-values for

Table 1. Summary statistics for the functional characteristics in the clumped non-phenotype specific analysis.

Description

Frequency
of annotation
in GWAS hits

Frequency
of annotation
in GWAS
non-hits

p value
(Fisher’s exact test)

Odds
Ratio

95% Confidence
interval

splice 0.002 0.002 0.142 1.26 0.78–2.02

non-synonymous 0.022 0.007 2.38E-38 3.10 2.67–3.59

DNase Clusters 0.193 0.141 1.87E-39 1.46 1.38–1.54

GTEx eQTLs
(all 7 experiments together)

0.020 0.007 1.69E-31 2.92 2.50–3.41

UK brain eQTLs 0.108 0.081 2.19E-18 1.37 1.28–1.47

UCSC Genes 0.422 0.357 7.36E-35 1.31 1.26–1.27

PhyloP* 0.217 0.172 6.56E-27 1.34 1.27–1.41

PhastCons* 0.243 0.202 3.63E-20 1.27 1.20–1.33

BroadHistone- H3k4Me1 0.637 0.566 2.20E-40 1.35 1.29–1.41

BroadHistone- H3k4Me3 0.509 0.434 1.63E-43 1.35 1.30–1.41

BroadHistone- H3k27ac 0.587 0.503 1.28E-53 1.48 1.34–1.46

Txn Factor ChIP
(if annotation for any TF)

0.511 0.456 5.26E-24 1.25 1.10–1.14

miRNA 1.12E-4 7.00E-5 0.116 1.70 0.24–12.15

Gencode-Txn start sites 0.003 0.002 0.012 1.64 1.08–2.49

*As PhyloP and PhastCons conservation scores were left as quantitative measures, the frequencies reported for those characteristics represent the presence of a
conservation score (ie. score.0).
doi:10.1371/journal.pone.0098122.t001

SNP Prioritization Using Functional Characteristics
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enrichment. Many functional characteristics, most notably

miRNA, were very infrequent, but the general picture was that

their frequency in GWAS hits was greater than in GWAS non-

hits.

We examined the correlations among the various functional

characteristics (Figure 1 and Figure 2). The separated-variable

analysis included measures of functional characteristics from

different cell lines as individual factors, whereas the clumped-

variable analysis grouped data from different cell lines for the same

functional characteristic. The clumped analysis showed a strong

correlation between the two conservation measures (PhyloP and

PhastCons), as well as strong correlations among the three histone

marks (H3k4Me1, H3k4Me3 and H3k27Ac), and to a lesser

degree among the histone marks and transcription factor binding

sites. The separated analysis revealed additional correlations

among cell types investigated for the DNase I hypersensitive

characteristics from Duke University, and to a lesser degree among

the DNase I hypersensitive characteristics from the University of

Washington, and between these two groups. These results

highlight the issue of correlations among functional characteristics,

many of which simply represent the same genomic feature, for

example a promoter element measured by different technologies.

One advantage of elastic net as a regularized logistic regression

method is its ability to accommodate highly correlated variables.

Predictive Accuracy of Functional Characteristics
We fitted predictive models for GWAS hit status via elastic net,

using clumped and separated functional variable sets, using high-

confidence (p,561028) and low-confidence (p,1025) GWAS

hits, and using all GWAS hits (‘‘non-phenotype specific’’) as well as

hits classified according broad phenotype areas. We primarily

Table 2. The mean score per SNP across all functional characteristics, classified by SNP type and functional variable type.

Clumped Separated

All SNPs 2.7 17.7

Hits 3.2 24.1

Non-hits 2.6 17.0

doi:10.1371/journal.pone.0098122.t002

Figure 1. Heat map of correlations among the clumped functional characteristics. High correlations are seen between the two
conservation measures PhyloP and PhastCons (represented as Phylo and Phast, respectively). Correlations are also seen among the histone
modifications, H3k4Me1, H3k4Me3 and H3k27Ac (Me1, Me3 and Ac, respectively.) Transcription factor binding sites also show a correlation with the
histone modifications. [spli = splice sites, Nons = nonsynonymous SNPs, DHs = DNase I hypersensitive sites, GTEx = cis-eQTL data from the GTEx
Consortium, UK = cis-eQTL data from the UK Brain Consortium, Phylo = PhyloP conservation, Phast = PhastCons conservation, Me1 = H3K4Me1 histone
modification, Me3 = H3K4Me3 histone modification, Ac = H3K27Ac histone modification, TF = transcription factor binding sites, RNA = micro RNA
targets, Genc = transcription start sites from Gencode].
doi:10.1371/journal.pone.0098122.g001
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investigated predictive accuracy in a separate test set that was not

involved in the fitting of the models.

For all of our fitted models, the area under the curve (AUC) of a

receiver-operating characteristic (ROC) curve was similar in the

test and training sets, suggesting that the models had not been

over-fitted (File S1, Part A).

We found that the ROC curves for both the separated and

clumped analyses had similar AUCs: for instance 0.58 in the test

set for the non-phenotype specific clumped analysis and 0.59 in

the test set for the separated analysis.

