
Genome-Wide Analysis of Cold Adaptation in Indigenous
Siberian Populations
Alexia Cardona1*, Luca Pagani1,2, Tiago Antao3, Daniel J. Lawson4, Christina A. Eichstaedt1,

Bryndis Yngvadottir1, Ma Than Than Shwe5, Joseph Wee5, Irene Gallego Romero6, Srilakshmi Raj7,

Mait Metspalu8,9, Richard Villems8,9, Eske Willerslev10, Chris Tyler-Smith2, Boris A. Malyarchuk11,

Miroslava V. Derenko11, Toomas Kivisild1,9

1 Department of Archaeology and Anthropology, University of Cambridge, Cambridge, United Kingdom, 2 Wellcome Trust Sanger Institute, Hinxton, United Kingdom,

3 The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, 4 Department of Mathematics, University of Bristol, Bristol, United

Kingdom, 5 National Cancer Centre Singapore, Singapore, Singapore, 6 Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America,

7 Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America, 8 Department of Evolutionary Biology, Institute of

Molecular and Cell Biology, University of Tartu, Tartu, Estonia, 9 Estonian Biocentre, Tartu, Estonia, 10 Centre for GeoGenetics, Natural History Museum of Denmark,

University of Copenhagen, Copenhagen, Denmark, 11 Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia

Abstract

Following the dispersal out of Africa, where hominins evolved in warm environments for millions of years, our species has
colonised different climate zones of the world, including high latitudes and cold environments. The extent to which human
habitation in (sub-)Arctic regions has been enabled by cultural buffering, short-term acclimatization and genetic
adaptations is not clearly understood. Present day indigenous populations of Siberia show a number of phenotypic features,
such as increased basal metabolic rate, low serum lipid levels and increased blood pressure that have been attributed to
adaptation to the extreme cold climate. In this study we introduce a dataset of 200 individuals from ten indigenous Siberian
populations that were genotyped for 730,525 SNPs across the genome to identify genes and non-coding regions that have
undergone unusually rapid allele frequency and long-range haplotype homozygosity change in the recent past. At least
three distinct population clusters could be identified among the Siberians, each of which showed a number of unique
signals of selection. A region on chromosome 11 (chr11:66–69 Mb) contained the largest amount of clustering of significant
signals and also the strongest signals in all the different selection tests performed. We present a list of candidate cold
adaption genes that showed significant signals of positive selection with our strongest signals associated with genes
involved in energy regulation and metabolism (CPT1A, LRP5, THADA) and vascular smooth muscle contraction (PRKG1). By
employing a new method that paints phased chromosome chunks by their ancestry we distinguish local Siberian-specific
long-range haplotype signals from those introduced by admixture.
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Introduction

Hominins evolved in Africa for millions of years and adapted to

survive in low latitudes and warm environments. After the

dispersal out of Africa, over the past tens of thousands of years,

however, our species has colonized almost all inhabitable climate

zones of the world, including high latitudes and extremely cold

environments. Siberia is one such region inhabited by humans

today, being home to the coldest inhabited place in the world with

a recorded minimum temperature of 271.2uC in winter. In

present-day Siberia the climate varies dramatically over its

different regions with an annual average temperature of 25uC.

Archaeological evidence suggests that modern humans reached

Southern Siberia by 45–40KYA [1,2] expanding north as far as

the Yana River Valley beyond the Arctic circle by 30KYA [3],

while the earliest modern human remains in Siberia come from

the Mal’ta site in Irkutsk Oblast date to 24KYA [2,4]. During the

Last Glacial Maximum (LGM) (26.5–19KYA) [5], the coldest

period during the existence of modern humans, parts of Siberia

were inhabitable [6]. If Siberian populations survived in this

extreme climate for many thousands of years, it is possible that

they have accumulated genetic changes that are adaptive in cold

climates.

Technological and cultural innovations have certainly facilitated

territorial expansion of humans in Siberia. Besides these, a number

of morphological and physiological adaptations have been

proposed to have evolved in Siberian populations in response to

their environment. Low serum lipid levels were observed in

indigenous Siberian populations, which are thought to be a

consequence of increased energy metabolism and their elevated

basal metabolic rate, BMR [7]. Central and Southern Siberian

populations, Evenks, Yakuts, and Buryats also exhibit high blood
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pressure, higher than observed in most other circumpolar groups,

including the North American and Greenland Inuit [8,9,10]. Thus

it is likely that variants that permitted the ancestors of Siberian

populations to adapt to colder climates may also have an

important influence on the health of the present-day Siberian

and possibly Native American populations.

Over the past few years, genome-wide analyses based on the

HapMap [11], the Human Genome Diversity Panel (HGDP-

CEPH) [12,13] and the 1000 Genomes Project [14] data have

significantly improved our understanding of human genetic

diversity worldwide. However, there are still some crucial gaps

in certain geographic regions, particularly those concerning

populations living in areas of extreme climatic conditions such as

Siberia. Previous studies [15,16] have used genetic data from

different Siberian populations to study origins of first Americans

(including Greenland). A recent study [17] performed genome-

wide scans for selection on 61 worldwide populations (including

three Siberian populations), identifying SNPs with the strongest

correlations between allele frequencies and nine climate variables.

