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Abstract

The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at
a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major
histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas
thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of
the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult
to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1
genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region
genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal
component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As
expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the
most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate
have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and
the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation
of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available
on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies.
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Introduction

30 years of MHC genetics
The human major histocompatibility complex (MHC) is located

in the short arm of chromosome 6p21. While the region contains

only a small fraction of all human genes [1], it has been extensively

studied due to its pivotal role in the immune response and the need

for matching the human leukocyte antigen genes (HLA) between

donor and recipient in allogeneic tissue and cell transplantation

[2,3]. For example, in addition to HLA typing performed for solid

organ transplantation, HLA polymorphisms have been determined

in more than 23 million unrelated donors worldwide in order to

match patients in need of hematopoietic stem cell transplantation,

[4]. Beyond transplantation, polymorphisms in the MHC region

have been used as molecular markers for population genetics and

studies of diseases and traits. In the past 30 years, no other region

in the genome has provided more association signals with

multifactorial traits, including autoimmune diseases [5–8], inflam-

matory and infectious diseases [9], cancer [10], adverse drug

effects [11,12], and behavioral traits such as mating [13,14]. To

assess HLA allelic diversity, these studies employed a broad range

of methodologies from serology, restriction fragment length

polymorphism, and microsatellites up to the latest generation of

single nucleotide polymorphism (SNP) genotyping methods. In the

most recent genome-wide association studies (GWASs), the high

number of MHC-region SNPs included in the arrays and the great

complexity of resulting association signals encouraged efforts to

impute classical HLA alleles based on SNP profiles [15]. However,

the extremely large number of known HLA alleles (unique gene

sequences), currently over 8,000 for HLA class I genes and over

2,400 for HLA class II genes [16,17], creates a formidable

challenge when attempting to capture HLA alleles using genotypes

derived from common SNPs, such as those typically included on

GWAS arrays.

Determining HLA polymorphisms in genomic reference
samples

Building on the increasing feasibility of new generation

sequencing methods, the 1000 Genomes Project provides a deep

characterization of human genome sequence variation as a
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foundation for investigating the relationship between genotype and

phenotype [18]. A goal of this project is to characterize over 95%

of variants present (in genomic regions accessible to current high-

throughput sequencing technologies) in 14 representative human

populations from Europe, East Asia, South Asia, West Africa and

the Americas. Whole genome sequencing is performed at low

coverage, but at a level that should allow the genome-wide

detection of most variants with frequencies as low as 1%, the

classical threshold for definition of polymorphisms [18]. However,

hundreds of well characterized HLA variants have frequency lower

than 1%, and thousands of HLA haplotypes are present at even

lower frequencies [19]. Because of the complexity of the exonic

polymorphisms, several statistical methods are needed when

calling HLA alleles from the sequence data [20,21]. Higher

coverage and longer read length that what the 1000 Genomes

Project currently achieve, is required to positively identify all HLA

alleles at all loci with an accuracy that compares to classical HLA

typing experiments. The 1000 Genomes Project is nevertheless a

primary reference dataset for modern genetic studies, including

the SNP-based imputation of HLA alleles for disparate population

and disease studies. In this report, we used sequence-based

techniques to type alleles of the HLA-A, HLA-B, HLA-C, HLA-

DRB1 and HLA-DQB1 genes in the available 1000 Genomes

samples. This effort allowed the combined analysis of the 103,310

MHC SNPs made publicly available by the 1000 Genomes Project

and the HLA alleles of these samples. While making these dataset

available, we show that HLA alleles and MHC SNPs are extremely

diverse in this dataset and highly specific to ancestral backgrounds.

We also demonstrate that gathering HLA and SNP data on large

numbers of samples worldwide increases the accuracy of HLA-

SNP linkage disequilibrium (LD) estimations, revealing the HLA

haplotype specificity of SNP variation. The availability of these

HLA genotypes will promote analysis of the genomic architecture

and immunobiology of this important super-locus at greater

resolution than has heretofore been possible.