Two analyses emerged as most predictive based on integrating

results from ROC curves, positive predictive values, and

histograms of the probabilities of causality (the prediction scores).

These were the analyses based on non-phenotype specific and the

autoimmune GWAS analyses. Best results were obtained from

analyses using high-confidence GWAS hits. Results for clumped

and separated functional variables were very similar (Table 3 and

Figure 3).

We also investigated positive predictive values (PPVs) and

histograms of the probability of causality (prediction score). PPV

estimates could not be obtained due to insufficient data (a limited

number of true hits correctly identified as hits at a particular

prediction value threshold) for the phenotype specific analyses

since these analyses contain only a subset of all GWAS hits. As a

result, PPVs were only plotted for the non-phenotype specific

analyses (Figure 4). PPVs appear to be highest for the analysis

using all GWAS hits compared to the analysis using the high-

confidence hits when defining hits as those variants with a

Figure 2. Heat map of correlations among the separated functional characteristics. A full list of the numbered characteristics is provided in
Table S1. The white box in the bottom left corner corresponds to high correlation among the histone modifications. The less defined white area
spanning from 72 to 219 on the x axis corresponds to correlation among the transcription factor binding sites, which also show some correlation with
the histone modifications. The white box from 220 to 319 on the x axis corresponds to a high correlation among the different cell types for the DNase
I hypersensitivity characteristic from Duke University. The less refined white box from around 320 and onwards on the x axis corresponds to the
DNase I characteristics from the University of Washington. The plot also shows some correlation among the DNase I characteristics from both groups.
doi:10.1371/journal.pone.0098122.g002

Table 3. Areas under fitted ROC curves.

Non-phenotype specific Brain-related Cancer Cardiovascular Autoimmune

N 3227 (8219) 348 (1741) 300 (607) 369 (716) 570 (863)

AUC clumped 0.67 (0.58) 0.61 (0.52) 0.67 (0.60) 0.69 (0.61) 0.71 (0.67)

AUC separated 0.69 (0.59) 0.62 (0.51) 0.68 (0.60) 0.66 (0.61) 0.75 (0.71)

Main values are for analyses of high-confidence GWAS hits. Values in parentheses are for all SNPs in the GWAS Catalogue.
doi:10.1371/journal.pone.0098122.t003

SNP Prioritization Using Functional Characteristics
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Figure 3. Receiver-operating characteristic (ROC) curves for analyses of clumped functional variables and high-confidence GWAS
hits. ROC curves were obtained from a separate test set.
doi:10.1371/journal.pone.0098122.g003

Figure 4. Proportion of correctly identified hits in the test data (positive predictive values). In the non-phenotype specific analyses at
various cut-offs for defining hits: SNPs with predictive values of greater than 0.5, 0.6, 0.7, 0.8, or 0.9. Note that results are only plotted for those
predictive value thresholds in which there are at least 11 hits correctly identified.
doi:10.1371/journal.pone.0098122.g004

SNP Prioritization Using Functional Characteristics

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e98122



prediction score of greater than 0.5, 0.6, or 0.7. There was

insufficient data at the higher thresholds for declaring a positive hit

for the analysis based on all GWAS hits. Yet sufficient data was

available at the higher prediction value thresholds for the analysis

using the subset of high-confidence hits, demonstrating a broader

spread in prediction values for that analysis compared to the

analysis on all GWAS hits.

Histograms of the probability of causality in the test data

allowed visualization of the separation (or non-separation) of true

hits versus non-hits. We found that for the non-phenotype specific

analysis and for the autoimmune analysis, the use of high-

confidence GWAS hits in the training data improved the

separation of true hits from non-hits in the test data (Figure 5).

The results from the histograms of the predicted values showed

a broader spread in the non-phenotype specific clumped analysis

on high-confidence GWAS hits compared to the analysis using all

hits. The former separated true hits from non-hits better than the

latter, with the modes of the two distributions distinct. These

results suggest that the weighted elastic net procedure was

successful in producing models that performed well in identifying

true hits as well as in identifying true non-hits. While we could not

obtain reliable PPV estimates for the autoimmune analysis due to

insufficient data, the separation of non-hits from hits in the

histogram was taken as sufficient evidence that the high area under

the ROC curve for the autoimmune clumped analysis was also due

to positive predictive power.

Figure 5. Predicted values for true GWAS hits and non-hits in the test data. Panels show results of clumped-variable analyses on high-
confidence GWAS hits for brain-related [a], cardiovascular [b], cancer [c], autoimmune [d], and non-phenotype specific hit sets [e], and for all hits in
the GWAS Catalogue for the non-phenotype specific hit set [f].
doi:10.1371/journal.pone.0098122.g005
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Results will only be provided for the non-phenotype specific and

the autoimmune clumped analyses, the two models that were

deemed to be reliable based on the predictive accuracy measures.