The study showed that the most extreme signals in worldwide

populations came from SNPs associated with pigmentation and

autoimmune diseases and pathways related to UV radiation,

infection and immunity, and cancer. Notably, this study also found

enrichment of strong correlations with climate variables for genes

involved in the differentiation of brown adipocytes emphasizing

the role of metabolic adaptations in populations living in cold

climates. The role of genes involved in energy metabolism in cold

tolerance was also shown in a previous study [18].

In this study, we introduce genome-wide genotype data for 200

individuals from ten different indigenous Siberian populations. We

set out to identify regions in the genome that have been targets of

positive natural selection. Several physiological functions have

been associated with cold exposure and adaptation. On mild cold

exposure, the body will try to conserve its heat by energetically

inexpensive means such as vasoconstriction, piloerection, and by

changes in posture to decrease surface area [19]. By the narrowing

of subcutaneous blood vessels, vasoconstriction reduces peripheral

blood flow and thereby preserves the core body heat. To protect

tissues from cold injury the body resorts to a different process,

cold-induced vasodilation, which increases the flow of warm blood

near the skin surface [20]. While vasoconstriction leads to

increased blood pressure which in turn leads to an increased

heart rate (tachycardia) [21], it has been shown that cold-exposure

may also reduce heart rate (bradycardia) [20,22]. The different

cardiac pressures involved during cold exposure might contribute

to the increased mortality from coronary heart disease during

winter [21]. In colder temperatures, when the heat conservation

mechanisms are not sufficient, the body resorts to more active

mechanisms of heat production such as non-shivering thermo-

genesis which occurs primarily in the brown adipose tissue (BAT)

[19]. Norepinephrine initiates triglyceride breakdown in the

brown adipocytes, leading to the release of fatty acids which

activate the UCP1 enzyme leading to increased heat production

[23]. All of these different physiological responses highlight the

complex mechanisms involved in acclimatization to cold.

Materials and Methods

Samples, Genotyping, Quality Control and Phasing
We sampled 200 individuals from ten indigenous Siberian

populations that form part of the DNA collection at the Genetics

Laboratory, at the Institute of Biological Problems of the North,

Magadan, Russia. The samples comprised 24 Buryats from Buryat

Republic, 24 Evenks from the Krasnoyarsk region, 22 Yakuts from

Sakha (Yakutia) Republic, 24 Shors from the Kemerovo region, 24

South Altaians (12 Altaian-Kizhi from Altai Republic, and 12

Teleuts from the Kemerovo region), 25 Koryaks from Severo-

Evensk District of the Magadan Region, 24 Evens from Severo-

Evensk and Ola Districts of Magadan Region, 14 Chukchi from

Anadyr, Chukotka Autonomous Okrug and 19 Eskimos from

Novoe Chaplino, Chukotka Autonomous Okrug. We also

genotyped 18 Vietnamese individuals sampled in Singapore as a

Southeast Asian reference group for our study. The study was

approved by the Ethics Committee of the Institute of Biological

Problems of the North, Russian Academy of Sciences, Magadan,

Russia (statement no. 001/011 from 21 January, 2011) and

Cambridge Ethics Committee (HBREC.2011.01). All subjects

provided written informed consent for the collection of samples

and subsequent analysis.

Samples were genotyped using Illumina OmniExpress Bead

Chips for 730,525 SNPs. The data genotyped in this study has

been deposited to the NCBI GEO repository and is accessible with

GEO accession number GSE55586. Data filtering, quality checks

and merging with other available data were performed in PLINK

1.07 [24]. The dataset was filtered to include only SNPs from the

autosomes that had a genotyping success rate greater than 98%;

726,090 SNPs met this requirement. We also used genotype data

from European (CEU) and Han Chinese (CHB) individuals from

HapMap phase 3 samples [14] and Vietnamese (Southeast Asian)

genotyped in this study to provide context for the analyses on

Siberian data. The combined dataset included 672,684 SNPs.

Following quality control we phased autosomal SNPs using

SHAPEIT [25]. All individuals were phased together with all

HapMap phase 3 samples [14]. We estimated pairwise IBD

iteratively using PLINK (excluding fixed alleles) on each popula-

tion and removed individuals that had an IBD .0.125 in each

iteration. This process was repeated until no individuals had an

IBD .0.125. In the downstream analyses we further removed

additional related individuals detected by ChromoPainter/fine-

STRUCTURE as described below. In haplotype homozygosity

tests we grouped individuals from various Siberian populations on

the basis of their clustering by ADMIXTURE and fineSTRUC-

TURE. Minimum group size was kept to 20 to retain sufficient

statistical power in the haplotype homozygosity tests [26]. Pooling

samples from this and previously published studies using different

genotyping platforms for the purpose of haplotype homozygosity

tests was considered as undesirable because of major loss of SNP

density. In the case of Population Branch Statistic (PBS) tests,

which can be performed on lower SNP densities we merged our

data with the Siberian samples from Rasmussen et al. [15],

yielding a dataset of 302,693 SNPs. Simulations have shown that

the haplotype homozygosity selection tests require at least 20

markers per 200 kb window [26] to have good power for the

respective signal detection, we thus chose to retain our 672,684

SNP dataset for these analyses.

