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Faculty of Physics, University of Duisburg-Essen, Essen, Germany

Abstract

We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation
matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations
severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of
correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of
randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided.
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Introduction

The financial crisis of 2008–2009 clearly revealed that an

improper estimation of credit risk can lead to dramatic effects on

the world’s economy. The vast underestimation of risks embedded

in credits for the subprime housing markets induced a chain

reaction that propagated into the worldwide economy. A better

estimation of credit risk (see, eg, [1,2,3,4,5]) is therefore of vital

interest. We can distinguish two fundamentally different ap-

proaches to credit risk modeling (see, eg, [6]): the structural and

the reduced–form approach.

Structural models have a long history, going back to the work of

Black and Scholes [7] and Merton [8]. The Merton model assumes a

zero–coupon debt structure with a fixed time to maturity. The

value of the company’s assets is modeled by a stochastic process.

The risk of default and the associated recovery rate, the residual

payment in case of a loss, are directly determined by the

company’s asset value at maturity.

Reduced–form models attempt to capture the dependence of default

and recovery rates on macroeconomic risk factors. Both quantities

are modeled as independent stochastic variables. Some well known

reduced–form model approaches can be found in [9,10,11,12,13].

First passage models were first introduced by Black and Cox [14]

and they fall somewhat in between the two modeling approaches.

Similar to Merton’s model, the market value of a company is

modeled by a stochastic process. However, in the first passage

models a default occurs whenever this market value hits a certain

threshold for the first time. The recovery rates are typically

modeled independently, for example, by a reduced–form model,

see [15,16], or are even assumed to be constant, see, eg, [6].

Recent approaches aim at improving first passage models by

including the chance of full recovery, even if a company’s market

value is below the threshold, see [17], and estimating correlations

between default probabilities of industry sectors, see [18].

Reduced–form and first–passage models are implemented in

commercial software solutions, for example, CreditMetrics initially

developed by JP Morgan [19], CreditPortfolioView by McKinsey &

Company [20] or CreditRisk+ by Credit Suisse [21]. As there can

be a strong connection between default risks and recovery rates,

the chances of large losses are often underestimated in the

reduced–form and first passage models, see [22,23]. The Merton

model does not require this separation and is, for example,

adopted by Moody’s KMV.

Structural models provide a "microscopical’’ tool to study credit

risk as the defaults and recoveries are traced back to stochastic

processes modeling the state of individual obligors. For a portfolio

of credits, such as collateralized debt obligations (CDOs),

correlations represent a key factor that influences its risk. The

benefit of diversification, ie, the reduction of risk by increasing the

portfolio size, is severely limited by the presence of even weak

correlations. This has been demonstrated for the case of constant

positive correlations, both in the first passage model with constant

recovery [24,25] and in the Merton model [26,22]. The key

problem in estimating the credit risk of a realistic portfolio is of

course the huge number of parameters involved. This is precisely

where approaches from statistical physics can be most helpful: the

state of a system with many degrees of freedom is, under certain

conditions, described by few macroscopic observables. In the

thermodynamic equilibrium, these are energy, temperature,

pressure, etc. Ergodicity holds, ie, time and ensemble average

yield the same results. A somewhat similar situation exists for

spectral statistics in quantum chaotic systems, see [27]. A moving

average over one long spectrum equals an ensemble average over

random matrices, if the number of levels is very large. Originally,

random matrix theory was developed in the 1950s to describe the

spectra of heavy nuclei, see [28]. Here we transfer this idea to large

credit portfolios involving correlated assets. In the case of a great

many contracts, we expect a self–averaging property which then

should allow to average over an ensemble of random correlation

matrices. We manage to carry out this approach largely

analytically. We obtain estimates for the distribution of asset

values and the portfolio loss distribution in which the complicated

effects of all correlations are indeed reduced to a single parameter

measuring the correlation strength.
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A Structural Credit Risk Model
Our model is based on Merton’s original model, assuming a

zero-coupon bond for the debt structure of the obligor. Our aim is

to analytically describe the impact of correlations on the losses of a

credit portfolio. Even though the Merton model makes many

simplifying assumptions, it can provide more than just qualitative

insights into credit risk. Indeed we demonstrated recently that

empirical credit data are in accordance with analytical results

derived from the Merton model [29].