For the non-phenotype specific clumped analysis, the highest

Bayes factor for annotation (11.95) was obtained for rs11177,

which is a known GWAS hit associated with osteoarthritis on

chromosome 3. It had a predicted value of 0.93. This SNP held all

functional characteristics except three low-frequency characteris-

tics: splice sites, miRNA targets, and Gencode transcription start

sites. Nine percent of the variants with the top 500 Bayes factors

were known GWAS hits. The frequency of hits in the test set data

was 4.1%. The mean and median of the predicted values for the

true hits in the test set were higher than those for the true non-hits

(for hits: mean = 0.54, standard deviation = 0.13 and medi-

an = 0.54; for non-hits: mean = 0.46, standard deviation = 0.12

and median = 0.44).

For the autoimmune clumped analysis, the SNP with the

highest Bayes factor was the same as for the non-phenotype

specific clumped analysis, rs11177.

Investigation of the Relative Importance of Different
Functional Characteristics

The importance of a particular functional characteristic in

predicting whether or not a SNP is more probable to be a GWAS

hit is assessed by means of the magnitude of the coefficient

assigned to the characteristic. In both the non-phenotype specific

and autoimmune analyses we note that the nonsynonymous SNP

functional characteristic had one of the highest coefficients

(Figure 6). (The coefficients for both models are provided in

File S1, Part B. Confidence intervals cannot be easily calculated

for coefficients from elastic net, and so to estimate standard error

for the coefficients we performed multivariate logistic regression.

Those results are also in File S1, Part B.) GTEx eQTLs had the

highest coefficient in the autoimmune analysis.

Investigating Functional Predictions in the Context of
known GWAS

We investigated: schizophrenia (SZ) from a meta-analysis

GWAS involving the first sample from the Psychiatric Genomics

Figure 6. Coefficients of the functional characteristics for the two best analyses. The figure shows the coefficients from the clumped
analysis on high-confidence GWAS hits for the non-phenotype specific versus the autoimmune model.
doi:10.1371/journal.pone.0098122.g006
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Consortium (PGC1) combined with a Swedish sample [15],

systolic blood pressure (SBP) from the International Consortium

for Blood Pressure (ICBP) [16], and height from Genetic

Investigation of Anthropomorphic Traits (GIANT) Consortium

[17]. The studies analyzed over 35,000 cases and 47,000 controls,

200,000 individuals and, and over 180,000 individuals, respec-

tively.

For each study, we stratified the quantile-quantile plots

according to predicted value bins (Figure 7). We found that

SNPs with higher predicted values from the non-phenotype

specific clumped analysis tended to deviate more from the line

corresponding to the overall GWAS, in favour of more association

signals. Similar results were obtained for all three GWAS

analyzed: schizophrenia, systolic blood pressure and height. The

pattern remained when only the GWAS SNPs present in the test

set were plotted, and also when prediction values were obtained

from models derived from excluding the genome-wide significant

SNPs in the training set for each GWAS respectively. (Results

shown in File S1, Part C).

We obtained summary data obtained from a psoriasis GWAS

study from Strange et al. [18]. We then selected 15 SNPs that were

subsequently discovered in a meta-analysis [19]. Using summary

association statistics from the Strange et al. study we derived Bayes

factors for association (BFassoc) and Bayes factors based on

Figure 7. Quantile-quantile plots stratified by predicted values for SNPs in real GWAS. All GWAS SNPs (in grey) for a schizophrenia GWAS
from PGC1 with a Swedish sample [a], a systolic blood pressure GWAS from ICBP [b], and a height GWAS from GIANT [c]. The non-grey lines show
plots for SNPs binned according to their predicted value from the non-phenotype specific model.
doi:10.1371/journal.pone.0098122.g007
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association data combined with the annotation of functional

characteristics (BFassoc*BFannot) for each SNP. We ranked the

SNPs according to BFassoc, and ranked them again according to

BFassoc*BFannot to determine whether annotating SNPs with their

functional characteristics improved their rank (larger Bayes factors

were assigned smaller ranks). BFannot values were derived from the

non-phenotype specific clumped analysis using high-confidence

GWAS hits. As negative controls, we took 12 independent sets of a

random 15 SNPs (which were not in high LD with any of the 15

hits and had similar p-values to the hits) and compared the

difference in the sum of ranks based on BFassoc versus

BFassoc*BFannot. The procedure was repeated using BFannot derived

from the autoimmune clumped analysis.

Of the 15 true psoriasis hit SNPs, 7 had better ranks based on

BFassoc*BFannot compared to association information on its own

(BFassoc). The difference of the sum of ranks assigned to the 15 hits

was nearly 48,000 based on BFassoc*BFannot compared to BFassoc,

with the former having the lower sum (better ranks). Many of the

hit SNPs had very large ranks based merely on the association data

(.3000), which was also the case for ranks based on BFassoc*B-

Fannot, but the trend was in the right direction with better ranks

obtained when combing the association information with the

annotation of functional characteristics. Of the 12 random sets of

15 independent SNPs, the trend was in the opposite direction for

10 of the sets (with SNPs having better ranks based on BFassoc

alone). Of the remaining 2 sets, one of them had the same number

of the SNPs with improved ranks based on BFassoc*BFannot

compared to BFassoc as did the analysis with the actual hits (7

out of 15), and the other random set had 8 SNPs that showed

improvement. However, for those random SNP lists the difference

in the sum of ranks from BFassoc compared to BFassoc*BFannot was

less than half of the improvement of ranks seen for the 15 hits.