Materials and Methods

HLA typing by reference methods
The HLA typing assay was designed to capture the amino acid

sequence of the Antigen Recognition Site (ARS) [22]. DNA

samples were purchased from the Coriell Institute for Medical

Research (Camden, NJ). The HLA typing data of 1,267

individuals related to the 1000 Genomes Project (Table 1) covers

14 populations encompassing 4 major ancestral groups. After

specific PCR amplification, exons were sequenced by Sanger

technique. The sequences were compared to available sequence

information in the HLA allele database on exons 2 and 3 for class I

and on exon 2 class II genes, therefore any polymorphism

occurring in exon 4 of class I allele or exon 3 of class II gene was

not investigated. Typing ambiguities between alleles were allowed

since HLA-A, HLA-B, HLA-C gene products have identical

sequences in exon 2 and exon 3 antigen recognition sites.

Similarly, for class II genes, typing ambiguities occur if HLA-

DRB1, HLA-DQB1 gene products have identical sequences in exon

2 antigen recognition sites. (Appendix S1). The Allele Database

version used in the report is IMGT 2.26.0 (Jul 2009), effective Feb

2010. Several Hapmap and CEPH samples were previously HLA

typed [23,24]. Confirmatory typing was performed when the

typing of the five HLA loci were missing or ambiguous (12

samples). No discrepancies were found. The previously obtained

HLA types were otherwise included. The public genotype calls for

the 1000 Genomes sequence analysis were downloaded from 1000

Genomes servers (phase 1) for all available samples (See on-line

resources [25–27]).

SNP genotype data from the 1000 Genomes project
The 103,310 MHC SNPs in the 1000 Genomes were extracted

from the MHC (chr6: 28,866,528–33,775,446 See Table S1) [25–

27]. Similar number of variants was extracted at random

throughout the genome [28]. Additional variants were extracted

in regions of the genomes with similar density of variants and

Table 1. Overview of the 1000 Genomes project samples typed for HLA genes.

Code Ancestry
Description of 1000 Genomes projects
project Samples Size

HLA and genomic
variants variants

LWK African Luhya from Webuye, Kenya 90 87 97

YRI African Yoruba from Ibadan, Nigeria 90 38 88

ASW American African Ancestry from Southwest, USA 90 53 61

CLM American Colombian from Medellin, Colombia 70 60 60

MXL American Mexican Ancestry from Los Angeles-California, USA 89 55 66

PUR American Puerto Rican, Puerto Rico 70 55 55

CHB East Asian Han Chinese from Beijing, China 90 85 97

CHD East Asian Chinese from Denver-Colorado, USA 90 0 NA

CHS East Asian Han from south, China 100 100 100

JPT East Asian Japanese from Tokyo, Japan 91 80 89

CEU European Northern and Western European from Utah, USA 111 47 87

FIN European Finnish, Finland 100 93 93

GBR European British from England and Scotland, UK 96 89 89

TSI European Italian from Tuscany, Italy 90 90 98

TOTAL 4 14 1267 932 1080

Ibericos from Spain (n = 14) were genotyped in the KGP but were not available for HLA typing at the time of the project. Chinese Han from Denver were typed for HLA
they are currently publically available for sequencing data.
doi:10.1371/journal.pone.0097282.t001
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similar recombination rate to the characteristics of the MHC

region. Among the MHC variants, 6,040 MHC SNP previously

genotyped in 800 African American controls [29], were used to

compute linkage disequilibrium decay with distance by resampling

datasets of various sample sizes. All coordinates refer to genome

build HG19/GRCh37.

Data availability on-line
The HLA genotype data of the present study is available online:

The full specification of HLA alleles in the specified release of the

HLA nomenclature [17] is provided on the dbMHC portal (See on-

line resources) at NCBI [30]. In addition, allele frequencies can be

viewed online using tools developed in the anthropology and cell

line components of the Histocompatibility Workshops [31](Figure

S2, screen capture of the display [32]). Allele frequency tables are

extremely sparse, reflecting the high diversity of HLA alleles for all

loci and the limited sampling of the HLA alleles in 1000 Genome

Project sample sets (Tables S2 and S3 for HLA allele naming

convention used, also available online at dbMHC [32]).