The cash flow of the zero-coupon bond is limited to two dates:

the date of issue t~0 and maturity t~T . At the issue date the

creditor lends a specified amount of money to the obligor. At

maturity, the obligor has to repay the face value of the bond. The

face value is the amount borrowed plus interest and risk premium.

A default occurs if the asset value Vk of company k is below the

face value Fk at maturity time T . The size of the loss then depends

on how far Vk is below the face value Fk. We assume that the asset

values in a portfolio of K companies follow a geometric Brownian

motion. An overview of the model’s input parameters is given in

Table 1.

Average distribution of asset values
For the sake of simplicity, let us first consider the case of a

Brownian motion for the asset values. Later on this can be easily

mapped to the geometric Brownian motion by a simple

substitution. For a Brownian motion, the probability density

function (pdf) of the vector V of K asset values at maturity T is

described by

p(mv)(V ,S)~
1ffiffiffiffiffiffiffiffiffi

2pT
p K

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
det(S)

p
exp {

1

2T
(V{mT){S{1(V{mT)

� � ð1Þ

Here, S is the covariance matrix and m is the drift vector. For

later convenience we can express this as a Fourier transform,

p(mv)(V ,S)~
1

(2p)K

ð
exp {iv{(V{mT)
� �

exp {
T

2
v{Sv

� �
d½v�

ð2Þ

Equation (1) gives the pdf of asset values in the case of a

correlated Brownian motion. However, we are not interested in

the impact of a specific correlation matrix. Instead we want to

estimate the general impact of correlations. To this end, we want

to average over all possible correlation matrices and disclose the

general statistical behavior.

We use a random matrix approach to calculate the average

distribution of asset values, Sp(mv)(V )T, for random correlations

where the average correlation level is zero. To achieve this we

replace the covariance matrix S by

SW ~SWW {S ð3Þ

where S~diag(s1, . . . ,sK ) contains the standard deviations and

W[RK|N is a random matrix. The entries of W are independent

and Gaussian distributed,

p(corr)(W )~

ffiffiffiffiffiffi
N

2p

r KN

exp {
N

2
trW {W

� �
ð4Þ

with variance 1=N. The resulting correlation matrix WW { is

Wishart-distributed [30] with average correlation zero. With the

parameter N we can control how strongly the entries of WW {

fluctuate. For N??, we obtain the unit matrix for WW {, ie, the

uncorrelated case. For N§K , we obtain an invertible covariance

matrix with random entries. The case NvK is disregarded as the

resulting matrix is not invertible which is usually required for

applications in risk management. When inserting this ansatz into

Eq. (2), we obtain

Sp mvð Þ Vð ÞT~

ð
p corrð Þ Wð Þp mvð Þ V ,SWW {S

� �
d W½ � ð5Þ

~

ffiffiffiffiffi
N
p NK

(2p)K

ð
exp {iv{V
� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det(NIzTSvv{S)
p N

d½v� ð6Þ

Table 1. Input of the structural credit risk model.

Variable Description Unit

K Number of contracts –

T Time to maturity [year]

sk Volatility of asset k [year]21/2

mk Drift of asset k [year]21

N Parameter to control correlations, –

NR‘: uncorrelated limit

VK,0 Initial value of asset k [currency]