Comparable results were seen when using BFassoc based on the

autoimmune clumped analysis. The difference between the sum of

the ranks for BFannot compared to BFassoc*BFannot was over

49,000, with improved ranks of the hits based on the BFassoc*B-

Fannot ranks. Of the random lists the largest difference in the sum

of ranks from BFassoc compared to BFassoc*BFannot was less than a

third of the improvement of ranks seen for the 15 hits.

Discussion

The release of major genome wide datasets such as ENCODE

and NIH Roadmap projects, offers an excellent opportunity to re-

assess the existing GWAS corpus and draw conclusions about

which functional characteristics in the human genome are most

likely to indicate causality in association studies. We previously

considered Bayes factors based on a limited set of functional

characteristics, considering each functional characteristic sepa-

rately [3]. Here we have extended our Bayesian framework by

developing Bayes factors for multiple functional characteristics,

considering all functional characteristics jointly. We used a

regularized logistic regression to fit predictive models allowing

for large numbers of both qualitative and quantitative functional

characteristic data. We performed our analysis under a wide

variety of conditions, including phenotype specific analysis for

autoimmune, brain-related, cancer, and cardiovascular disorders.

Our results confirm previous findings of differences in functional

enrichment in GWAS hits compared to non-hits, which provided a

rationale for utilizing functional characteristics as predictors of

SNP causality. We found that using high-confidence GWAS hits

(p,561028) as a classifier resulted in more predictive power.

However, if the number of GWAS hits that are available for

training are too low, then the predictions become imprecise. This

was a reoccurring theme for many of the phenotype specific

analyses. The separation between true GWAS hits and non-hits in

the test set, in addition to the AUC, should be used to assess the

predictive power of a model. Using those methods we found that

the non-phenotype specific and the autoimmune analyses on

clumped variables using high-confidence GWAS hits were most

reliable. For instance, although the AUCs were slightly higher for

the separated analyses, the classification of true GWAS hits and

non-hits was better in the clumped analysis, suggesting that the

clumped analysis may provide more accurate predictions. The

benefit of the separated analysis is that it allows researchers to

identify characteristics specific to certain conditions, for example

specific cell types, which can be useful for planning further

investigations, but the increased number of variables and sparsity

of the data reduces the power of this type of analysis.

While our study has demonstrated that relevant functional

information is indeed predictive for identifying GWAS hits, and

that Bayes factors incorporating this functional information rank

known GWAS hits better than Bayes factors based on association

information alone, the improvements based on current informa-

tion (for example, in the psoriasis GWAS we analyse) are marginal.

However, we outline reasons below to argue that the benefit of

adding functional information to analyses of causal variant

discovery will increase in the future.

A limitation to the study is the restricted amount of tissue- or

cell-specific data, especially in light of the findings that enrichment

of disease-specific GWAS hits can differ in certain cell types, for

example for DNase I hypersensitive sites [8]. Incorporating

additional functional characteristics, for example those from

relevant tissue types, will likely improve the understanding of

which characteristics are associated with GWAS hit SNPs,

especially for the phenotype specific analyses. Furthermore, other

functional characteristics, such as further histone marks and other

epigenetic modifications, could be incorporated to improve the

models.

The current number of GWAS hits in the GWAS Catalogue

makes it challenging to sub-divide hits into phenotype specific

traits. However, preliminary results showing differences in the

coefficients for the functional characteristics suggest that as the

number of GWAS hits grows, a phenotype specific approach from

which to derive Bayes factors for prioritization could be more

biologically relevant than simply an approach that combines all

GWAS hits together. Interestingly, although it was one of the

largest lists, the brain-related list did not have a greater predictive

power than expected by chance. This finding only serves to

reinforce the widely appreciated complexity of brain-related

disorders. Nevertheless, schizophrenia GWAS significant SNPs

showed enrichment of SNPs with high predicted values from the

model, as did SNPs associated with systolic blood pressure or

height.

Using manually curated phenotype lists as done here may not

be the best option. Using lists that are more reproducible, such as

those based on the Experimental Factor Ontology (EFO)

definitions, may be more appealing. However, most of the lists

created using the EFO definitions were relatively small, covering

less than 10% of the total GWAS hits on the common genotyping

arrays, and thus this method of classifying GWAS hits was deemed

to be not feasible, but may be possible in the future as the size of

GWAS Catalogue grows still larger.