Population Structure Analyses
To investigate population structure within the Siberian popu-

lations we used three commonly used methods: admixture

analysis, model-based clustering, and Principal Component

Analysis (PCA). ADMIXTURE 1.21 [27] was used to perform a

maximum likelihood estimation of individual ancestries in our

dataset. Each ADMIXTURE analysis requires a hypothesized

number of ancestral populations (K) and assigns individuals the

ancestry proportions using an unsupervised clustering method. We

used European and Han Chinese populations from HapMap

Phase 3 [14] as well as our Vietnamese data as reference

populations. We thinned the dataset using PLINK by removing

Genome-Wide Analysis of Siberian Populations
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SNPs that were in linkage disequilibrium, with a pairwise r2 value

greater than 0.1 within a 50-SNP sliding window which was

advanced by 10 SNPs each time [27]. This yielded a data set of ca.

70,000 SNPs which was used as an input to perform ancestry

component analysis. We ran ADMIXTURE on this dataset 100

times for each K at K = 2 to K = 10 and analysed the cross-

validation errors and log-likelihood estimates for each value of K to

estimate the optimum number of K clusters.

To complement ADMIXTURE results and perform clustering

of individuals we employed ChromoPainter/fineSTRUCTURE

[28,29]. We applied the ChromoPainter linked model on

haplotypes of our unrelated Siberian and reference populations.

GRCh37 recombination rates used in this analysis were down-

loaded from the HapMap website (http://www.hapmap.org). We

performed EM inference using 10 EM steps to estimate the

effective population size from our data and then used this

estimated parameter in ChromoPainter. To perform Markov

Chain Monte Carlo (MCMC) analysis for fineSTRUCTURE we

used 5,000,000 burn-in iterations and sample iterations with a thin

interval of 5,000. Visualisation of the posterior distribution of

clusters was then performed using the tree-building algorithm of

fineSTRUCTURE. Finally, PCA was performed on the normal-

ized version of the coancestry matrix output from ChromoPainter

using the fineSTRUCTURE GUI, which is an LD corrected

version of standard PCA.

The population structure analyses furthermore allowed us to

filter out additional outliers that did not group with their respective

groupings and inbred individuals (more subtly related than those

found by the PLINK IBD analysis) for use in subsequent analyses.

For the haplotype-based tests we grouped Siberian populations

into three groups such that the groups contain a reasonably

homogenous set of individuals as implied by the population

stratification analyses. The clustering of individuals followed, with

the exception of a few outliers, the self-reported population and

the geographic area of sampling: Southern Siberian group was

composed exclusively of Altai-Kizhi, Teleuts, Shors and Buryats;

the Central Siberian group of Evenks, Yakuts and Evens and the

Northeast Siberian group of Koryaks, Chukchi and Eskimos.

Simulations have shown that iHS and XP-EHH tests maintain

power with sample sizes of ca. 40 chromosomes or above [26]. To

maintain the minimum of 40 chromosomes in our test groups we

grouped individuals by their genetic similarity using fineSTRUC-

TURE. For PBS tests we combined our data with Siberian data

from Rasmussen et al. [15] to increase sample sizes and performed

our downstream analyses on each Siberian population separately.

Region Paintings
From our population structure analyses results we selected

groups of unadmixed individuals that showed maximum diver-

gence from other groups and used these as a panel representing

‘‘ancestral populations’’ to paint the phased chromosomes of all

Siberian individuals. Individuals that showed no admixture with

other ancestries from the ADMIXTURE analysis ($0.99 in the

ancestry coefficient matrix Q for the respective estimated ancestry)

and which grouped in the same cluster in fineSTRUCTURE

analysis were used for this purpose. This resulted in the

identification of four different ancestral populations; Europeans,

Vietnamese, unadmixed Central Siberian individuals (S1) and

unadmixed Northeastern Siberian individuals (S2). These ances-

tral populations were used as donors in ChromoPainter [29] to

paint admixed Siberian individuals. The unadmixed Siberian

individuals were painted by conditioning unadmixed individuals

against each other and summing up the expected probabilities

from individuals coming from the defined ancestral population.

Painting plots were produced by assigning each SNP to an

ancestor population X if the expected copying probability for X.

0.7. Any SNPs with an expected probability of #0.7 were marked

as undecided.

Admixture dating
In order to evaluate the admixture scenarios suggested by the

ADMIXTURE plots, we tested all possible sets of recipient and

source populations with the three population test (f3) [30,31]. The

Siberian samples were grouped according to their self-reported

ethnicity and the grouping suggested by fineSTRUCTURE

analysis [29]. We also included the admixed Siberian clusters

X1 and X2 (Figure 1D) in the analysis. The population trios that

yielded a Z-score smaller than 22 in the f3 test were considered as

significantly admixed, and a subset of them were subsequently

analysed with ALDER [32] to determine the time elapsed since

each putative admixture event. The admixture events were dated

with ALDER using default parameters with Mindis = 0.005 using

as source populations a combination of the following: CEU, CHB

(HapMap), unadmixed Central Siberian individuals (S1), unad-

mixed Northeastern Siberian individuals (S2 - as described in the

previous section) and Vietnamese (our samples). From this subset

we report the admixture dates that were successful.

Scans of positive selection
We used the Integrated Haplotype Score (iHS) [33] and Cross

Population Extended Haplotype Homozygosity (XP-EHH) [34]

tests for capturing haplotype homozygosity based signals of

positive selection. Previous power analyses have suggested that

iHS has maximum power to detect selective sweeps that have

reached moderate frequency (ca. 50%–80%); while XP-EHH has

good power to detect selective sweeps at high (80–100%)

frequency [26,33,34], thus making the two tests complementary.