Fk Face value of contract k [currency]

doi:10.1371/journal.pone.0098030.t001

A Random Matrix Approach to Credit Risk

PLOS ONE | www.plosone.org 2 May 2014 | Volume 9 | Issue 5 | e98030



where I denotes the unit matrix. A detailed derivation is given in

appendix S1. Here we choose m~0. We will reintroduce the drift

later on, when we make the substitution for the geometric

Brownian motion. The determinant can be written as

det(NIzTSvv{S)~NK 1z
T

N
v{SSv

� �
ð7Þ

because the matrix Svv{S has rank one. Hence, we arrive at

Sp(mv)(V )T~
1

(2p)K

ð
exp {iv{V
� �

1

(1z(T=N)v{SSv)N=2
d½v�

ð8Þ

This integral can be calculated by using the Gamma function

(see [31]) in the form

C(x)

ax
~

ð?
0

zx{1 exp {azð Þdz, xw0, aw0 ð9Þ

We identify a{x with (1z(T=N)v{SSv){N=2 and obtain

Sp(mv)(V )T~
1

(2p)K

1

C(N=2)
P

K

k~1

1

sk

 !

|

ð?
0

z
N
2

{1
exp {zð Þ

ffiffiffiffiffiffiffi
pN

zT

r K

exp {
N

4Tz

XK

k~1

V2
k

s2
k

 !
dz ð10Þ

as worked out in appendix S2. This integral is a representation of

the Bessel function of the second kind K of the order (K{N)=2,

see [32]. Thus, we obtain

Sp(mv)(V )T~

ffiffiffiffiffiffiffiffiffi
N

2pT

r K
2

1{N
2

C(N=2)
P
k~1

K
1

sk

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

T

XK

k~1

V2
k

s2
k

vuut N{K
2

KN{K
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

T

XK

k~1

V2
k

s2
k

vuut0@ 1A
ð11Þ

for the average distribution of p(mv)(V ) if assuming a randomly

distributed correlation matrix and an average correlation level of

zero. We stated earlier that we include N in the distribution of the

random matrices W in order to render the variance of the average

asset value distribution N-independent. The variances only

depend on T and sk, as discussed in appendix S3. The parameter

N is only used to control the correlations. In hyperspherical

coordinates, Equation 11 depends only on the hyperradius

r:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k~1

V2
k

s2
k

vuut ð12Þ

This leads to the expression

Sp(mv)(r)T~

ffiffiffiffiffiffiffiffiffi
N

2pT

r K
2

1{N
2

C(N=2)
r

NzK{1
2

ffiffiffiffiffi
N

T

r N{K
2

KN{K
2

r

ffiffiffiffiffi
N

T

r ! ð13Þ

for the hyperradial density function, cf. appendix S3. We illustrate

this density function in Figure 1 for K~50 and different values of

N. We note that the tail-behavior for large r is exponential.

We obtain the average asset value distribution in case of a

geometric Brownian motion by a simple substitution Vk? ,

Figure 1. Illustration of the average asset value distribution Sp(mv)(r)T for T = 1, K = 50 and different values for N. Solid,
dashed{dotted, dashed and dotted lines correspond to N = K, 2K, 5K and 30K, respectively.
doi:10.1371/journal.pone.0098030.g001
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Sp(mv)(V )T~

ffiffiffiffiffiffiffiffiffi
N

2pT

r K
2

1{N
2

C(N=2)
P
k~1

K
1

skVk

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

T

XK

k~1

V̂kVk
2

s2
k

vuut N{K
2

KN{K
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

T

XK

k~1

V̂kVk
2

s2
k

vuut0@ 1A
ð14Þ

with

V̂kVk~ ln
Vk

Vk,0

� �
{ mk{

s2
k

2

� �
T ð15Þ

Here, the parameter sk refers to the standard deviation of the

underlying Brownian motion, ie, the volatility of asset returns. The

resulting asset values thus have the variance

ŝs2
k~ exp 2mkTð Þ exp s2

kT
� �

{1
� �

V2
k,0 ð16Þ

where Vk,0 are the starting asset values at t~0. Figure 2 shows the

distribution of asset values based on a geometric Brownian motion,

as given in Eq. (14). The findings are similar to the case of the

Brownian motion. While we obtain a narrow but heavy-tailed

distribution for N~K , the distribution slowly approaches an

uncorrelated bivariate log-normal distribution with increasing

values of N .

