
Predicting DNA-Binding Proteins and Binding Residues
by Complex Structure Prediction and Application to
Human Proteome
Huiying Zhao1,2,3, Jihua Wang2,4, Yaoqi Zhou1,2,4,5*, Yuedong Yang1,2,5*

1 School of Informatics, Indiana University Purdue University, Indianapolis, Indiana, United States of America, 2 Center for Computational Biology and Bioinformatics,

Indiana University School of Medicine, Indianapolis, Indiana, United States of America, 3 QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia,

4 Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Dezhou University, Dezhou, Shandong, China, 5 Institute for Glycomics and School of

Information and Communication Technique, Griffith University, Southport, Queensland, Australia

Abstract

As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is
to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at
the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most
existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure
prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function
(Distance-scaled finite ideal-gas reference state for protein-DNA interactions). A leave-one-out cross validation of the
method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient
(MCC) of 0.77 with high precision (94%) and high sensitivity (65%). We further found 51% sensitivity for 82 newly
determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method
provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex
structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted
structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA)] is
available as an on-line server at http://sparks-lab.org.
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Introduction

The completion of thousands of proteome projects has led to an

explosive increase in number of proteins with unknown functions.

The comprehensive Uniprot database [1] contains 107 protein

sequences and, yet, less than 5% of these sequences have

annotated functions from Gene Ontology Annotation database

[2]. This gap between the number of sequences and the number of

sequences with annotations is widening rapidly as inexpensive and

more efficient next generation sequencing techniques become

available. Experimentally identifying function of millions of

proteins is obviously impractical. Thus, it is necessary to develop

effective bioinformatics tools for initial functional annotations.

One important function of proteins is DNA-binding that plays

an essential role in transcription regulation, replication, packaging,

repair and rearrangement. Function prediction of DNA-binding

can be classified into three levels of resolution (low, medium and

high). A low-resolution function prediction is a simple two-state

prediction whether or not a protein binds to DNA. A medium-

resolution function prediction is to predict the region in a protein

that binds with DNA (DNA-binding residues or DNA-binding

interface regions). A high-resolution function prediction is to

predict the complex structure between DNA and a target protein

of unknown function.

Most existing methods have been focused on two-state (low

resolution) prediction [3–20] and prediction of binding residues

(medium resolution) [6,9,21–45]. The majority of these techniques

are based on machine-learning techniques ranging from neutral

networks, random forest, decision trees to support vector machines

that are trained on the features derived from sequence (sequence-

based) and structure (structure-based). A structure-based technique

attempts to infer functions from known protein structures. Both

sequence-based [4,6,10,12,14,15,18,20] and structure-based [3,7–

9,13,16,17,19] prediction of DNA-binding proteins were devel-

oped. The same is true for binding residue prediction (Sequence-

based [6,22,25,31,33,34,36,37,39,41,42,45] and structure-based

[9,21,23,24,26–28,32,35,38,43]).

An alternative approach to above machine-learning techniques

is to take advantage of known protein-DNA complex structures.

This can be accomplished by structural comparison between a
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DNA-binding template and a target protein structure [5,11,29,30].

For example, we demonstrated that a size-independent, structural

alignment method SPalign makes a significant improvement over

several other commonly used tools for locating functionally similar

structures [11]. If the structure of a target protein is unknown,

homology modeling [40,46] has been employed. Gao and Skolnick

further illustrated the importance of combining structure predic-

tion (through structural alignment [47] or threading [48]) with

binding prediction for detecting DNA-binding proteins. One

important aspect of this approach is its ability to predict the

complex structure between a target protein and template DNA.

This high-resolution function prediction at atomic details allows an

improved understanding of binding mechanism and an integration

with prediction of DNA-binding proteins and DNA-binding

residues.

