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Abstract

Drawing on various notions from theoretical computer science, we present a novel numerical approach, motivated by the
notion of algorithmic probability, to the problem of approximating the Kolmogorov-Chaitin complexity of short strings. The
method is an alternative to the traditional lossless compression algorithms, which it may complement, the two being
serviceable for different string lengths. We provide a thorough analysis for all

P11
n~1 2n binary strings of length nv12 and for

most strings of length 12ƒnƒ16 by running all *2:5|1013 Turing machines with 5 states and 2 symbols (8|229 with
reduction techniques) using the most standard formalism of Turing machines, used in for example the Busy Beaver problem.
We address the question of stability and error estimation, the sensitivity of the continued application of the method for
wider coverage and better accuracy, and provide statistical evidence suggesting robustness. As with compression
algorithms, this work promises to deliver a range of applications, and to provide insight into the question of complexity
calculation of finite (and short) strings. Additional material can be found at the Algorithmic Nature Group website at http://
www.algorithmicnature.org. An Online Algorithmic Complexity Calculator implementing this technique and making the
data available to the research community is accessible at http://www.complexitycalculator.com.
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Introduction

The evaluation of the complexity of finite sequences is key in

many areas of science. For example, the notions of structure,

simplicity and randomness are common currency in biological

systems epitomized by a sequence of fundamental nature and

utmost importance: the DNA. Nevertheless, researchers have for a

long time avoided any practical use of the current accepted

mathematical theory of randomness, mainly because it has been

considered to be useless in practice [8]. Despite this belief, related

notions such as lossless uncompressibility tests have proven relative

success, in areas such as sequence pattern detection [21] and have

motivated distance measures and classification methods [9] in

several areas (see [19] for a survey), to mention but two examples

among many others of even more practical use. The method

presented in this paper aims to provide sound directions to explore

the feasibility and stability of the evaluation of the complexity of

strings by means different to that of lossless compressibility,

particularly useful for short strings. The authors known of only two

similar attempts to compute the uncomputable, one related to the

estimation of a Chaitin Omega number [4], and of another

seminal related measure of complexity, Bennett’s Logical Depth

[23,27]. This paper provides an approximation to the output

frequency distribution of all Turing machines with 5 states and 2

symbols which in turn allow us to apply a central theorem in the

theory of algorithmic complexity based in the notion of

algorithmic probability (also known as Solomonoff’s theory of

inductive inference) that relates frequency of production of a string

and its Kolmogorov complexity hence providing, upon application

of the theorem, numerical estimations of Kolmogorov complexity

by a method different to lossless compression algorithms.

A previous result [13] using a simplified version of the method

reported here soon found an application in the study of economic

time series [20,34], but wider application was preempted by length

and number of strings. Here we significantly extend [13] in various

directions: (1) longer, and therefore a greater number–by a factor

of three orders of magnitude–of strings are produced and

thoroughly analyzed; (2) in light of the previous result, the new

calculation allowed us to compare frequency distributions of sets

from considerable different sources and of varying sizes (although

the smaller is contained in the larger set, it is of negligible size in

comparison) –they could have been of different type, but they are

not (3) we extend the method to sets of Turing machines whose

Busy Beaver has not yet been found by proposing an informed

method for estimating a reasonably non-halting cutoff value based

on theoretical and experimental considerations, thus (4) provide

strong evidence that the estimation and scaling of the method is

robust and much less dependent of Turing machine sample size,

fully quantified and reported in this paper. The results reported

here, the data released with this paper and the online program in

the form of a calculator, have now been used in a wider number of

applications ranging from psychometrics [15] to the theory of

PLOS ONE | www.plosone.org 1 May 2014 | Volume 9 | Issue 5 | e96223

http://www.algorithmicnature.org
http://www.algorithmicnature.org
http://www.complexitycalculator.com
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0096223&domain=pdf


cellular automata [26,33], graph theory and complex networks

[15]. In sum this paper provides a thorough description of the

method, a complete statistical analysis of the Coding theorem method

and an online application for its use and exploitation. The

calculation presented herein will remain the best possible

estimation for a measure of a similar nature with the technology

available to date, as an exponential increase of computing

resources will improve the length and number of strings produced

only linearly if the same standard formalism of Turing machines

used is followed.