Loss distribution
We now turn to the calculation of the loss distribution. A default

occurs if the asset value Vk at maturity T is lower than the face

value Fk. The size of the loss is given by the difference of Fk and

Vk. Even if a loss occurs, the creditor might not lose all money that

he lent, because the obligor is still able to pay back the amount Vk.

In order to compare losses in a portfolio of credits, we have to

normalize them by the corresponding face value. We define the

normalized loss Lk of the k-th asset as

Lk~

Fk{Vk
Fk

, VkvFk (default)

0 , else (no default)

(
ð17Þ

We observe that the asset values have to be positive in Eq. (17).

Therefore we assume in all further considerations that the

underlying asset value process is given by a geometric Brownian

motion.

When calculating the overall loss of a portfolio, we have to

weight each loss by its face value in relation to the sum of all

portfolio face values,

L~
XK

k~1

fkLk , fk~
FkPK
i~1 Fi

ð18Þ

We integrate over the pdf of asset values and filter for those that

lead to a given total loss L. By the above stated definitions, we can

define a filter for the total loss at maturity time T . In the next step

we express the filter using a Fourier transformation. Eventually, we

separate those terms that correspond to a default and those that

describe the asset values above the face value Fk.

p(loss)(L)~

ð?
0

d½V �p(mv)(V )d L{
XK

k~1

fkLk

 !
ð19Þ

~

ð?
0

d½V �p(mv)(V )
1

2p

ðz?

{?

dn exp {inLzin
XK

k~1

fkLk

 !
ð20Þ

~
1

2p

ðz?

{?

dn exp {inLð Þ
ð?
0

d½V � exp in
XK

k~1

fkLk

 !
p(mv)(V ) ð21Þ

Figure 2. Illustration of the average asset value distribution Sp (mv)(V )Twith a geometric Brownian motion for T = 1, K = 2, Vk =
100, m = 0.05 and different values for N. Both distributions have the identical standard deviation ŝs&16 (s = 0.15). For N = 2, we obtain a heavy-
tailed distribution while the uncorrelated limit is reached for N = 100.
doi:10.1371/journal.pone.0098030.g002
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~
1

2p

ðz?

{?

dn exp {inLð Þ

| P
K

k~1

ðFk

0

dVk exp infk 1{
Vk

Fk

� �� �
z

ð?
Fk

dVk

264
375p(mv)(V ) ð22Þ

Here, the expression in the square brackets acts as an operator,

because p(mv)(V ) does not necessarily factorize. We will use this

ansatz to calculate the average loss distribution in the next section.

However, Eq. (22) can be used to calculate the loss distribution if

the actual asset value distribution is known, ie, the statistical

dependence and the underlying process are estimated. To prepare

for this, it is handy to write Eq. (22) as a combinatorial sum,

p(loss)(L)~
1

2p

ðz?

{?

dn exp {inLð Þ ð23Þ

|
XK

k~1

X
j~1

P
l[Perm(j,k,K)

ÐFl

0

dVl exp infl
Fl{Vl

Fl

� �

P
q[f1 . . . Kg
\Perm(j,k,K)

Ð?
Fq

dVq

26666666664

37777777775
p(mv)(V )

where Perm(j,k,K) is the j-th permutation of k elements of the set

f1 . . . Kg. For example, if K~3 and k~2, we obtain,

Perm(1,2,3)~f1,2g, Perm(2,2,3)~f2,3g and Perm(3,2,3)~
f1,3g. However, Eq. (24) might need to be estimated numerically,

depending on the complexity of the asset value distribution

p(mv)(V ). In the section Homogeneous portfolios, we will simplify

Sp(mv)(V )T.

Average loss distribution
Now we have developed all necessary tools to model the average

distribution of losses, under the assumption of random correlations

and an average correlation level of zero. We start by inserting the

average asset value distribution in a component-wise notation (cf.

appendix S2) into the loss distribution (22),

Sp(loss)(L)T~
1

2pC(N=2)

ð?
0

dz z
N
2

{1
exp {zð Þ

ðz?