This work focuses on improving the high-resolution function

prediction. The DBD-Threader method developed by Gao and

Skolnick [48] first employed the threading technique called

PROSPECTOR [49] to predict structures based on known

DNA-binding domains. Confidently predicted complex structures

are then confirmed for DNA-binding by utilizing a pairwise

knowledge-based, contact energy function [47]. The method has

achieved the Matthews correlation coefficient (MCC) of 0.68 for

the two-state prediction of DNA-binding proteins by using a

database of 179 DNA-binding domains (DB179) and 3797 non-

DNA-binding domains (DB3797).

In this work, we approach this function prediction problem with

different methods for protein-structure prediction and binding

affinity prediction. Instead of a contact-based energy function

employed in DBD-Threader [48], we employed a statistical energy

function based on a distance-scaled ideal-gas reference state

(DFIRE) [50] extended for protein-DNA interactions [51–53].

This DDNA energy function was found useful in developing a

highly accurate structure-based technique called SPOT-Struc

(DNA) that achieved the MCC value of 0.76 for the same database

of DB179 and NB3797, employed by DBD-Threader. In addition

to energy functions, we examined two fold-recognition techniques

to enable a sequence-based prediction as DBD-Threader. One is a

method based on hidden Markov model (HHM) called HHblits

[54]. The other is our in-house built technique called SPARKS-X

[55]. Both methods are among the top performers in critical

assessment of protein structure prediction techniques (CASP 9)

[55,56]. This development of SPOT-Seq for DNA-binding

proteins was inspired by the success of prediction of RNA-binding

proteins [57] by integrating SPARKS for structure prediction and

DFIRE for protein-RNA binding prediction [58] and its successful

application to human proteome [59].

SPOT-Seq for DBPs was applied to DB179 and NB3797 and

achieved a MCC value of 0.77 for DBP prediction by combining

HHblits with the DDNA3 energy function (leave-one-out). The

method was further tested on newly determined DBPs (positive

set), RNA-binding proteins (negative set), and the human

proteome as well as SCOP folds that host both DNA and non-

DNA binding proteins. All results confirmed that the method is

highly sensitive (.50%) and its performance is consistent in

various tests. More than 300 novel DBPs were found in human

Figure 1. Performance of various methods for DNA-binding
protein prediction (leave-one-out cross validation).
doi:10.1371/journal.pone.0096694.g001

Table 1. Performance of various methods for predicting DNA-binding proteins.

Methods SN(%)a PR(%)a SP(%)a ACC a MCC a

Structure-basedb

DBD-Hunterc 61 79 92 - 0.681

DDNA3d 60 91 99 98 0.73

DDNA3Od 64 93 99.8 - 0.76

Sequence-based

PSI-BLAST(NCBI) e 49 64 87 - 0.540

PSI-BLAST(Uniprot)e 43 75 93 - 0.553

Sequence and template-structure based

Prospectore 53 74 91 - 0.609

HHblits 61 69 99 97 0.639

SPARKS-X 45 95 99 97 0.647

Sequence and template-structure based, plus energy scoring

SPARKS-X+Energy 53 84 99 97 0.652

DBD-Threadere 56 86 96 - 0.680

HHblits+Energy 65 94 99 98 0.771

aSN, sensitivity; PR, precision; SP, specificity; ACC, accuracy; MCC, Matthews correlation coefficient. bMethods based on known protein structures. cFrom Ref. [47] dfrom
Ref. [53]. efrom Ref. [48].
doi:10.1371/journal.pone.0096694.t001
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proteome. For binding residue prediction, the average MCC

values are 0.55 for 116 predicted DBPs in DB179 and 0.64 for 42

predicted DBPs in newly solved structures (DB82).

Materials and Methods

Gao-Skolnick domain datasets (DB179 and NB3797)
Gao and Skolnick complied two datasets that contain 179 DNA-

binding protein domains and 3797 non-DNA binding protein

domains [47]. They were obtained by collecting the proteins with

a resolution of 3 Å or better, a minimum length of 40 amino acid

residues per protein and at least 6 base pairs of DNA and five

residues interacting with DNA. The redundant data between two

sets were excluded by using 35% sequence identity cutoff. DB179

is used as a template library in this work.