The coefficient for non-synonymous SNPs was the highest in the

non-phenotype specific analysis and a close second in the

autoimmune analysis. This result suggests that being a variant in

a gene that causes a protein alteration is an important indicator of

whether or not a genetic variant will be truly associated with a
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phenotype. The result agrees with the findings that the top

associated SNPs and also those that are nominally associated with

a phenotype are more likely to overlap genes than non-GWAS

SNPs [20]. Our analysis appears to underscore the primacy of

non-synonymous variation as a leading mediator of functional

variation in the human genome. Although this result is perhaps

unsurprising, it lends support to many of the gene-focused, rare-

variant strategies that have been recently employed (for example:

[21,22,23]. However, depending on the inclusiveness of promoter

regions in chip design, these strategies may or may not capture

other high scoring variant types, such as eQTLs and histone

marks, which collectively account for more GWAS hits than non-

synonymous variants alone. These patterns highlight a possible

need for follow-up on non-coding variation chips. GTEx eQTLs

came up as the most important factor in the autoimmune analysis.

Two of the experiments analyzed eQTLs from lymphoblastoid

cells, which may explain the importance of this functional

characteristic in the autoimmune traits.

We have shown that our method can be used to calculate Bayes

factors for annotation (BFannot). These can be applied to GWAS

data to prioritise near-significant variants for follow-up based on

the likelihood of being causal in light of their functional

characteristics. The method takes LD into account, and uses

information from the March 2012 release of the 1000 Genomes

Project to map relevant annotation information from all variants

in high LD, including both SNPs and indels. In addition to being

used for variant prioritization of GWAS data, the methodology

could be applied in the future to the prioritization of variants from

fine mapping and sequencing studies. Here, the question arises as

to whether the models described here, which were created based

on common variation, could be applied to rare variation. In time,

larger databases of true causal variation, including rare variation,

will allow our method to be applied with increasing accuracy.

Methods

Representative GWAS SNPs
To represent the characteristics of a typical GWAS panel,

markers from the Affymetrix Genome-Wide Human SNP Array

6.0, the Illumina Human1M–Duo Genotyping BeadChip, and the

Illumina HumanOmni1-Quad BeadChip were downloaded from

the UCSC genome browser, using the table browser tool [24]. The

union of these three arrays consisted of 1,936,864 unique SNPs

from the 22 autosomes. Because of its unique LD and genic

properties, the MHC region (chr6: 29624809–33160245 on build

37) was excluded from downstream analyses.

LD proxies or ‘‘tagging’’ SNPs (r2. = 0.8) for the GWAS panel

SNPs were identified using VCFtools [25] based on data from the

(N = 379) Europeans (Phase I, version 3, March 14, 2012) in the

1000 Genomes Project [26].

GWAS ‘‘non-hits’’ were defined as all those SNPs in our union

GWAS set which were neither a GWAS ‘‘hit’’ (see below), nor in

high LD (r2. = 0.8) with a GWAS hit.

GWAS Hits
To obtain a set of SNPs (and their LD proxies) with good prior

evidence of causality, we downloaded the Catalogue of Published

Genome-wide Association Studies from the National Human

Genome Research Institute (NHGRI) (http://www.genome.gov/

gwastudies) [1] on August 6, 2013. This catalogue contains a list of

SNPs that have been shown to be associated with a particular trait

in a GWAS at a suggestive p-value,1025. We removed SNPs in

the Catalogue that were not present in the representative GWAS

set defined above, and similarly removed SNPs on the sex

chromosomes or in the MHC region.

All SNPs in our GWAS hit and GWAS non-hit sets, along with

all their LD proxies, were annotated with all the functional

characteristics defined below. Each GWAS hit and non-hit SNP

was then given the maximum value for each functional

characteristic found across all its LD proxies.

Functional Characteristics
We acquired functional data from a variety of sources (Table 4).

A full list is provided in Table S1. Much of the data was

downloaded from the UCSC genome browser using the table

browser tool [24]. Additionally, a substantial proportion of the

data was derived from the ENcyclopedia of DNA Elements

(ENCODE) Project Consortium, which developed and imple-

mented a range of experimental techniques with the aim of

identifying the functional regions of the human genome,

particularly including non-coding regions [27]. Data from this

project that were used included transcription factor binding sites

(TFBSs), three histone modifications (H3K4Me1, H3K4Me3,

H3K27Ac), and DNase I hypersensitive sites. H3K4Me1 is

associated with enhancers and DNA regions downstream of

transcription starts, and often found near regulatory elements;

H3K4Me3 is associated with promoters active or poised to be

active, and often found near promoters; H3K27Ac thought to

enhance transcription possibly by blocking repressive histone mark

H3K27Me3, and often found near active regulatory elements. The

technologies for identifying the functional characteristics men-

tioned above were chromatin immunoprecipitation followed by

sequencing (ChIP-seq).

DNase I hypersensitive sites are regions in the genome with high

affinity of being cleaved by the DNase I enzyme. The University of

Washington (UW) group identified DNase I hypersensitive sites

using Digital DNase I. This method involves DNase I digestion of

intact nuclei, isolation of DNaseI ‘‘double-hit’’ fragments, and

direct sequencing of fragment ends. Peaks are regions that are

enriched in the captured fraction of the DNA suggesting they are

occupied by the protein of interest (any score .0). The DNase I

hypersentitive sites from the Duke University group were

identified using a synthesis of Formaldehyde-Assisted Isolation of

Regulatory Elements (FAIRE) and ChIP-seq experiments. We

used a binary variable to indicate whether a SNP was within a

peak.