Both the iHS and XP-EHH statistics were calculated as in

Pickrell et al. [26] using tools available at http://hgdp.uchicago.

edu. HapMap GRCh37 genetic map was used to calculate genetic

distances between markers. Ancestral states were retrieved from

the Ensembl Variation database rel. 68. iHS and XP-EHH were

computed for autosomal SNPs. SNPs with inferred ancestral states

and a minor allele frequency of at least 5% were used for iHS.

This setup yielded ca. 11,000 windows for iHS and ca. 13,000

windows for XP-EHH, for each Siberian population group.

Vietnamese were used as an outgroup population for the

haplotype homozygozity tests as no degree of admixture with a

Siberian specific ancestral component was observed in the

Vietnamese samples (Figure 1). For iHS, the top 1% windows

present in each Siberian group were identified as our candidate

selected regions excluding windows present in the top 5% iHS

windows of our outgroup population (Vietnamese). XP-EHH was

calculated using Vietnamese as a reference population for all

comparisons. These comparisons are likely to reveal selective

sweeps that happened recently and are not widespread through

East Asia. The top 1% of XP-EHH windows present in each

Siberian group were identified as our candidate selected regions

from this test.

We also computed a SNP-based test; the Population Branch

Statistic (PBS), which represents the amount of allele frequency

change at a given locus in the history of the test population since its

divergence from other populations [35]. PBS requires three

populations; a test population and two outgroup populations that

have a specified evolutionary relationship. We excluded all

populations with less than 10 samples from the analysis.

Pairwise-FST was estimated by a ‘‘weighted’’ analysis of variance

[36,37] using GENEPOP’007 [38]. PBS scores were estimated
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from the pair-wise FST values as in Yi et al. [35]. We divided the

genome into 100 kb windows and used the maximum PBS score in

the window as our test statistic, adapting the approach from

Pickrell et al. [26]. This setup yielded ca. 26,300 windows. The top

1% windows with the highest PBS test statistic were identified as

our candidate regions under selection.

Our top windows from the selection tests were mapped to genes

using the Ensembl Genes Human database rel. 68. Manhattan,

ADMIXTURE, PCA and regional paintings plots were drawn

using the ggplot2 [39] and Bioconductor [40] packages in R [41].

Gene Enrichment
We performed window enrichment analysis looking for

increased representation in the top 1% iHS and XP-EHH

windows of biological functions that could potentially be involved

in cold adaptation. We used Gene Ontologies (GO-terms) [42] to

denote biological functions and applied a modified version of the

DAVID algorithm [43,44] that takes into consideration window

counts instead of gene counts and thus corrects for positional

clustering [45], such that no GO term is associated with any

window more than once. We used the EASE score [45] as a

conservative adjustment to the Fisher’s exact test which favours

biological functions that involve more windows. We have

considered correcting the EASE score for multiple testing by

applying Benjamini FDR correction [46]. However, since other

evidence suggests that it may not improve specificity [44] and the

sensitivity may actually be negatively affected due to its

conservative nature [47], we ultimately used the EASE score

uncorrected for multiple testing to denote a category as

significantly enriched. We therefore classified a biological process

as significantly enriched if the EASE score was #0.01.

Since PBS is an allele frequency based test, we identified the

protein-coding genes containing SNPs exhibiting the highest PBS

scores from our top 1% PBS window data and used these genes as

input to DAVID [43,44] to uncover the biological processes

enriched in our PBS results. We screened the GO biological

processes and analysed the enriched clusters from DAVID. As

with iHS and XP-EHH gene enrichment analysis, we used

significant EASE scores (p-values #0.01) to uncover significant

biological processes from our PBS scores.

Definition of Gene Lists
We generated a cold adaptation-related seed gene list by

considering genes associated with phenotypic features that have

been attributed to cold adaptation. These include basal metabolic

rate, non-shivering thermogenesis, response to temperature,

smooth muscle contraction, blood pressure and energy metabolism

using relevant Gene Ontology terms, pathways and experimental

evidence while defining the lists.

Comparison with other studies
We used published results from a study that examined selection

in response to 9 climatic variables in a panel of 61 worldwide

populations, including three from Siberia (Maritime Chukchi,

Naukan Yu’pik (Eskimos) and Yakut) [17]. These data were

obtained from http://genapps2.uchicago.edu:8081/dbcline/

climate.tar.gz. Since we are interested in cold adaption selection

signals we used the minimum winter temperature variable for

comparison. We extracted the strongest signals with transformed

ranked signals ,561024 and mapped these signals to our top 1%

iHS, XP-EHH and PBS selection regions for all Siberian

populations. Loci were mapped to genes using the Ensembl Genes

Human dataset rel. 68.

Results

Population structure analyses and admixture dating
We genotyped 200 Siberian individuals from ten indigenous

Siberian populations across the Siberian landscape (Figure 1A)

and called successfully 726,090 autosomal SNPs. As some of the

selection tests we use are based on haplotype homozygosity

patterns we searched for closely related individuals (IBD .0.125)

and removed 23 individuals from downstream analyses. (Tables S1

and S2 in File S2). To control for the effect of population structure

and recent admixture on the selection tests we performed further

analyses and filtered out outliers and individuals with high

proportion of recent European admixture.