Test set of RNA-binding proteins (RB174)
RB174 is a dataset made of 174 high-resolution RNA-binding

proteins (whole chains), collected by us in developing SPOT-Seq

(RNA) based on a 25% cutoff. We employed RB174 to examine if

the proposed method can separate DNA-binding proteins from

RNA-binding proteins.

Independent test dataset (DB82)
An independent test set was built by obtaining the DNA-binding

proteins released after December 2009. The protein chains were

divided into SCOP domains, and the redundant data was removed

by using sequence identity cutoff of 30%. We further excluded the

proteins that have sequence identity higher than 30% with any

proteins in DB179. Finally, we generated an independent test

dataset with 82 protein domains (chains if SCOP domains were

not available).

Function prediction protocol
The prediction protocol proposed here is the same as SPOT-seq

(RNA) developed by us [57], except that 1) the template library is

made of known protein-DNA complex structures and 2) HHblits

Table 2. Detecting DBPs in 18 structural folds shared by DNA-binding and non-binding proteins.

Fold
Dataset
(bd/nb)

HHblits
(bd/nb)

HHblits+Energy
(bd/nb)

A.38 5/1 5/0 5/0

A.74 4/10 1/2 1/2

C.52 14/4 3/0 4/0

A.4 50/11 23/0 25/0

A.6 2/2 2/0 2/0

C.66 4/19 4/15 3/0

C.62 2/10 2/0 2/0

G.39 2/12 1/0 1/0

C.37 5/87 2/5 2/0

D.151 2/2 2/2 1/2

A.60 7/1 4/0 5/0

D.95 6/1 2/0 3/0

C.55 8/35 2/0 1/0

B.82 1/37 0/0 1/0

C.53 1/5 1/0 1/0

H.1 5/43 2/0 2/0

D.129 3/13 0/0 1/0

D.218 1/8 1/0 1/0

Total 122/301 57/24 61/4

doi:10.1371/journal.pone.0096694.t002

Figure 2. Matthews correlation coefficient for predicted
binding residues versus the structural similarity SP-score
between predicted and known structures of 116 targets. The
correlation coefficient is 0.38.
doi:10.1371/journal.pone.0096694.g002
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[54], in addition to SPARKS-X [55], is used in structure

prediction. Briefly, HHblits (or SPARKS-X) is employed to match

a target sequence to template structures in the template library. If

a significant match is found based on a matching probability

(HHblits) [or Z-score (SPARKS)], the top matched template(s) are

then utilized to model protein-DNA complex structure(s) by

copying the query sequence to the template complex structure(s)

according to the alignment result while keeping the template DNA

intact. The complex-structure models are then employed to

estimate the binding affinity between the target protein (main-

chain only) and the template DNA by utilizing DDNA3 [53]. The

target protein is classified as DNA-binding if the binding affinity is

higher than a threshold. Thus, there are only two parameters to be

optimized: sequence-structure matching score (or Z-score for

SPARKS) and the binding energy value.

Performance evaluation
The performance of the method is evaluated by sensitivity

[SN = TP/(TP + FN)], precision [PR = TP/(TP + FP)],

specificity [SP = TN/(TN + FP)], accuracy [AC = (TP +
TN)/(TP + FN + TN + FP)], and Matthews correlation

coefficient (MCC) given by MCC~(TP � TN{FP � FN)=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFN)(TPzFP)(TNzFP)(TNzFN)

p
. Here, TP, TN,

FP, and FN refer to true positives, true negatives, false positives

and false negatives, respectively. A MCC value provides an overall

assessment of the method performance with 1 for perfect

agreement and 0 for random prediction. One should note that

sensitivity can also be called as coverage of true positive prediction

while precision is fraction of corrected predictions in all positive

predictions.

HHblits
HHblits [54] is a fold-recognition technique that extracts

homologous sequences of targets from template library by

Hidden-Markov models (HMM). The HHM matrices of targets

and templates are built by searching against the Uniprot database.

The probability of a match is calculated by comparing the HMM

matrix of a target to the HMM matrix of a template. We define a

target sequence as a DBP if the probability of a match is higher

than a threshold. The threshold is optimized by maximizing the

MCC value. HHblits was downloaded from http://toolkit.

tuebingen.mpg.de/HHblits. Default parameters were utilized in

structure prediction.