Results

Ancestral diversity of the MHC in the 1000 Genomes
samples

To focus on the ancestral information embedded in SNPs from

the MHC, we compared the principal component analyses (PCA)

of the Identity by Descent (IBD) distances between all individuals

of the 1000 Genomes MHC dataset. IBD distances were

computed using Beagle 2 [33] and averaged over ten runs. Both,

the variants in the MHC region and an equal number of SNP

variants randomly selected throughout the genome were used. The

variants’ density and recombination rate were computed from

1000 Genome data using Beagle (See web resources). We

compared the IBD distances PCA analysis using the SNPs of the

MHC region (Figure 1A), using the same number of SNPs

randomly selected throughout the genome (Figure 1B). The MHC

region has been also compare to other regions of the genomes with

similar density of variant (Figure 1C) and similar recombination

rate (figure 1D) (Additional examples and information in Figure S1

A–C)). As expected, the analysis shows that distances computed

from genome-wide SNPs clearly identify samples of EuropeS1an,

Asian and African ancestries as well as the admixed nature of

several populations: ASW, PUR, CLM, and MXL (Figure 1B).

Discordance between observed IBD ancestry and self-declared

ancestry was seen for a handful of samples (Figure 1B legend).

When genetic similarity is computed using MHC SNPs only,

the analysis clearly identifies the same three major ancestral

lineages (Europeans, Asians, and Africans) (Figure 1A). Like

regions with similar variants’ density and recombination rate,

MHC captures well the major ancestry backgrounds. However,

more variability is observed within the MHC of the 3 major

ancestries (Figure 1C and 1D), this is consistent with the selection

of diversity driven by HLA molecules in a cumulative manner for

class I and class II. Some individuals spread across the population

hubs and display significant overlap (Figure 1A). This reflects the

close relation between MHC polymorphisms and the migratory

history of these populations [34,35]. For example, in contrast to

the genome-wide analysis, samples of African ancestry (YRI,

LWK, and most of the ASW) overlap fully. African American

samples (ASW) appears more split between European and African

ancestries. It suggests that intra-group differences can rarely be

differentiated from cross-ancestry sequence variation, at least for

these populations. Thus, within the major ancestral backgrounds,

SNP haplotypes can be shared between individuals of different

populations. This observation further supports the empirical HLA

compatibility of donor/recipient from distinct populations ground-

ing international exchanges of allogeneic HSC donors. We

conclude that the variability of the ancestral MHC signature

may not be fully captured by the overall genome ancestral

estimation potential, potentially weakening case control analyses

due to stratification. For example, several African American

samples whose genome-wide IBD distances indicate close relation

to Africans cluster with the European groups in the MHC region-

based analysis (NA19703, NA19707, NA19904, NA19921).

Frequent HLA haplotypes in the 1000 Genomes samples
In order to integrate these results based on SNPs with the

classical HLA typing in Figure 1A, we used HLA haplotype

frequencies from the National Marrow Donor Program Registry

to infer the phase of the most frequent HLA haplotypes

represented in the dataset [19,36]. HLA information was

integrated to the PCA graphical display and HLA genotypes were

phased using the haplotype frequencies [36]. Given the sample

size, only frequent haplotypes were displayed (frequency .1%, as

defined in ‘‘frequent’’ HLA haplotype modeling of haplobank

[37]). When the statistical phasing of HLA alleles results in the

presence of a frequent haplotype, letters were used as symbol at

the PCA coordinate of the individual (‘‘P’’ for European

haplotypes, ‘‘H’’ for haplotypes frequent in Hispanics, ‘‘S’’ for

haplotypes frequent in Asians and ‘‘F’’ for haplotypes frequent in

Africans Listed in Table S4). Frequent haplotypes are found along

the axis drawn by the PCA, which is consistent with frequent HLA

haplotypes driving the IBD similarities within an ancestry.