Two types of conservation scores from 46 placental mammals

(PhyloP and PhastCons) were incorporated. Both PhyloP and

PhastCons scores are derived using phylogenetic hidden Markov

models. These two measures have their own advantages. PhyloP

scores do not take into account conservation at neighbouring sites,

whereas PhastCons estimates the probability that each nucleotide

belongs to a conserved element.

Expression quantitative trait loci (eQTLs), which are variants

that are correlated with gene expression, were included. In

particular those that fall within 2 Mb (+/21 Mb upstream and

downstream) (cis-eQTLs) of the gene of interest were used. These

data were derived from the NCBI-hosted GTEx Browser (http://

www.ncbi.nlm.nih.gov/gtex/GTEX2/gtex.cgi) [28,29,30,31] and

the UK Brain Expression Consortium (www.braineac.org) [32].

Summary information concerning the location or function

within a gene (coding-non-synonymous, coding-synonymous,

splice site, untranslated regions, etc) was derived from dbSNP.

Non-synonymous SNPs, were classified as those SNPs with one of

the following characteristics: stop-gain (nonsense), missense, stop-

lost, frameshift or inframe indel. Splice site regions were defined as

being within five base pairs upstream and five base pairs
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Table 4. Summary of functional characteristics.

Functional characteristic analysed Description Number and detail of measures used in the analysis*

Clumped Separated

ENCODE data

UW DNase I hypersensitive sites Data from digital
DNaseI methodology,
Replication 1 samples; (‘‘peaks’’)

N/A 122

Duke DNase I hypersensitive sites Positions of open chromatin
by FAIRE and ChIP-seq
experiments; (‘‘peaks’’)

N/A 100

DNase Clusters (v2)** Stringent (FDR 1% threshold)
for ‘‘peaks’’ of DNase
I hypersensitivity from
uniform processing by the
ENCODE Analysis Working
Group of data from UW and Duke

1 N/A

Txn Factor ChIP Transcription factor
binding sites (TFBS)
from ChIP Seq
experiments; (‘‘peaks’’)

1 (presence or absence
in any TFBS)

148 (separated by TF, but not by cell
type due to
sparse data)

Broad Histone – H3K4Me1, H3K4Me3, H3K27Ac All are assayed using ChIP-Seq; (‘‘peaks’’) 3 (each histone mark
grouped by the 18
cell types
and/or conditions)

54 (each histone mark separated
by cell type
and/or conditions)

Conservation

PhyloP Average scores can be calculated
as the sum of scores divided
by the number of valid data
values in the block
(scores range from 0.1 to 2.2910)

1 1

PhastCons Average scores can be
calculated as for PhyloP
(scores range from 0.1 to 1.0 in this dataset)

1 1

Expression quantitative trait loci

eQTL- GTEx cis-eQTLs, p,161025 cut-off for variants
within 2 Mb of the
expressed gene.

1 (any eQTL) 7 (separated by dataset)

eQTLs - UK Brain cis-eQTLs, FDR,1% cut-off for variants
within 2 Mb of the
expressed gene.

1 1

Other characteristics

UCSC Genes UCSC known Gene 1 1

Splice sites Splice site region defined
as 25 to +5 range around
exon starts & exon ends
of UCSC Genes

1 1

Nonsynonymous SNPs Coding Nonsynonymous SNPs defined
as stop-gain
(nonsense), missense,
stop-lost, frameshift or
inframe indel

1 1

TS miRNA sites Conserved mammalian microRNA regulatory
target sites for
conserved microRNA
families

1 1

Gencode
Transcription
start sites

Based on the
GENCODE
Genes variable (version 17, June 2013)

1 1

*All SNPs are annotated in a binary fashion indicating the presence or absence of a functional characteristic, except for the conservation scores, for which the SNPs are
assigned a quantitative score.
**The DNase Clusters v2 file was created by combining the UW and Duke DNase I data that have been uniformly processed and replicates merged. Stringent (FDR 1%
thresholded) peaks of DNase I hypersensitivity from uniform processing by the ENCODE Analysis Working Group were applied. Grouping the UW and the Duke DNase I
hypersensitive variables are not equivalent to the DNase Clusters v2 file, and thus we used the latter to represent DNase I hypersensitive sites in the clumped analysis
due to the substantial efforts made to combine the data meaningfully.
doi:10.1371/journal.pone.0098122.t004
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downstream of the exon start site or the exon end site. The UCSC

gene table was used to determine the exon start and end sites. The

UCSC gene table is comprised of a set of gene predictions based

on data from RefSeq, GenBank, the Consensus Coding Sequence

(CCDS) variable, Rfam, and the Transfer RNA Genes variable.