Results

Low-resolution function prediction (binding or not
binding)

1. Leave-one-out cross validation (Gao-Skolnick

datasets). A leave-one-out cross validation is conducted by

removing all templates with .30% sequence identity to the target.

The results were obtained by taking one chain sequence from

DB179 or NB3797 and predicting whether it binds or does not

bind to DNA. Figure 1 and Table 1 compared the methods based

on known protein structures (DBD-Hunter [48], DDNA3 [53],

and DDNA3O [53]), purely sequence-based (PSI-BLAST (NCBI)

[48], PSI-BLAST(uniprot) [48]), sequence and template-structure-

based (PROSPECTOR [48], HHblits, SPARKS-X), and incor-

poration of an energy function (DBD-Threader [48], SPARKS-

X+Energy, HHblits+Energy). For sequence-based fold/homology-

recognition techniques, SPARKS-X yields the highest MCC value

(0.647), followed by HHblits (0.639), PROSPECTOR (0.609), and

Table 3. Performance of SPOT-Seq on prediction of DNA-binding proteins at three resolution levels.

Measure DB179/NB3797 DB82

Two-state prediction

MCC 0.77 -

Accuracy 98% -

Precision 93% -

Sensitivity 65% 51%

Binding residue prediction

MCC 0.52 0.64

Accuracy 88% 93%

Precision 63% 67%

Sensitivity 55% 69%

Structure prediction

SPscore 0.65 0.73

RMSD(,4 Å) 67% 68%

doi:10.1371/journal.pone.0096694.t003

Figure 3. Comparison of predicted (red) and native structures
(green) of target 1yfjD (DAM). Native structure and DNA are
represented by green and orange, respectively. The predicted structure
and DNA are denoted by color red and grey. The predicted binding
sites and native binding sites are in cyan and yellow colors, respectively.
doi:10.1371/journal.pone.0096694.g003
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PSI-BLAST (0.553 or 0.540). Adding the energy function to fold

recognition leads to a small improvement over SPARKS-X (MCC

from 0.647 to 0.652) but a large improvement over PROSPEC-

TOR (MCC from 0.609 to 0.681) and over HHblits (MCC from

0.639 to 0.771). In particular, the best performing HHblits +
Energy leads to a sensitivity of 65% and precision of 94%. Such

performance is even better than the best structure-based technique

(DDNA3O) with a MCC value of 0.76 (0.73 without TM-Score

dependent optimization). Because combining HHblits with our

energy function leads to a significantly improved method than

combining SPARKS and the energy function, we mainly focus on

the former here and below, unless indicated otherwise.

2. Separating DNA-binding from non-DNA-binding in the

same SCOP fold. One crucial test of a method for predicting

DNA-binding function is to examine whether or not it can classify

DBPs from non-DBPs within the same structural fold. We

analyzed 18 SCOP folds shared by DNA-binding and non-

DNA-binding proteins. As shown in Table 2, after incorporating

the DDNA energy function for DBP prediction, the number of

true positives increases from 57 to 61 and false positives decreases

from 24 to 4. Thus, removal of false positives is the key factor for

large improvement when an energy function is employed.

Table 5. Predicted DBPs whose homologs have experimentally determined 3-dimensional structures.

Uniprot ID Name TPL
Homo
chains SP-score

SeqID
(%) Lmatch

P13051 Uracil-DNA glycosylase 4skne 1emha 1.329 98.7 224

P24855 Deoxyribonuclease-1 2dnja 4awna 1.021 97.3 99

O75909 Cyclin-K(DNA-dependent_transcription_regulation) 1c9be 2i53a 0.853 75.6 76

P38919 Eukaryotic initiation factor 4A-III (RNA_helicase) 2p6ra 2j0qa 0.808 91.0 114