Interestingly, the analysis identified the presence of typical

European HLA haplotypes in Asians:

A*03:01,B*35:01,DRB1*01:01 (81% posterior phase probabil-

ity NA185596 [38]) and A*01:01,B*57:01,DRB1*07:01 (88%

posterior phase probability HG00708 [9]) Thus, a typical Asian

SNP background associated with an HLA type is compatible with a

mixed European Asian haploytpe, confirming the SNP back-

ground differences of conserved HLA haplotypes because. There-

fore, even if only a few copies of the most frequent haplotypes are

found in the 1000 Genome samples, and even if chromosomal

phase is statistically estimated, it appears that this dataset will

rapidly allow the in-depth analysis of haplotype specific variants of

interest for both HLA allele imputation and HLA haplotype

inference (Sup. Table S5, Imputation analysis limited to tag- SNP

is suggestive of the existence of Haplotype specific SNPs).

Linkage disequilibrium decay in the MHC
We followed on the analyses presented in Figure 1 in different

regions of the genome comparing LD decay in segments with similar

characteristics of the MHC (Figure 2A (rare variants) and 2B

(variants .with frequent greater than 5%)). The results suggest that

the MHC has a strong LD decay, but this decay depends also on the

estimated frequencies of the variants affecting the comparison

between regions (figure 2B). Then, in order to compare LD MHC

configurations between populations we assessed the influence of the

sample size on LD decay in the MHC region. By using the 90th

percentile of pairwise LD for a given distance between SNP variants,

emphasis was placed on the strongest LD components, which are

central to both genetic association studies and SNP-based imputa-

tion methods of HLA alleles. To evaluate samples sizes larger than

those of the 1000 Genomes Project, high-density genotypes of the

MHC in a large sample of African Americans from a previously

published study were used [29]. Figures 2C and 2D show the 90th

percentile of D9 and r2 LD measures respectively for sample sizes

ranging from N = 10 to N = 800 as a function of pairwise distance

HLA Diversity in the 1000 Genomes Dataset
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Figure 1. Principal Component analysis of the pairwise IBD distances between 1000 Genomes samples using MHC region marker
(A), genome-wide markers (B), and using markers of regions with similar variants’ density (C, chr9 : 116,750,000–121,650,000), with
a recombination rate (D, chr9:800,000–5,700,000). (A) The presence of the most frequent ancestry specific HLA haplotype in the samples of the
1000 Genomes project using MHC region markers. Principal component analysis of the 103 K variants from the MHC region in the 1000 Genomes
samples. PC1 captures 6.00% of total variance; PC2 captures 5.05%. The PCA analysis is based on publicly available SNPs. In order to integrate the SNP
based information to the HLA allele information, individual spots are replaced by letters when a frequent HLA haplotype is predicted when the HLA
typing is phased using HLA haplotype frequencies. The so called ‘‘frequent’’ haplotypes are defined in an ancestry specific manner: P for frequent HLA
haplotypes in Europeans, S for frequent HLA haplotype in Asians, H for frequent HLA haplotype in Hispanics and F for frequent haplotype in Africans.
The detailed list of the frequent haplotypes is presented in supplementary information. Frequent haplotypes and definition of overlap between
ancestries were documented in a recent modeling effort for the development of haplobank. (B) Principal Component analysis of the pairwise IBD
distances between 1000 Genomes samples using genome-wide markers. Principal component analysis of 100 K variants selected at random throughout
of the genome in the 1000 Genomes samples. PC1 captures 55.16% of total variance PC2 captures 41.96%. The representation of distances computed
from genome-wide SNPS clearly identifies samples of European, Asian and African ancestries. The results are consistent with self-declared ancestry
and the admixed nature of several populations. There are however a few notable exceptions: NA20314 from south west African Americans (ASW)
clusters with Mexicans (MXL), NA20291 from ASW clusters with LWK, and HG01108 from the Puerto Rican (PUR) who clusters with the majority of
Africans Americans (ASW). In addition, four Columbians (CLM: HG01342, HG01390, HG01462, HG01551) and three African Americans (ASW: NA20278,
NA20299, NA20414) cluster together away from their groups. These are also clustering far from their self-declared ancestry in the MHC centered
analysis. This most likely reflects their genome-wide ancestry rather than a different ancestry of the MHC. (C) Principal Component analysis of the
pairwise IBD distances of 1000 Genomes samples using genome-wide markers of a region (chr9 : 116,750,000–121,650,000) with a variants’ density that is
similar to the MHC region. Principal component analysis of 100 K variants selected at random throughout of the genome in the 1000 Genomes
samples. PC1 captures 2.98% of total variance PC2 captures 1.56%. The representation of distances computed from genome-wide SNPS clearly
identifies samples of European, Asian and African ancestries. PC1 and PC2 have been flipped to ease the comparison of the patterns in Figures 1A and
1B. (D) Principal Component analysis of the pairwise IBD distances of 1000 Genomes samples using genome-wide markers of a region (chr9:800,000–
5,700,000) with an avergage recombination rate that is similar to the MHC region. Principal component analysis of 100 K variants selected at random