Firstly, we used PCA to reveal levels of genetic differentiation

and population structure in the Siberian populations in the

broader Eurasian context (Figure 1B, Figure S1B in File S1). The

first component separates populations on the east/west axis. The

two reference populations form tight clusters while a number of

Siberian samples are diffused along intermediate coordinates. PC2

reflects north and south differences and contrasts most clearly

Northeast Siberians with the Southeast Asian reference population

(Vietnamese). Central and Southern Siberian populations cluster

between them. Some individuals from various Siberian popula-

tions are widely dispersed away from the population average. One

likely cause for such clinal patterns is recent European admixture.

Since recent admixture can create admixture-LD [48], which can

significantly confound haplotype homozygosity-based scans of

selection, we examined the Siberian genotype data further with

ADMIXTURE and ChromoPainter/fineSTRUCTURE to iden-

tify such individuals and exclude them from our downstream

analyses.

To estimate the optimum number of clusters K used in

ADMIXTURE analysis, we ran ADMIXTURE 100 times using

K values from 2 to 10 in each iteration. The minimum cross-

validation error in the ADMIXTURE analysis was observed at

K = 4. The difference between maximum and minimum log-

likelihood scores over all 100 iterations was 0 at K = 4 suggesting

that the log-likelihood score had reached its global maximum

Figure 1. Population structure analyses in Siberian populations. (A) Averaged sampling locations of the Siberian populations genotyped in
this study. (B) Principal component analysis of Siberian populations and reference populations from West Asia (European) and Southeast Asia
(Vietnamese). Each dot in the plot represents an individual. The PC axes were rotated 180 degrees anti-clockwise to emphasize the similarity to the
geographic map of Eurasia. (C) ADMIXTURE analysis at K = 4. (D) Coancestry heatmap for the Siberian individuals and reference populations (Europe,
Vietnamese) output by ChromoPainter/fineSTRUCTURE. The heatmap shows the number of shared genetic chunks between the individuals. The raw
data is shown on the bottom left and the aggregated data is shown on the upper right of the heatmap. Adjacent to the heatmap is also the
ADMIXTURE plot of the respective individuals. To the left is the maximum a posteriori (MAP) tree generated by fineSTRUCTURE which shows the
groupings of the different populations. The following abbreviations are used in the Figure: ALT, Altai-Kizhi; BUR, Buryats; CEU, European; CHB, Han
Chinese; CHK, Chukchi; E/SE Asia, East/Southeast Asia; ESK, Eskimo; EVN, Evens; EVK, Evenks; KRK, Koryaks; SHR, Shors; TEL, Teleuts; VTN, Vietnamese;
X1, Northeastern Siberian admixed individuals; X2, Southern and Central Siberian admixed individuals; YKT, Yakuts. Reference populations are
labelled in italics. Outliers removed in downstream analysis are blacked out in the tree.
doi:10.1371/journal.pone.0098076.g001
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(Figure S2 in File S1). Three different ancestry profiles could be

distinguished among native Siberian populations (Figure 1C,

Figure S1C in File S1): one with predominantly k1 (Chukchi,

Eskimo, Koryaks), one with k2 ancestry (Yakuts, Evens, Evenks),

and one with a mixture of all four components (Altaian-Kizhi,

Teleuts, Shors and Buryats). These results were largely consistent

with the ancestry profiles at K = 6, K = 5 and K = 3 (Figure S3 in

File S1). The population structure at K = 3 clustered populations

between European, East/Southeast Asian and general Siberian

components. Consistent with the PCA results the West Eurasian

component was the most variable within populations suggesting

recent admixture. This was confirmed by ALDER analysis, that

dated European admixture in the Central and Northeastern

Siberian populations from ,6 to ,3 generations ago respectively

(Figure S4 in File S1, Table S3 in File S2). At K$5 we noticed a

separate component emerging that separates the Shors from their

neighbouring populations of Altai-Kizhi, Teleut and Buryat. In

ALDER analysis Shors exhibited more ancient admixture dating

than the neighbouring Siberian populations when using Europe-

ans and ancestral Siberian groups (S1 and S2) and other Asian

populations (Han Chinese, Vietnamese) as ancestor populations.

Furthermore, ADMIXTURE analysis revealed that Evens contain

both k1 and k2 components consistent with the geographic area of

their sampling since they are located in between the populations

that are largely composed from the k1 and k2 components.

We also performed analyses with ChromoPainter/fineSTRUC-

TURE [28,29] which allowed us to cluster individuals based on

their genetic similarity. Unlike ADMIXTURE, ChromoPainter

takes into consideration LD patterns in the genome thus extracting

more information from the data. The coancestry heatmaps

(Figure 1D, Figure S1D in File S1) show the amount of shared

genetic chunks between the different Siberian individuals and

reference populations. Utilizing the fineSTRUCTURE results we

identified Siberian individuals that did not group with their

respective counterparts or showed similar patterns and excluded

them from our downstream analyses. These outliers were further

confirmed when mapping ADMIXTURE results to the coancestry

heatmap (Figure 1D), which also showed different patterns from

their respective counterparts. Moreover, through ChromoPainter

we identified as outliers additional inbred individuals that had not

been detected by IBD filtering (Tables S1 and S2 in File S2).

These were also excluded from our downstream analyses, leaving

homogenous groups of unrelated individuals, consistent with their

geographical locations to be used in our tests of selection.