O95718 Steroid hormone receptor ERR2 (DNA binding) 1kb4a 1lo1a 0.799 93.4 86

P30281 G1/S-specific cyclin-D3 1c9be 3g33b 0.773 82.1 63

P20248 Cyclin-A2 1c9be 2wipb 0.773 80.2 64

P24385 G1/S-specific cyclin-D1 1c9be 2w96a 0.765 79.1 63

P14635 G2/mitotic-specific cyclin-B1 1c9be 2b9ra 0.746 80.7 116

P24863 Cyclin-C 1c9be 3rgfb 0.742 76.3 115

P51946 Cyclin-H 1c9be 1jkwa 0.733 73.6 56

Q9UMR2 ATP-dependent RNA helicase DDX19B 2p6ra) 3ewsa 0.731 83.9 223

O60942 Mrna-capping enzyme (GTP binding) 2owoa 3s24a 0.615 75.0 87

Q9UNQ2 Probable dimethyladenosine transferase (rrna binding) 1dctb 1zq9a 0.562 82.4 107

Q9NRR6 72 kda inositol polyphosphate 5-phosphatase 1dewb 2xswa 0.539 75.3 66

P32019 Type II inositol 1,4,5-trisphosphate 5-phosphatase 1dewb 3n9va 0.500 81.3 41

Q96LA8 Protein arginine N-methyltransferase 6 2ibsa 4hc4a 0.492 81.6 98

Q96LI5 CCR4-NOT transcription complex subunit 6-like (Nuclease) 1dewb 3ngna 0.479 75.0 38

Q96AZ6 Interferon-stimulated gene 20 kda protein (Ribonuclease) 2pyjb 1wlja 0.472 78.0 53

P09234 U1 small nuclear ribonucleoprotein C (mrna binding) 2i13a 2vrda 0.363 75.4 33

Q16281 Cyclic nucleotide-gated cation channel alpha-3 1cgpa 3swya 0.342 67.7 40

Q9NRK6 ATP-binding cassette sub-family B member 10, mitochondrial 2o8db 4ayta 0.310 76.2 140

Q9BW91 ADP-ribose pyrophosphatase, mitochondrial 1rrqa 1q33a 0.207 72.6 57

doi:10.1371/journal.pone.0096694.t005

Table 4. Number of annotated and predicted DBPs in the human proteome.

Function Number of Annotated Number of Predicted Recovery rate (Sensitivity)

Transcription factor 1459 837 61%

DNA binding 1239 763 62%

DNA repair 91 6 7%

DNA recombination 10 1 1%

DNA replication 51 3 6%

DNA-related biological process 33 2 6%

Total 2883 1612 56%

doi:10.1371/journal.pone.0096694.t004
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Medium-resolution function prediction (DNA-binding
residues)

The complex structures predicted from our method allow us to

infer amino-acid residues involved in DNA-binding. We define an

amino-acid residue as a DNA-binding residue if any heavy atoms

of the residue are less than 4.5Å away from any heavy atoms of a

DNA base as in [47]. The accuracy of binding-residue prediction

is examined on 116 true positive predictions from DB179. The

final values of MCC, sensitivity, and precision of the prediction

averaged over 116 proteins are 0.55, 57%, 66%, respectively. A

similar, average MCC value (0.54) was obtained if SPARKS-X

was used to perform structure prediction.

The quality of predicted binding residues is directly related to

the quality of predicted structures as expected. Figure 2 shows the

MCC for binding residue prediction as a function of predicted

structural accuracy according to structural similarity between

predicted and actual structures by SPscore. There is a trend that

the higher accuracy for predicted structures, the higher the MCC

value is. The correlation coefficient is 0.38. We noticed that there

are a few cases of highly accurate structures but with poorly

predicted binding regions (low MCC values). In those cases,

accurate structures were limited to non-binding regions.

High-resolution function prediction (complex structure
prediction)

The quality of predicted DNA-binding complex structures was

examined by the structural alignment SPalign [11] that compares

native structures and predicted structures based on a size-

independent structural similarity score called SPscore. Two

structures are considered as in the same fold if SPscore.0.5

[11]. For 116 correctly predicted targets, the average SPscore is

0.65. The structure similarity can also be evaluated by the fraction

of aligned residues with a root mean-squared distance (RMSD)

between two compared structures less than 4Å. We found that the

medium value is 67%.