Additional characteristics used were 39 targets for microRNA

(miRNA), and also transcription start sites as described by

Gencode [33]. As miRNA targets are known to be substantially

over-predicted, we used a conservative miRNA target dataset

based on conserved mammalian microRNA regulatory target sites

in the 39 UTR regions of Refseq Genes, as predicted by the

TargetScan algorithm (Human 5.1) [34].

All SNPs in our GWAS hit and GWAS non-hit sets, along with

all their LD proxies, were annotated with all the functional

characteristics defined above. Each GWAS hit and non-hit SNP

was then given the maximum value for each functional

characteristic found across all its LD proxies.

Tests for Functional Enrichment
Counts of GWAS hits and non-hits were categorized by

annotation value and compared using Fisher’s exact test. To

verify that results were not unduly influenced by correlations (LD)

among observations, we also conducted analyses in which genetic

variants were ‘‘pruned’’ so that all SNPs have r2,0.8 with all other

SNPs. The results of these analyses were very similar (data not

shown).

Heat maps were constructed using R [35] to compare

correlations among the various functional characteristics.

Regularized Logistic Regression via Elastic Net
We used a regularized form of logistic regression known as

elastic net to predict GWAS hit versus non-hit status on the basis

of the functional characteristics we had collected. We first

employed this method for a symposium on ‘‘Functional annotation

of GWAS hits’’ that we organized for the American Society of

Human Genetics in 2010. Elastic net is a form of machine learning

first described by Zou and Hastie [36], and is implemented in the

glmnet package [37] in R [35]. Briefly, regularization is achieved

via the subtraction of a penalty term from the log-likelihood prior

to maximization. The penalty term includes both a ‘‘lasso-like’’ L1

component (the sum of the absolute values of all fitted coefficients)

and a ‘‘ridge-like’’ L2 component (the sum of squares of all fitted

coefficients). Two parameters, alpha and lambda, determine the

relative importance of the L1 versus the L2 term (alpha), and the

overall importance of the penalty term in the maximization

(lambda). Appropriate values for these parameters were found by

10-fold cross-validation of the training set (see below).

Due to the unbalanced nature of the data (many more GWAS

non-hits than hits) we employed a weighting procedure in the

logistic regression to balance the accuracy of prediction in both

types of markers. We weighted all hits by (Nhits+Nnon-hits)/2Nhits

and all non-hits by (Nhits+Nnon-hits)/2Nnon-hits, where Nhits and

Nnon-hits denote the number of hits and non-hits, respectively, in

the training set. This procedure has the effect of equalizing the

importance of hits and non-hits in the logistic regression.

We randomly selected 60% of our GWAS hits and non-hits to

form our training set. The remaining 40% of the data (the test set)

was used to assess the performance of the model using ROC

curves and other measures. We repeated the machine learning

modifying the percentage of the data used in the training and test

sets, and all splits produced similar results (File S1, Part D). To

diminish the possibility that the models are over-fit since the

training of the data and tuning of the parameters were conducted

on the same set, we created a 70%/30%, split where the 70% was

further split into 60% and 40% for training the coefficients and

tuning the parameters, respectively. The remaining 30% was used

to test the model. Similar results were produced when the training

and tuning were conducted in independent subsets. (File S1, Part
D), and so the 60%/40% training/test set split was pursued for the

remaining analyses.

The data was split into the training and test sets ten times using

a random number generator. We found that the beta coefficients

were consistent for all of the functional characteristics with the

exception of those with the lowest frequencies (File S1, Part E).

For the calculation of Bayes factors, we performed elastic net,

using the same determined values of alpha and lambda, on the full

GWAS hit and non-hit datasets.

Predictive Accuracy
We employed three methods to determine which models had

the best predictive accuracy: ROC curves, positive predictive

values, and histograms of the predicted values from the models.

ROC curves show the sensitivity and specificity of a fitted

model. Sensitivity is the probability of the model providing a true

positive result (identifying a true GWAS hit in the test set).

Specificity is the probability of the model providing a true negative

result (identifying a true GWAS non-hit in the test set). An AUC of

0.5 indicates a model of no predictive value, while an AUC of 1

indicates perfect predictive power. The ROC curves were created

using the ROCR package [38] in R.

ROC curves do not reflect how well a model performs within

each class given unbalanced data (a very large number of non-hit

SNPs compared to hits). To capture this aspect we also

investigated positive predictive values (PPVs), the proportion of

SNPs with predicted probabilities of causality above a certain

threshold (we investigated thresholds of 0.5, 0.6, 0.7, 0.8 or 0.9)

that are true GWAS hits in the test set. Finally, we visualized class

separation with histograms of the predicted probabilities of

causality by class.

Definition of Functional Variables and GWAS Hits
A variety of functional characteristics were investigated as input

variables. One, defined as the ‘‘clum ped’’ analysis, featured

groups of functional characteristics, which were collapsed into a

single summary variable. The ‘‘separated’’ analysis worked on all

functional characteristics individually.