HLA Diversity in the 1000 Genomes Dataset
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between MHC SNPs. As previously anticipated by Weiss and

colleagues [39], sample size influences the estimation of LD: the

smaller the sample size, the slower the LD decay with distance

between markers. It demonstrates that for a sample size in the order

of magnitude of those collected by the 1000 Genomes Project, LD in

the MHC region is most likely overestimated. For low sample sizes,

sampling fluctuations result in a drastic reduction of the haplotype

diversity, which mimics a bottleneck effect. Such effect reduces the

sample haplotype diversity compared to the source population

haplotype diversity. It tends to inflate the estimation of the frequency

of the sampled haplotype as compared to their real frequencies in the

population and induces an overestimation of LD that diminishes in

higher sample sizes. Such effect makes even more challenging the

interpretation of genetic associations hitting the MHC because LD

may extends further away from the primary signal than it appears

from LD estimated with 1000 genome samples.

throughout of the genome in the 1000 Genomes samples. PC1 captures 2.55% of total variance PC2 captures 1.57%. The representation of distances
computed from genome-wide SNPS clearly identifies samples of European, Asian and African ancestries. PC1 and PC2 have been flipped to ease the
comparison of the patterns in Figures 1A and 1B.
doi:10.1371/journal.pone.0097282.g001