Preliminaries

Kolmogorov complexity
General and technical introductions to AIT can be found in

Refs. [2,14,19,32]. Central to AIT is the definition of algorithmic

(Kolmogorov-Chaitin or program-size) complexity [5,17]:

KT (s)~ minfjpj,T(p)~sg ð1Þ

where p is a program that outputs s running on a universal Turing

machine T . A technical inconvenience of K as a function taking s

to the length of the shortest program that produces s is its

uncomputability. In other words, there is no program which takes

a string s as input and produces the integer K(s) as output. This is

usually considered a major problem, but one ought to expect a

universal measure of complexity to have such a property. The

measure was first conceived to define randomness and is today the

accepted objective mathematical measure of complexity, among

other reasons because it has been proven to be mathematically

robust (by virtue of the fact that several independent definitions

converge to it). If the shortest program p producing s is larger than

jsj, the length of s, then s is considered random. One can

approach K using compression algorithms that detect regularities

in order to compress data. The value of the compressibility

method is that the compression of a string as an approximation to

K is a sufficient test of non-randomness.

It was once believed that AIT would prove useless for any real

world applications [8], despite the beauty of its mathematical

results (e.g. a derivation of Gödel’s incompleteness theorem [6]).

This was thought to be due to uncomputability and to the fact that

the theory’s founding theorem (the invariance theorem), left finite

(short) strings unprotected against an additive constant determined

by the arbitrary choice of programming language or universal

Turing machine (upon which one evaluates the complexity of a

string), and hence unstable and extremely sensitive to this choice.

Traditionally, the way to approach the algorithmic complexity

of a string has been by using lossless compression algorithms. The

result of a lossless compression algorithm is an upper bound of

algorithmic complexity. However, short strings are not only

difficult to compress in practice, the theory does not provide a

satisfactory answer to all questions concerning them, such as the

Kolmogorov complexity of a single bit (which the theory would say

has maximal complexity because it cannot be further compressed).

To make sense of such things and close this theoretical gap we

devised an alternative methodology [13] to compressibility for

approximating the complexity of short strings, hence a method-

ology applicable in many areas where short strings are often

investigated (e.g. in bioinformatics). This method has yet to be

extended and fully deployed in real applications, and here we take

a major step towards full implementation, providing details of the

method as well as a thorough theoretical analysis.

Invariance and compression
A fair compression algorithm is one that transforms a string into

two components. The first of these is the compressed version while

the other is the set of instructions for decompressing the string.

Both together account for the final length of the compressed

version. Thus the compressed string comes with its own

decompression instructions. Paradoxically, lossless compression

algorithms are more stable the longer the string. In fact the

invariance theorem guarantees that complexity values will only

diverge by a constant c (e.g. the length of a compiler, a translation

program between U1 and U2) and will converge at the limit.
Invariance Theorem [2,19]. If U1 and U2 are two universal

Turing machines and KU1
(s) and KU2

(s) the algorithmic

complexity of s for U1 and U2, there exists a constant c such that:

jKU1
(s){KU2

(s)jvc ð2Þ

Hence the longer the string, the less important the constant c or

choice of programming language or universal Turing machine.

However, in practice c can be arbitrarily large, thus having a very

great impact on finite short strings. Indeed, the use of data lossless

compression algorithms as a method for approximating the

Kolmogorov complexity of a string is accurate in direct proportion

to the length of the string.