{?

dn exp {inLð Þr(n,z)

ð24Þ

with

r(n,z)~P
K

k~1

ðFk

0

dVk exp infk

Fk{Vk

Fk

� �
z

ð?
Fk

dVk

264
375

|

ffiffiffiffiffi
N
p

2skVk

ffiffiffiffiffiffiffiffiffi
pzT
p exp {

N( ln (Vk=Vk,0){(mk{s2
k=2)T)2

4zTs2
k

 !
ð25Þ

We carry out a second order approximation of this expression in

appendix S4 and arrive at

Sp(loss)(L)T~
1ffiffiffiffiffiffi

2p
p

C(N=2)

ð?
0

dz z
N
2

{1
exp {zð Þ

1ffiffiffiffiffiffiffiffiffiffiffi
m̂m2(z)

p exp {
(L{m̂m1(z))2

2m̂m2(z)

 ! ð26Þ

with

bmm1(z)~
XK

k~1

fkm1,k(z) ð27Þ

bmm2(z)~
XK

k~1

f 2
k (m2,k(z){m1,k(z)2) ð28Þ

and

mj,k(z)~

ffiffiffiffiffi
N
p

2sk

ffiffiffiffiffiffiffiffiffi
pzT
p

ðFk

0

1

Vk

Fk{Vk

Fk

� �j

| exp {
N( ln (Vk=Vk,0){(mk{s2

k=2)T)2

4zTs2
k

 !
dVk ð29Þ

However, the convergence radius of the power series expansion

involved in this approximation is one. Although we consider large

portfolios K , ie, fk is small, n runs from {? to z?. This second-

order approximation might describe the default terms adequately.

However, the non-default terms, corresponding to a delta peak at

L~0 require n to run from {? to z?. Thus, the non-default

terms cannot be approximated using this second-order approxi-

mation. To circumvent this problem we develop an improved

approximation in the next section.

Due to the complexity of m̂m1(z) and m̂m2(z), the z integral needs

to be evaluated numerically. We present this for the example of a

homogeneous portfolio.
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Homogeneous portfolios
In case of a homogeneous portfolio, in which all credits have the

same face value Fk~F and the same variance s2
k~s2 and initial

value Vk,0~V0, the weights can be simplified to

fk~
1

K
ð30Þ

As m1,k(z) and m1,k(z) become identical for every k, we denote

them by m1(z) and m1(z) leading to

bmm1(z)~m1(z) ð31Þ

bmm2(z)~
1

K
(m2(z){m1(z)2) ð32Þ

mj(z)~

ffiffiffiffiffi
N
p

2s
ffiffiffiffiffiffiffiffiffi
pzT
p

ðF
0

1

V

F{V

F

� �j

| exp {
N( ln (V=V0){(m{s2=2)T)2

4zTs2

 !
dV ð33Þ

Here V is a scalar and we only have to calculate a single integral

over V . After inserting this into Eq. (26), we can calculate the loss

distribution for a homogeneous portfolio in the second order

approximation.

Improved approximation for a homogeneous portfolio
The second order approach can be improved by approximating

the individual terms of the loss distribution instead of approxi-

mating the expression as a whole, similar as discussed in [26]. In

case of a homogeneous portfolio the combinatorial sum in Eq. (24)

reduces to

Sp(loss)(L)T~
1

2pC(N=2)

ð?
0

dz z
N
2

{1
exp {zð Þ

ðz?