We performed phenotype specific analyses in which the analyses

outlined above were carried out using phenotype specific GWAS

hits as classifiers. An autoimmune list, a brain-related list and a

cardiovascular list were created using the GWAS Catalogue

searching for terms relating to those phenotypes. Each list was

then verified by an expert in the field.

Additionally, the GWAS Catalogue was divided up into

categories specified by the Experimental Factor Ontology (EFO)

definitions; however, due to small numbers of SNPs in each

category this mode of classification is not currently feasible for

most of the subsets (File S1, Part F). Only the cancer list, which

was the largest disease-relevant list, was used.

We defined two sets of GWAS hits for downstream analysis, one

based on a weak significance threshold of p,1025 and one based

on a strong significance threshold of p,561028, as reported in the

NHGRI GWAS Catalogue.

Derivation of Bayes Factors
Bayesian analysis provides the most suitable framework for

combining functional characteristics (here referred to as ‘‘annota-

tion data’’), with evidence from an association study (‘‘association

data’’) [39]. We expand on our previous empirically-based
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approach to the calculation of Bayes factors for annotation [3] to

allow multiple functional characteristics to be considered simul-

taneously. The posterior odds (Opost) of causality for a trait of

interest at a given SNP are given by the ratio of the conditional

probability of causality, given the annotation and the association

data, to the conditional probability of non-causality:

Opost~
P(CausalDAnnotData,AssocData)

P(NotCausalDAnnotData,AssocData)

If we assume the annotation data and association data are

independent once conditioned on causality, then the posterior

odds become:

P(Causal)

P(NotCausal)
|

P(AnnotDatajCausal)

P(AnnotDatajNotCausal)
|

P(AssocDatajCausal)

P(AssocDatajNotCausal)

These three products are, respectively, the prior odds before

seeing any association and annotation data (Oprior), the Bayes

factor for annotation data (BFannot) and the Bayes factor for

association data (BFassoc). We note that this factorization implies

that, while functional annotations are allowed to be enriched (or

impoverished) for causal SNPs relative to non-causal SNPs, the

enrichment pattern is assumed to be the same for rare versus

common causal SNPs, and for low-effect size versus high effect size

causal SNPs. We accept that this is an imperfect approximation,

and it assumes among other things that SNPs are either causal or

non-causal when in reality their effect size can be arbitrarily close

to zero, but we note that the main limitation of our approach lies

with the small number of GWAS hits available to us, and

subdividing these still further according to allele frequency and

effect size would be problematic. We also note that by ‘‘causal’’

what we actually mean is ‘‘causal or in high LD with a causal

variant’’, as both the association data and the annotation data (as

defined in our study) are affected by LD proxies.

In our previous study [3], we noted that if one assumed that (1)

all hits in the NHGRI GWAS Catalogue were truly causal; and (2)

functional annotation enrichment patterns were the same for these

known hits as for future undiscovered truly causal SNPs; then an

empirically based estimate for BFannot for a single binary

functional characteristic would simply be the ratio of its frequency

in GWAS hit versus non-hit data. Here we note that if we start

with the same two assumptions, and further assume that a true (but

unknown) logistic model exists that relates a set of functional

characteristics (which can be either binary or quantitative) to the

probability that a SNP is truly causal, then one reasonable

approach to estimating that logistic model would be via

regularized logistic regression as described above. Once fitted,

the estimated odds of causality to non-causality, obtained from the

GWAS hit and non-hit datasets, need only be multiplied by the

prior odds of non-causality in these dataset (i.e. the ratio of the

weighted sample sizes of GWAS non-hits to GWAS hits in these

data) in order to obtain the Bayes factor for annotation. Here, we

chose to weight hits and non-hits to appear of equal size, and thus

our estimate for BFannot is obtained directly as the estimated odds

of causality to non-causality from the regularized logistic

regression.

Methods for estimating BFassoc from association data are

reviewed by Stephens & Balding [39]. Here, we use the convenient

approximation described by Wakefield [40].

Investigating the Model in the Context of known GWAS
To investigate the relevance of the predictions in a variety of

disorders we looked at the p-value distribution of SNPs according

to their functional class in large GWAS datasets with a substantial

fraction of GWAS significant findings. Quantile-quantile plots

were constructed for each study with multiple lines corresponding

to SNPs binned according to their predicted value. Predicted

values were those derived from the non-phenotype specific

clumped model in which GWAS hits were defined as those SNPs

in the GWAS Catalogue with p-values of less than 561028. We

expected those SNPs with higher predicted values to be enriched

with GWAS SNPs with more significant p-values, whereas those

SNPs with lower predicted values would be enriched with less

significant p-values compared to all SNPs in the GWAS.

We also selected some SNPs shown to be associated in a large

psoriasis meta-analysis which had not been identified in a previous

GWAS study [18,19]. We then determined the effect on the rank

of their Bayes Factors in the previous study derived either using

association data or both association data and functional charac-

teristics.

Supporting Information

Table S1 Full list of functional characteristics utilized in the

separated analyses.

(XLSX)

File S1 Supporting Information- Parts A–F.

(PDF)
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