Solomonoff-Levin Algorithmic Probability
The algorithmic probability (also known as Levin’s semi-

measure) of a string s is a measure that describes the expected

probability of a random program p running on a universal prefix-

free Turing machine T producing s. The group of valid programs

forms a prefix-free set, that is no element is a prefix of any other, a

property necessary for 0v (s)v1 (for details see [2]).Formally

[5,18,24],

(s)~
X

p:T(p)~s

1=2jpj ð3Þ

Levin’s semi-measure (s) defines the so-called Universal

Distribution [16]. Here we propose to use (s) as an alternative

to the traditional use of compression algorithms to calculate K(s)
by means of the following theorem.

Coding Theorem [18]. There exists a constant c such that:

j{ log2 (s){K(s)jvc ð4Þ

That is, if a string has many long descriptions it also has a short

one [10]. It beautifully connects frequency to complexity–the

frequency (or probability) of occurrence of a string with its

algorithmic (Kolmogorov) complexity. It is called a semi measure

because the sum is not always 1, unlike probability measures. This

is due to the Turing machines that never halt. The coding theorem

implies that [13] one can calculate the Kolmogorov complexity of

a string from its frequency [11–13,29], simply rewriting the

formula as:

K(s)~{ log2 (s)zO(1) ð5Þ

An important property of as a semi-measure is that it

dominates any other effective semi-measure m because there is a

Calculating Kolmogorov Complexity from Small Turing Machines
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constant cm=0 such that for all s, (s)§cmm(s) hence called

Universal [16].

The Busy Beaver function
Notation. We denote by (n,2) the class (or space) of all n-state

2-symbol Turing machines (with the halting state not included

among the n states).

In addressing the problem of approaching m(s) by running

computer programs (in this case deterministic Turing machines)

one can use the known values of the so-called Busy Beaver

functions as suggested by and used in [13,29]. The Busy Beaver

functions
P

(n,m) and S(n,m) can be defined as follows:

Busy Beaver functions (Rado [22]). If sT is the number of

‘1s’ on the tape of a Turing machine T with n states and m

symbols upon halting starting from a blank tape (no input), then

the Busy Beaver function
P

(n,m)~ maxfsT : T[(n,m)T haltsg.
Alternatively, if tT is the number of steps that a machine T takes

before halting from a blank tape, then S(n,m)~
maxftT : T[(n,m)T haltsg.

In other words, the Busy Beaver functions are the functions that

return the longest written tape and longest runtime in a set of

Turing machines with n states and m symbols.
P

(n,m) and

S(n,m) are noncomputable functions by reduction to the halting

problem. In fact
P

(n,m) grows faster than any computable

function can. Nevertheless, exact values can be calculated for small

n and m, and they are known for, among others, m~2 symbols

and nv5 states. A program showing the evolution of all known

Busy Beaver machines developed by one of this paper’s authors is

available online [31].

This allows one to circumvent the problem of noncomputability

for small Turing machines of the size that produce short strings

whose complexity is approximated by applying the algorithmic

Coding theorem (see Fig. 1). As is widely known, the Halting

problem for Turing machines is the problem of deciding whether

an arbitrary Turing machine T eventually halts on an arbitrary

input s. Halting computations can be recognized by running them

for the time they take to halt. The problem is to detect non-halting

programs, programs about which one cannot know in advance

whether they will run forever or eventually halt.

The Turing machine formalism
It is important to describe the Turing machine formalism

because numerical values of algorithmic probability for short

strings will be provided under this chosen standard model of a

Turing machine.

Consider a Turing machine with the binary alphabetP
~f0,1g and n states f1,2, . . . ng and an additional Halt state

denoted by 0 (as defined by Rado in his original Busy Beaver

paper [22]).

The machine runs on a 2-way unbounded tape. At each step:

1. the machine’s current ‘‘state’’; and

2. the tape symbol the machine’s head is scanning

define each of the following:

1. a unique symbol to write (the machine can overwrite a 1 on a 0,

a 0 on a 1, a 1 on a 1, and a 0 on a 0);

2. a direction to move in: {1 (left), 1 (right) or 0 (none, when

halting); and

3. a state to transition into (which may be the same as the one it

was in).

The machine halts if and when it reaches the special halt state 0.