Selection Tests
Long term habitation in an extremely cold environment can be

expected to result in biological adaptations that may affect the

distribution of allele frequencies and homozygosity patterns. To

examine this hypothesis we employed haplotype-based tests - iHS

[33] and XP-EHH [34] - and a SNP allele frequency spectrum test

(PBS) [35] on our Siberian data. The genome-wide top 1% iHS,

XP-EHH and PBS results are reported in Figures S5–S6 in File S1

and Tables S4–S7 in File S2. We first calculated the fraction of

overlapping iHS, XP-EHH and PBS windows (Figure S7 in File

S1). For a window to be considered overlapping between two

populations, we used the criteria set by Pickrell et al. [26] that

required the window to be present in the top 1% of one population

and the top 5% of the other. The results in Figure S4 in File S1 are

consistent with the population structure results (Figure 1, Figure

S1 in File S1) in that populations geographically closer to each

other tend to share more windows with each other rather than

with the more distant ones. In haplotype homozygosity tests

southern and central Siberian populations shared 40–62% of the

selection signals, while the Northeast Siberians shared only 18–

26% of their iHS and 27–34% XP-EHH signals with the other

two groups. In PBS tests the highest sharing was observed between

Evenks and Yakuts (68%) while the sharing among other

populations was relatively low (12–51%). Indeed this was also

reflected in the results of ChromoPainter and fineSTRUCTURE

where Evenks and Yakuts clustered together (Figure 1D, Figure

S1D in File S1). Overall, the level of selection signal sharing

among Siberian populations was found to be lower than within

other continental regions [26,49].

To gain insights into biological processes targeted by selection in

Siberian populations, we performed GO term enrichment analysis

of the top 1% results of each selection test. These tests revealed 88

GO terms (EASE score #0.01), none of which was significant after

FDR correction (Tables S8–S9 in File S2). The enriched

categories were mostly generic terms, including response to stress,

metabolic processes, growth, development and immune function.

However, since positive selection does not necessary lead to gene

set enrichment, we examined the top ten regions from each

selection test. To identify the candidate genes involved in cold

adaptation, we searched for the presence of genes present in the

pre-defined seed gene list of cold adaptation (Table S10 in File S2)

among the upper tails of the selection tests (Tables S4–S6 in File

S2). Amongst our strongest signals (top 10 ranking windows), we

found seven genes (THADA, ITPR3, GNGT1, PRKG1, RELN,

CPT1A and LRP5) that were also present in the pre-defined cold

adaptation seed gene list that was detected by at least one of the

tests (Table S11 and S12 in File S2). The latter four of these genes

were also significant (top 1%) by one additional test (Table S7 in

File S2). No enrichment (P.0.2; Fisher’s exact one-sided test) of

the pre-defined cold adaptation genes was found in the top 10

windows of the different selection tests.

The strongest selection signals over all tests map closely in a

3 Mb region (chr11:66–69 Mb) of chromosome 11 (Figure 2)

which showed, overall, the highest concentration of significant hits

by different selection tests (Figures 2–3) in the Northeastern

Siberian populations. This region contains two cold adaptation

candidate genes; CPT1A and LRP5. We mapped the significant

windows over all the genome to 3 Mb regions for all the three

different selection tests and the largest amount of significant

window counts was observed at the same region; chr11:66–69 Mb

(Figure 3). We used ChromoPainter to determine whether this

chromosome 11 region with unusually high haplotype homozy-

gosity shows predominantly local or admixed ancestry in

Northeastern Siberians and whether the two highlighted genes

derive from shared or different ancestry chunks. Painting of the

phased chromosomes by their ancestry in the 3 Mb region

surrounding the CPT1A and LRP5 genes revealed that most

chromosomes sampled from Chukchi and Eskimo populations and

a substantial proportion of Koryak chromosomes share the most

likely ancestry in their local Northeastern Siberian gene pool in the

region (P-value ,0.05). Since the region contains several other

protein coding genes (which were not in our cold adaptation

candidate gene list) which lie in the same block of high

homozygosity and the same ancestry, it is not possible from the

given data to distinguish which gene, in particular, drives this

signal.

The results of a previous genome-wide scan involving 61

worldwide populations and their correlations between allele

frequencies and climatic variables [17] have provided us with

the opportunity to compare these previously reported signals with

our top regions of positive selection. From all the 61 worldwide

populations analysed, Yakut and Maritime Chukchi (both

populations present in our dataset) experience the lowest
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minimum temperatures. We mapped candidate signals that were

associated by Hancock et al. [17] with the minimum winter

temperature to our top 1% iHS, XP-EHH and PBS regions of

selection of our Siberian populations. Genes present in the overlap

provide a candidate list of cold adaptation genes that are also

present in other populations. There was an overlap of 4% in iHS,

6% in XP-EHH and 13% in PBS tests (Table S13 in File S2).

Amongst the genes present in this list that also exhibited high

scoring signals in our analysis (6th ranking XP-EHH signal) was

POLD3 that encodes a subunit of DNA polymerase delta which is

involved in DNA damage response produced by UV irradiation

[50]. Windows containing POLD3 gene show high signals in all

selection tests with the highest signals coming from the southern

Siberian populations (Figure S8 in File S1).