Figure 2. Across genomic region comparison of the Linkage Disequilibrium (LD) for variants with frequency lower than 5% (A),
greater than 5% (B), and 90th percentile of LD by D9 (C) and R2 (D) as a function of distance (kb) for various sample size as measure.
(A) Across genomic region comparison of the LD decay (R-Square) in the 1000 genome samples for variants whose frequency is lower than 5%. (B) Across
genomic regions comparison of the LD decay (R-Square) in the 1000 genome samples for variants whose frequency is greater than 5%.
Chr6:28,850,000:33,750,000 (black) representing the MHC; Chr9:116,750,000:121,650,000 (green with similar variants’ density as MHC used in Fig. 1C);
chr9:800,000:5,700,000 (blue with similar recombination rate as MHC used in FIG. 1D), an additional control with similar variants’ density
chr8:9,400,000 = red (with similar variants’ density as MHC), The plot is presented for 0–500 Kbp. In 2A, all markers are included in 2B only markers
whose frequencies are greater than 5% are included, showing that the analysis is affected by low frequency variants which requires large sample size
for accurate estimation. (C) Average 90th Percentile of pairwise linkage disequilibrium (D9) as a function of distance (kb) for various sample size. (D)
Average 90th Percentile of pairwise linkage disequilibrium (R2) as a function of distance (kb ranging from 0–400 Kb) for various sample sizes. (C and D) The
AAMS dataset consists of 405 African American controls and 594 African American individuals with multiple sclerosis (MS) typed at 6040 MHC SNPs
using Infinium iSelect HD Custom Genotyping BeadChip (Illumina). After strict quality control for missingness ,0.1% and minor allele frequency .
5%, 3224 markers remained for analysis. A subset of n = 10 random control individuals was selected. Linkage disequilibrium (r2 and D9) was calculated
between all pairs of SNPs (5,195,476 unique pairs) using Haploview software. All r2 and d9 estimates were sorted by distance between markers, and
grouped into bins of 500 bases. The 90th percentile r2 and d9 were calculated within each bin. Locally weighted regression (Cleveland, W. S. (1981)
LOWESS: A program for smoothing scatterplots by robust locally weighted regression (The American Statistician, 35, 54) was used to create a smooth
regression line across the 90th percentile r2 and d9 measures. The line in the figure represents the median across 10 trials of re-sampling the n = 10
individuals. The same procedure was repeated for larger sample sizes (n = 15, 20, 25, 30, 40, 50, 75, 100, 150, and 200). For the largest sample sizes
(n = 400 and n = 800), MS cases were included in the analysis. The Correlation between sample size and average LD measure at a distance of 400 kb is
shown in Figure S3A and S3B in Supplementary material.
doi:10.1371/journal.pone.0097282.g002
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Next, we randomly sampled 85 unrelated individuals from nine

of the1000 Genomes Project populations to directly compare the

LD decay across the samples. Figure 3 displays the 90th percentile

of D9 (Figure 3A) and r2 (Figure 3B) LD measures (Y-axis)

according to the distance between markers (X-axis) for nine

populations of the 1000 Genomes project. The northern European

populations (FIN and CEU) exhibit the highest LD along the

MHC; British and Japanese samples have an intermediate LD.

The Chinese (CHS and CHB), African (LWK and YRI), and

surprisingly the Tuscani (TSI) samples have the lowest LD levels.

These curves are influenced by both the genetic diversity of the

most frequent haplotypes and the amount of recombination/drift

occurring in the population history. In Tuscani and Chinese

populations the most frequent HLA haplotypes are composed of

frequent alleles. In Africans, HLA haplotypes are on average less

frequent and more diverse. Given the density of genes in the MHC

region and their functional relevance, long-range LD components

can be involved in disease association signals; it also shows that

using the analysis of samples of non-European ancestry can refine

variants that may be causally involved.

Discussion

We report the public availability of high resolution HLA typing

in the samples of the 1000 Genomes Project and describe the

ancestry specific content of HLA allele and SNP variant haplotypes

of the MHC. The data complements the resource made available

by the 1000 genomes project and other collaborative effort on

those samples [23,40]. The MHC region can be described as a

‘‘genome within the genome,’’ able to identify the ancestral history

of the individual. However, the relative low sample size of the

1000 Genomes Project fails to properly reflect the full range of

haplotype diversity and, consequently, the SNP-based analysis can

overestimate the extent of LD patterns. Furthermore, the effect of

sample size on LD depends on the baseline haplotype diversity and

frequency distribution of the source population. While the

difference observed between European and African populations

is conservatively estimated, larger sample sizes would reduce this

haplotype diversity truncation effect. The sample size effect is

particularly strong on D9 measures of LD due to the apparently

complete LD (D9 = 1 R2,1) that may generate sampling

fluctuations that prevent interpretation of the D9 based LD decay

comparison between populations.