There are (4nz2)2n Turing machines with n states and 2 symbols

according to the formalism described above. The output string is

taken from the number of contiguous cells on the tape the head of

the halting n-state machine has gone through. A machine

produces a string upon halting.

Methodology

One can attempt to approximate (s) (see Eq. 3) by running

every Turing machine an particular enumeration, for example, a

quasi-lexicographical ordering, from shorter to longer (with

number of states n and 2 fixed symbols). It is clear that in this

fashion once a machine produces s for the first time, one can

directly calculate an approximation of K , because this is the length

of the first Turing machine in the enumeration of programs of

increasing size that produces s. But more important, one can apply

the Coding theorem to extract K(s) from (s) directly from the

output distribution of halting Turing machines. Let’s formalize this

by using the function D(n,m) as the function that assigns to every

string s produced in (n,m) the quotient: (number of times that a

machine in (n,m) produces s)/(number of machines that halt in

(n,m)) as defined in [13,29]. More formally,

D(n,m)(s)~
jfT[(n,m) : T(p)~sgj
jfT[(n,m) : T haltsgj ð6Þ

Where T(p) is the Turing machine with number p (and empty

input) that produces s upon halting and jAj is, in this case, the

cardinality of the set A. A variation of this formula closer to the

definition of is given by:

D
0
(n,m)(s)~

jfT[(n,m) : T(p)~sgj
jfT[(n,m)gj ð7Þ

D
0

is strictly smaller than 1 for m,n??, because of the Turing

machines that never halt, just as it occurs for . However, for fixed

n and m the sum of D will always be 1. We will use Eq. 6 for

practical reasons, because it makes the frequency values more

readable (most machines don’t halt, so those halting would have a

tiny fraction with too many leading zeros after the decimal).

Moreover, the function (n,m)?D(n,m) is non-computable [13,29]

but it can be approximated from below, for example, by running

small Turing machines for which known values of the Busy Beaver

problem [22] are known. For example [1], for n~4, the Busy

Beaver function for maximum runtime S, tells us that

S(4,2)~107, so we know that a machine running on a blank

tape will never halt if it hasn’t halted after 107 steps, and so we can

stop it manually. In what follows we describe the exact

methodology. From now on, D(n) with a single parameter will

mean D(n,2). We call this method the Coding Theorem Method to

approximate K (which we will denote by K ).

Kolmogorov complexity from the output frequency of
small Turing machines

Approximations from the output distribution of Turing

machines with 2 symbols and n~1, . . . ,4 states for which the

Busy Beaver values are known were estimated before [13,29] but

for the same reason the method was not scalable beyond n~4.

The formula for the number of machines given a number of states

n is given by (4nz2)2n derived from the formalism described.

Calculating Kolmogorov Complexity from Small Turing Machines
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There are 26 559 922 791 424 Turing machines with 5 states (that

is, for the reader amusement, about the same number of red cells

in the blood of an average adult). Here we describe how an

optimal runtime based on theoretical and experimental grounds

can be calculated to scale the method to larger sets of small Turing

machines.

Because there are a large enough number of machines to run

even for a small number of machine states (n), applying the Coding

theorem provides a finer and increasingly stable evaluation of K(s)
based on the frequency of production of a large number of Turing

machines, but the number of Turing machines grows exponen-

tially, and producing D(5) requires considerable computational

resources.

Setting an informed runtime
The Busy Beaver for Turing machines with 4 states is known to

be 107 steps [1], that is, any Turing machine with 2 symbols and 4

states running longer than 107 steps will never halt. However, the

exact number is not known for Turing machines with 2 symbols

and 5 states, although it is believed to be 47 176 870, as there is a

candidate machine that runs for this long and halts and no

machine greater runtime has yet been found.

So we decided to let the machines with 5 states run for 4.6 times

the Busy Beaver value for 4-state Turing machines (for 107 steps),

knowing that this would constitute a sample significant enough to

capture the behavior of Turing machines with 5 states. The chosen

runtime was rounded to 500 steps, which was used to build the

output frequency distribution for D(5). The theoretical justification

for the pertinence and significance of the chosen runtime is provided

in the following sections.