Discussion

In this study we have performed systematic genome-wide scans

of extended haplotype homozygosity, and allele frequency

differentiation among Siberian populations. In contrast to previous

studies that have found high levels of selection signal sharing across

wide geographical areas in Eurasia [26] the majority of selection

candidate regions detected in this study turned out to be specific to

regional subgroups of Siberian populations, or even specific to

individual populations (Figure S7 in File S1). The level of iHS

signal sharing among Siberian groups (18–47%; Figure S7 in File

S1) was, in fact, comparable to that observed among distinct

geographic regions, e.g. between Europe and South Asia (37–

55%), and between Europe and East Asia (21–22%) [49]. These

results are meaningful in the light of the low effective population

sizes and vast geographic areas inhabited by the Siberian

populations.

Consistent with the results of previous studies [15,51] our

analyses revealed that the genetic landscape of Siberian popula-

tions is characterized by two main components (k1 and k2,

Figure 1C). It is not obvious from these analyses whether k1 and

k2 represent two separate population dispersals, or result from

long term genetic isolation and low effective population size of the

Siberian populations. One of these components, k1, is shared by

Northeast Siberian and North American and Greenland Inuit

populations [15]. An example of a more complex pattern of

population structure was found in the Southern Siberian group

that showed presence of West and East Eurasian ancestry

components. A gradual cline of European admixture dating can

be noticed from western to eastern Siberia (Figure S4 in File S1)

with the most recent European admixture estimated in the

Northeastern Siberian populations (,3 generations ago) which is

consistent with the industrial development of these territories.

Moreover, Buryats showed evidence of East Asian admixture

(,33–37 generations ago) which dates back to the Mongolian

conquest of Southern Siberia era. In the selection tests we have

observed that signal sharing among populations follows the

patterns detected in the analyses of population structure and

therefore it is unsurprising that only a minority of high ranking

selection signals turned out to have pan-Siberian distribution.

Haplotype homozygosity patterns in the genome are affected by

demographic history and selection for different environmental

factors including diet, disease and climate. Being one of the oldest

Figure 2. Zooming on the region on chromosome 11 that showed the strongest signals in the Northeastern Siberian populations.
The |iHS|, XP-EHH and PBS scores that showed strong signals (amongst top 10 ranking windows) in the Northeastern Siberian populations are shown
in the upper panels for the different Siberian populations. The pink highlights mark the windows present in the top 10 ranking windows in the
Northeastern Siberian populations. The rankings are marked on the respective windows in the respective test panels. Protein-coding genes present in
the 4 Mb region are shown under the test plots with the genes present in our predefined cold adaptation list marked in bold font (CPT1A and LRP5).
The position on the chromosome is given in Mb. The paintings of the phased chromosomes for the region in the Northeastern and Central Siberian
individuals are shown underneath the Position legend. The aggregated ancestral probabilities from ChromoPainter for the Northeastern Siberian
individuals are displayed below the paintings. The dotted red line shows the threshold for the upper 5% tail (0.75) and the black dotted line shows
the mean of the genome-wide probabilities distribution of the Northeastern Siberian ancestor (red).
doi:10.1371/journal.pone.0098076.g002

Figure 3. Genome-wide distribution of significant selection windows. The distribution of the significant windows of the three different
selection tests results (A) XP-EHH, (B) iHS and (C) PBS for the Northeastern Siberian populations. The x-axis show the count of significant windows
(Tables S4–S6 in File S2) per 3 Mb region and the y-axis show the amount of 3 Mb regions that had the respective count displayed on the x-axis. In all
the different selection tests, the region on chromosome 11:66–69 Mb is the region with the most significant selection windows (highlighted in red).
doi:10.1371/journal.pone.0098076.g003
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populations inhabiting extreme cold environments and ancestors

to other Arctic populations, in this study, we highlight the signals

that we hypothesise to be a consequence of cold adaptation in

indigenous Siberian populations. We note however, that other

factors, such as their particular diet, could also have shaped the

variation we detected in their genomes. Cold adaptation and

acclimatization studies suggest that there is more than one

mechanism involved in the biological response to cold stress.

Consistent with the expectations from the biological complexity of

cold adaptation several different processes rather than one

particular term or pathway were highlighted by our selection

tests. In fact, none of the enrichment tests provided significant

results after correcting for multiple testing. This lack of significant

enrichment could be explained by the fact that the selection tests

we used are designed to detect hard sweeps at individual loci that

may be generally rare while soft sweeps affecting large number of

functionally related genes would require different approaches of

detection [52]. Soft sweep detection on the basis of small scale

allele frequency differences at multiple loci requires high resolution

SNP-level functional annotation for a phenotype of interest, e.g. as

available for more than 180 height associated loci in Europe [53].

As no such SNP lists exist yet according to our knowledge for cold

adaptation phenotypes, relevant soft sweep tests on Siberian

populations cannot be performed yet. However, because system-

atic hard sweep scans on Siberian populations have not been

performed, we analysed the Siberian genome-wide data with three

different selection tests that complement each other and reveal the

different signals under selection in the different Siberian popula-

tions by focusing on the strongest regions (present in top ten

windows of a selection test and also significant in other selection

test) that contain genes present in our pre-defined candidate list of

cold adaptation genes.

The strongest signals mapped to chromosome 11:66–69 Mb

region that contains a cluster of seven top 10 ranking windows

over all three tests which also included two cold adaptation

candidate genes, CPT1A and LRP5 (Figure 2). Moreover, the

genome-wide distribution of significant window counts (Figure 3)

showed the largest number of counts in the same region of

chromosome 11:66–69 Mb in all the three different selection tests.