As an example, Figure 3 compared predicted binding sites with

native binding sites, and the predicted structure with the native

structure for the target (bacteriophage T4 DNA-adenine methyl-

transferase, T4-dam, PDB# 1yfjd,). The sequence identity

between the target and the template (2g1pa, dam) is 24%.

Predicted (light grey) and actual (orange) DNAs overlap with each

other very well when protein structures are aligned. Predicted

binding sites (cyan) are also consistent with the native binding

region (yellow) with an MCC value of 0.60.

Independent tests
1. Negative set -Separating RNA-binding proteins from

DNA-binding proteins. As RNA-protein interactions share

some similar characteristics with DNA-binding proteins (both are

positively charged, for example), it is important to examine if the

proposed method can separate DBPs from RBPs. We tested the

HHblits+energy method with the thresholds optimized by

DB179+NB3797 datasets on the RBP dataset (RB174). It predicts

5 proteins as DBPs. Two of the five (1zbib and 1hysa) are highly

homologous (sequence identity .70%) to the templates (1zblb and

1r0aa, respectively). Proteins in 1zbib (Bacillus halodurans RNase H

catalytic domain) and 1r0aa (HIV-1 reverse transcriptase) are

related to dual RNA- and DNA-binding functions. 1zbib is a

complex structure between Bacillus halodurans RNase H catalytic

domain and 12mer RNA/DNA hybrid. HIV-1 reverse transcrip-

tase in 1r0aa is a RNA-dependent DNA polymerase. Two of the

three remaining proteins (2qk9a and 1ooaa) are also annotated as

DNA-binding. 2qk9a is Human RNase H catalytic domain

binding with both RNA and DNA [60] and 1ooaa contains Rel

homology domain (RHD) and DNA binding site [61]. The only

remaining protein (PDB ID 2jlua) is dengue virus 4Ns3 helicase in

complex with ssrna [62]. This helicase was found to function on

both RNA and DNA templates [63]. Thus, there is zero false

positive in DNA-binding prediction.

2. Positive set –Newly determined complex structures

(DB82). We tested the performance of SPOT-Seq (DNA) by

utilizing 82 newly determined protein-DNA complex structures.

SPOT-Seq correctly predicted 42 (51%) as DBPs based on the

same thresholds obtained from the leave-one-out (matching

probability of 84% and energy threshold of 28.6). The average

MCC value for predicted binding residues of these 42 proteins is

0.64. The average structural similarity between predicted and

actual structures is 0.73 based on SPalign [11]. As shown in

Table 3, the sensitivity of two-state RBP prediction decreases from

65% for DB179 to 51% for this smaller DB82 test set while the

average MCC value of binding residue prediction increases from

0.55 to 0.64 and the average structural similarity between

predicted and actual structures increases from 0.65 to 0.73

according to SPscore.

Application to Human Proteome
Our approach was utilized to detect DBPs from human

proteome. The human proteome with 20270 proteins was

downloaded in 2010 from Uniprot [1]. We obtained annotations

of human proteins from Gene Ontology (GO) [64]. The following

DNA-related GO keywords are employed for defining an

annotated DBP: ‘‘DNA binding’’, ‘‘transcription factor’’ and

others (‘‘DNA replication’’, ‘‘DNA repair’’, ‘‘DNA recombina-

tion’’, ‘‘DNA helicase activity’’). Such definition leads to 2883

annotated DBPs in 20270 proteins. The number of proteins in

each category is listed in Table 4.

Our sequence-based technique (HHblits+Energy) predicted

1975 out of 20270 proteins as DBPs. Among 1975 proteins, the

majority (1612, 82%) predicted DBPs were annotated as DBPs

according our definition above. The recovery (or sensitivity) of our

method is 56% (1612/2883) annotated DBPs. Remaining 363

predicted DBPs were not annotated as DBPs according to Gene

Ontology, in which 259 proteins were annotated with other

functions and 104 proteins with no annotation in Gene Ontology.