Large sample size are required to capture the haplotypic
diversity of the MHC region

The availability of high resolution HLA typing information for

the 1000 Genomes project dataset opens an array of possibilities

for studying MHC polymorphisms and HLA alleles. It contributes

to reducing the gap between large HLA registries, as illustrated by

Figure 3. Across sample comparison linkage disequilibrium as a function of pairwise distance between SNPs for similar number of
individual (n = 85) as measured by D9 (A) and R2 (B). (A) Across sample comparison of Median of LD (D9) as a function of pairwise distance
between SNPs for similar number of individual (n = 85). (B) Across sample comparison of Median of LD (R29) as a function of pairwise distance between
SNPs for similar number of individual (n = 85). We resampled 85 unrelated individuals from the various populations of the 1000 Genomes in order to
compare the LD decay pattern for a similar sample size. The figure shows the relation between the median percentile of pairwise LD measures
according to the distance between the two markers between 0 and 400 Kb.
doi:10.1371/journal.pone.0097282.g003
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the recent publication of haplotype frequencies estimated from 2.9

million individuals [41], and the deep characterization of the

human genome sequence diversity of the 1000 genomes project

[18]. In addition to evolutionary studies of MHC haplotypes and

HLA alleles, this HLA data will facilitate the training of the

various SNP-based HLA imputation algorithms and the possibility

to use the 1000 genome as reference samples for next-generation

capture and sequencing of HLA genes. In order to illustrate the

potential use of the public availability of the HLA gene typing with

the 1000 Genomes sequencing data, we have explored the

existence of SNP variants that can be used to indicate the

presence of common HLA haplotypes (Sup. Table 2). Interestingly,

many such variants seem to occur in the most common European

HLA haplotype HLA-A*01:01,HLA-B*08:01,HLA-DRB1*03:01.

The HLA haplotype HLA-A*3303,HLA-B*4403,HLA-

DRB1*1302, which is common in Asians, also shows a high

number of associated variants (r2.0.6, Sup. Table S4 and S5).

Although HLA haplotype statistical phasing does not allow us to

conclude that these are ‘‘tag-SNPs’’, it adds further support to the

examination of rare SNP variations embedded in long HLA

haplotypes. Finally, we expect that the data will help to define the

best reference and strategies for the use of SNPs to impute HLA

alleles for population and disease studies.

Supporting Information Legends
Supplemental data consists in: Figures S1 MHC region

definition (Table S1), HLA Allele frequencies in the samples of

the 1000 Genomes (Tables S2), HLA alleles grouped by

similarities in the antigen recognition site (Table S3), Screen

capture of the display of allelic frequencies in dbMHC for the

1000 genome populations (Figure S2), The most frequent ancestry

specific HLA haplotypes (Tables S4), Please note that the V2 ‘old’

style HLA nomenclature and ARS ‘‘g’’ code were used in

supplementary material, please refer to website for more up to

date information and specification of HLA allele ambiguities

strings. Variants associated with frequent haplotypes in Europeans

(Tables S5), Correlation between sample size and r2 90th

percentile in African American samples for marker of a pairwise

distance of 1000 kb (Figure S3).

Supporting Information

Figure S1 MHC region definition. A, Selection of the region

by recombination rate et variants’ density. B, chr16:86,750,000–

91,650,000, a region on chromosome 16 with similar recombina-

tion rate as MHC shown in Figure 1D. C, chr16:74,200,000–

79,100,000, a region on chromosome 16 with similar variants’

density as MHC shown in Figure 1C.

(TIF)

Figure S2 Screen capture of the display of allelic
frequencies in dbMHC for the 1000 genome populations.
A, Homepage. B, Population selection. C, Data download.

(TIF)

Figure S3 Correlation between sample size and the 90th

percentile of D9 (S3-A) and r2 (S3B) in African American
samples for markers’ pairs at a distance of 400 kb.
(TIF)

Appendix S1 Additional details for HLA typing protocol.
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Table S1 MHC region definitions.
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Table S2 HLA Allele frequencies in the samples of the
1000 Genomes.
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Table S3 HLA alleles grouped by similarities in the
antigen recognition site.
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Table S4 The most frequent ancestry specific HLA
haplotypes.
(DOCX)

Table S5 Variants associated with frequent haplotypes
in Europeans.
(DOCX)
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