This persistent clustering of significant selection signals in the

region containing CPT1A and LRP5 that also contains the topmost

signals, highlights the importance of the region. Evidence of

selection in this 3 Mb region was uniquely strong in Chukchi and

Eskimo populations who reside in the Northeastern coast of

Siberia. CPT1A encodes a liver isoform of carnitine palmitoyl-

transferase IA that is involved in the metabolism of long-chain

fatty acids. LRP5 (low density lipoprotein receptor-related protein

5) has similarly the highest expression in the liver and plays a role

in bone growth [54], cholesterol metabolism, systolic blood

pressure and adrenarche [55]. Considering the role of the two

highlighted genes in lipid metabolism, it is possible that an efficient

energy regulation process could have evolved in these populations

to help them cope with the extreme cold climate. It is also possible

that the selection signal is somehow associated with the high fat

diet of Northeastern Siberian populations who have to cope with

ketosis [56,57]. The high fat diet is in itself a direct consequence of

cold adaptation since crop growing is not sustainable in the arctic

climate, thus these populations had to use other sources for

subsistence; mainly from organisms that live in cold climates such

as reindeer, seal, walrus and whale [58] that are in close proximity

to these populations’ habitats. Other previous genome-wide

selection scans have already highlighted a number of diet related

genes as targets of hard sweep, e.g. LCT [59]. Even though their

diets are rich in animal food and fat [57] indigenous Siberians

have relatively low serum cholesterol and lipid levels[7], suggesting

that diet related and metabolic adaptive processes may have

played an important role in the evolution of Siberian populations.

These adaptive processes would primarily be expected to involve

fatty acid metabolism as continuous cold exposure is known to

determine the mobilization and metabolism of fat as energy and

heat source [20]. However, as both CPT1A and LRP5 genes

mapped to the same high haplotype homozygosity block along

with several other genes further sequencing data from this

genomic region will be required to determine which gene carries

functionally significant variants that may be driving the selection

signal.

The fact that indigenous Siberian groups have significantly

elevated basal metabolic rate may also play a role in the

maintenance of stable lipid levels in the serum. It has been

observed that mice consuming ketogenic diets, characterised by a

high content of fat and low carbohydrates, had increased

metabolic rates while their serum lipids did not increase [60].

These mice also exhibited an overexpression of UCP1 and UCP2,

suggesting activation of non-shivering thermogenesis which

uncouples the mitochondrial respiration by impairing ATP

production and dissipating energy as heat. Previously, Leonard

et al. [7] have hypothesized that the elevated basal metabolic rates

in Siberian populations are due to genetic adaptations in their

thyroid hormone signalling pathway. Recent studies suggest that

thyroid hormone mediated thermogenesis emanates from the

brown adipose tissue [19,61] providing a link between BMR and

non-shivering thermogenesis. It has been shown that CPT1A is

regulated by thyroid hormone and insulin [62] highlighting the

imperative role the gene has in energy regulation. Another gene

associated with thyroid function that was highlighted in our

selection scans as top 10 ranking PBS signal in two south Siberian

populations is THADA (Tables S6 and S12 in File S2) which is one

of the few genes that has been confirmed to be significantly

associated with Type 2 Diabetes in multiple studies; in European,

Asian, and Native American cohorts [63,64]. Notably, THADA

was also highlighted as a gene with unusually low diversity in

Neanderthals when compared to humans [65], suggesting that

variation in this gene may have affected aspects of energy

metabolism in early modern humans.

Smooth muscle contraction which includes vasoconstriction and

vasodilation is another process implicated in cold acclimatization.

One of the genes involved in these processes that showed evidence

of strong signals of selection is PRKG1. Though in PBS some

significant signals were also found in the central Siberian

populations, the strongest signals considering all tests are present

in the Northeastern Siberian populations (Figure S9 in File S1).

The PRKG proteins play a central role in regulating cardiovas-

cular and neuronal functions in addition to relaxing smooth

muscle tone, preventing platelet aggregation, and modulating cell

growth [66,67]. They also act as a mediator of nitric oxide/cGMP

signalling pathway. While no data on the heart rate of the Siberian

populations is available, it is known that cold exposure increases

cardiac pressure [20,21,22], thus efficient cardiovascular regula-

tion in cold climates could be seen as a possible adaptive

mechanism in the indigenous Siberian populations.

Mechanisms allowing adaptation to the cold environment are

expected to be complex and probably similar to convergent

processes of high altitude adaptation [68] and therefore different

cold-adapted populations may have undergone selection processes

targeting different physiological functions [19,21]. Our results

show that the signals of genetic selection detected in Siberian

populations are not uniformly spread among populations and

different Siberian groups show different selection signals. Factors
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affecting the different populations such as their particular ways of

subsistence and the varied climates they are exposed to could be

the main cause of the genetic variation observed. Also,

demographic histories of Siberian populations, which to date are

still not well understood, might play an important element in

explaining the observed genetic variation. Many high ranking

genome regions in our selection tests have not yet been associated

with any specific phenotype and thus require further analyses at

the sequence level to determine their role, in biological processes

involved in the adaptation of native Siberian over thousands of

years to their extreme environment.
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