The recovery rate (sensitivity) of our prediction for each keyword is

shown in Table 4. They are 61% for transcription factors and 62%

for DNA binding but low for other keywords.

We examined 363 newly discovered DBPs in more details. We

found that 23 of these predicted new DBPs (Table 5) have

homologs (.60% sequence identity) with known experimental

structures in predicted structural regions. The majority of these

structures (21/23) are either in a monomeric form or in complex

with itself or other proteins. Interestingly, two of 23 structures

contain DNA, a direct confirmation of their DNA binding

capability. They are Uracil-DNA glycosylase that involves with

DNA repair [65] and steroid hormone receptor ERR2 that has

ligand-activated sequence-specific DNA binding RNA polymerase

II transcription factor activity [66]. These two proteins were not

annotated in GO as DNA binding. Predicted structures for these

23 proteins are highly similar to the structures of their

corresponding homologs in the majority of cases (16/23 or 70%

with SPscore $0.5, an indication of same structural fold). For

those predicted structures with ,0.5 SPscore with corresponding

structures of their homologs, the majority (5/7) has a matching

region of ,60 residues. Such small matching region is more likely

to have binding induced conformational change. Seven in 23

SPOT-Seq-DNA: Sequence-Based Prediction of DNA-Binding Function

PLOS ONE | www.plosone.org 6 May 2014 | Volume 9 | Issue 5 | e96694



proteins are Cyclin proteins that are involved in regulation of cell

cycles.

Discussion

In this paper, we have developed a sequence-based method that

predicts DNA-binding proteins and their complex structures with

DNA based on existing protein-DNA complex structures. The

method achieved a MCC value of 0.77 that is higher than the best

structure-based technique (DDNA3O). The method achieved .

50% sensitivity in the independent test set of newly solved protein-

DNA complex structures and 56% for human proteome. The

method also has a 94% precision in leave-one-out cross validation.

Such high precision is confirmed by the fact that 82% predicted

DBPs in human proteome were annotated as DBPs. Because

template-based methods depend on appropriate templates in the

database, a limited number of templates made the methods with

high precision but relatively low sensitivity (coverage). An

improved fold recognition method is critical for further increasing

the sensitivity.

One interesting observation is that combining HHblits with

DDNA energy function, rather than combining SPARKS-X with

DDNA energy function, yields the best performance, despite the

fact that SPARKS-X alone produces a higher MCC value (0.647)

than HHblits alone (0.639). This suggests a cancellation of errors

where over-prediction made by HHblits is corrected by the energy

function.

This work also reveals that DBPs are easier to identify than

RBPs. The sensitivity for DBP prediction is 56% in human

proteome, compared to only 43% for RBP prediction [59].

Moreover, ,400 new DBPs are discovered, compared to .2000

new RBPs in human proteome. This is mainly because RNA

structures are much more complex and diverse than that of DNA.

Moreover, RNA-binding proteins are not as well studied as DNA-

binding proteins.

Here, the analysis of DNA-binding function is mostly done with

GO annotations. We found that the GO annotation is not

complete for some proteins. The known DNA-binding protein

such as Uracil-DNA glycosylase [65] in Table 5 was not included

in GO annotations but were annotated in Uniprot. We further

found that 49 (13%) out of 363 predicted novel DBPs are

annotated as DBPs in the DAVID database [67]. This further

reduces the number of novel predicted DBPs to 314. Some of these

novel DNA-binding proteins in Table 5 are nucleases and

helicases that could operate on both DNA and RNA (e.g. CCR4

and DDX19B in Table 5). Others are less obvious for their

putative DNA-interacting capability and warrants further inves-

tigations.

Finally, it is worthy to mention that the template-based

approach presented here for DBP prediction is reasonably fast.

It takes about a month on a single processor PC (or 2 days with a

16-core server) to scan all proteins in human proteome. The

method [SPOT-Seq (DNA)] is available on line as a server at

http://sparks-lab.org.
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