{?

dn exp {inLð Þ

|
XK

j~0

K

j

� �
r(D)(n,z)
� �j

r(ND)(z)
� �K{j ð34Þ

with the non-default term r(ND)
� �K{j

where

r(ND)~

ð?
F

dV

ffiffiffiffiffi
N
p

2sV
ffiffiffiffiffiffiffiffiffi
pzT
p

| exp {
N( ln (V=V0){(m{s2=2)T)2

4zTs2

 !
ð35Þ

~
1

2
z

1

2
Erf

ffiffiffiffiffi
N
p

( ln (F=V0){(m{s2=2)T)

2s
ffiffiffiffiffiffi
zT
p

� �
ð36Þ

and the default term r(D)(n,z)
� �j

where

r(D)(n,z)~

ðF
0

dV exp
in

K

F{V

F

� �

|

ffiffiffiffiffi
N
p

2sV
ffiffiffiffiffiffiffiffiffi
pzT
p exp {

N( ln (V=V0){(m{s2=2)T)2

4zTs2

 !
ð37Þ

In the homogeneous case, the integration variable V is a scalar.

The approximation follows the same principles as in the previous

section, resulting in

ðz?

{?

dn exp {inLð Þ r(D)(n,z)
� �j

~

ðz?

{?

dn exp in
j

K
m1(z){L

� �
{

n2j

2K2
m2(z){m1(z)2
� �� �

ð38Þ

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pK2

j m2(z){m1(z)2
� �s

exp {
(LK{jm1(z))2

2j m2(z){m1(z)2
� � !

ð39Þ

In this approximation, the non-default terms given by Eq. (36)

can be calculated exactly. They correspond to a delta peak at

L~0. Another advantage over the approach presented in Eq. (26)

is that the approximation is performed for each number of defaults

j separately and weighted by j=K accordingly. Here, the omitted

third term is of the order j=K3 and thereby much smaller than the

third term of the simple second order approximation (33), which

would be of the order 1=K2. Thus, when approximating each term

in the combinatorial sum separately, we obtain an improved result.

Insertion into (34) leads to

Sp(loss)(L)T&
1

2pC(N=2)

XK

j~0

K

j

� � ð?
0

dz z
N
2

{1
exp {zð Þ

|

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pK2

j m2(z){m1(z)2
� �s

exp {
(LK{jm1(z))2

2j m2(z){m1(z)2
� � !

|
1

2
z

1

2
Erf

ln (F=V0){(m{s2=2)T

2s
ffiffiffiffiffiffi
zT
p

	 
� �K{j

ð40Þ
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which is the final result.

Results

We now apply the analytically developed model to a specific

example. To analyze the impact of correlations, we calculate the

loss distribution for different homogeneous portfolios with sizes

K~10, K~50 and K~100 with the parameters V0~100,

m~0:05, s~0:15, F~75 and T~1. As stated in the previous

section, we can control the amount of correlation in our model

with the parameter N. Since we only consider correlation matrices

with full rank, we obtain the strongest correlations if we choose

N~K . For N??, the correlation matrix becomes the unit

matrix. Thus, this represents the transition to a system without

correlations. As we have to evaluate the loss distributions

numerically, the limit N?? has to be properly interpreted. We

need to identify a value for which this convergence is valid in good

approximation. Figure 3 illustrates the loss distribution for K~10
and different values of N. Our study indicates that a value of

N~30K is a good choice for approximating the uncorrelated case

and is still numerically feasible. The results are presented in Fig. 4.

For all portfolio sizes, K~10, K~50 and K~100, we obtain

heavier tails of the loss distribution of the correlated portfolio

compared to the uncorrelated case. Even the simple approxima-

tion, represented by the dashed blue curve, exhibits these heavy

tails. With the inserted logarithmic plots, we can identify a nearly

power-law decay of the loss distribution for the correlated case.

The distributions become narrower for larger values of K .

However, the tails of the correlated case remain heavier than those

of the uncorrelated case. While both approximations yield similar

results for K~10, their difference becomes larger with K . As both

approximations have to be performed numerically, the improved

approximation is always favored. However, the tail behavior

remains the same, even for the simple approximation, as indicated

by the logarithmic scaled inserts in Fig. 4. This is a strong

indication that the tails of the loss distribution are vastly

underestimated if correlations are not taken into account.

Due to the approximation, the normalization of the loss

distribution is not exact. Especially the normalization of the

simple approximation is problematic for large values of K . The

normalization might also be used as an indication for the quality of

the approximation. The improved approximation exhibits a delta

peak at L~0, as the non-default terms can be calculated exactly.

However, the interval ½0; 0:0002½ was not evaluated due to

numerical feasibility.

In our example, we do not vary the maturity time T , ie, we

choose T~1. One can increase T to estimate the evolution of the

loss distribution. However, this evolution depends strongly on the

Figure 3. The loss distribution for K = 10, s = 0.15, m = 0.05, T
= 1, V0 = 100, F = 75 and different amounts of randomness in
the correlation matrix, N = K (solid black), N = 2K (dashed
blue), N = 10K (dotted red), N = 30K (dot-dashed green).
doi:10.1371/journal.pone.0098030.g003

Figure 4. The loss distribution of a homogeneous portfolio
with s = 0.15, m = 0.05, T = 1, V0 = 100, F = 75 and different
values of K. The blue dashed line represents the simple approxima-
tion; the solid black line represents the improved approximation. Both
have been calculated for the strongest random correlations, N = K. The
uncorrelated case is given by the red dotted line, calculated with the
improved approximation with N = 30K.
doi:10.1371/journal.pone.0098030.g004
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drifts mk and standard deviations sk. Depending on their value, the

exposure to default risk can either increase or decrease.

Discussion

To assess the risk of a credit portfolio, it is crucial to take

correlations between obligors into account. We consider the

Merton model, in which defaults and recoveries are determined by

the underlying asset processes. The correlation matrix of the asset

returns has to be estimated from historical time series. This is not

always easy, because the correlations change in time, ie, they are

non-stationary. Since only time series up to a certain length can be

used, the correlation coefficients contain a specific type of

randomness, see [33,34]. Several methods have been put forward

to estimate and to reduce this "noise’’. Thus, we assume that such

a noise reduction has been done. The corresponding "true’’

correlation coefficients and matrices are the proper input for the

structural credit risk model of the Merton type that we consider.

We discussed this issue of noise reduction to emphasize that the

random matrix approach in that context focuses on the spectral

statistics of correlation or covariance matrices, see

[35,36,37,38,39]. It is based on a very different motivation as

compared to the present application.

Searching for generic properties, we devised the present random

matrix approach. Instead of calculating the portfolio loss

distribution for a specific correlation matrix, we average over an

ensemble of random correlation matrices. Our approach transfers

concepts of statistical physics. In quantum chaos, the average over

an individual, long spectrum equals the average over an ensemble

of random matrices, if the level number is very high. We expect

that a similar self-averaging property also holds here. This line of

reasoning is supported by the following consideration: The

correlation coefficients are varying functions in time, because the

business relations of the companies change. This implies that a

correlation matrix over a somewhat longer period in time is a

varying quantity, ie, it corresponds to some kind of ensemble.

In our model the average correlation level is zero and we

assume that there is no branch structure in the correlations. The

fluctuation strength of individual correlations is controlled by a

single parameter. This ansatz allowed us to estimate generic

statistical properties of the Merton model. Some features are not

taken into account which are present in empirical data, such as

jumps or an overall positive correlation level. Those features are

difficult to treat completely analytically. However, even in our

simple setup we obtain a heavy–tailed loss distribution. In this

sense our model can be used to estimate a lower bound of the risk

embedded in a credit portfolio.

Our results clearly demonstrate that the risk in a credit portfolio

is heavily underestimated if correlations are not taken into

account. Even for random correlations with an average correlation

level of zero, we observe very slowly decaying portfolio loss

distributions. In contrast, the probability of large losses in

uncorrelated portfolios is significantly reduced within the Merton

model.

The results are especially relevant for CDOs, bundles of credits

that are traded on equity markets. CDOs are constructed in order

to lower the overall risk. The components of a CDO can be

exposed to large risks. It is often believed that the CDO has a

significantly lower risk. We showed that this diversification only

works well if the correlations in the credit portfolio are identical to

zero.
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