Reduction techniques
We didn’t run all the Turing machines with 5 states to produce

D(5) because one can take advantage of symmetries and anticipate

some of the behavior of the Turing machines directly from their

transition tables without actually running them (this is impossible

in general due to the halting problem). We avoided some trivial

machines whose results we know without having to run them

(reduced enumeration). Also, some non-halting machines were

detected before consuming all the runtime (filters). Table 1 shows

the reductions utilized for the number of total machines in order to

decrease the computing time for the approximation of D(5).

Exploiting symmetries
Symmetry of 0 and 1. The blank symbol is one of the 2

symbols (0 or 1) in the first run, while the other is used in the

second run (in order to avoid any asymmetries due to the choice of

a single blank symbol). In other words, we considered two runs for

each Turing machine, one with 0 as the blank symbol (the symbol

with which the tape starts out and fills up), and an additional run

with 1 as the blank symbol. This means that every machine was

run twice. Due to the symmetry of the computation, there is no

real need to run each machine twice; one can complete the string

frequencies by assuming that each string produced produced by a

Turing machine has its complement produced by another

symmetric machine with the same frequency, we then group

Figure 1. A flow chart illustrating the Coding Theorem Method, a never-ending algorithm for evaluating the (Kolmogorov)
complexity of a (short) string making use of several concepts and results from theoretical computer science, in particular the
halting probability, the Busy Beaver problem, Levin’s semi-measure and the Coding theorem. The Busy Beaver values can be used up to
4 states for which they are known, for more than 4 states an informed maximum runtime is used as described in this paper, informed by theoretical
[3] and experimental (Busy Beaver values) results. Notice that Pr are the probability values calculated dynamically by running an increasing number
of Turing machines. Pr is intended to be an approximation to (s) out of which we build D(n) after application of the Coding theorem.
doi:10.1371/journal.pone.0096223.g001
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and divide by symmetric groups. We used this technique from

D(1) to D(4). A more detailed explanation of how this is done is

provided in [13,29] using Polya’s counting theorem.

Symmetry right-left. We can exploit the right-left symme-

try. We may, for example, run only those machines with an initial

transition (initial state and blank symbol) moving to the right and

to a state different from the initial one (because an initial transition

to the initial state produces a non-halting machine) and the halting

one (these machines stop in just one step and produce ‘0’ or ‘1’).

For every string produced, we also count the reverse in the

tables. We count the corresponding number of one-symbol strings

and non-halting machines as well.

Reduction techniques by exploiting symmetries. If we

consider only machines with a starting transition that moves to the

right and goes to a state other than the starting and halting states,

the number of machines is given by

total(n)~2(n{1)((4nz2)2n{1)

Note that for the starting transition there are 2(n{1)
possibilities (2 possible symbols to write and n{1 possible new

states, as we exclude the starting and halting states). For the other

2n{1 transitions there are 4nz2 possibilities.

We can make an enumeration from 0 to total(n){1. Of course,

this enumeration is not the same as the one we use to explore the

whole space. The same number will not correspond to the same

machine.

In the whole D(5) space there are (4nz2)2n machines, so it is a

considerable reduction. This reduction in D(5) means that in the

reduced enumeration we have 4=11 of the machines we had in the

original enumeration.

Strings to complete after running the reduced
enumeration

Suppose that using the previous enumeration we run M
machines for D(n) with blank symbol 0. M can be the total

number of machines in the reduced space or a random number of

machines in it (such as we use to study the runtime distribution, as

it is better described below).

For the starting transition we considered only 2(n{1)
possibilities out of 4nz2 possible transitions in the whole space.

Then, we proceeded as follows to complete the strings produced

by the M runs.

1. We avoided 2(n{1) transitions moving left to a different state

than the halting and starting ones. We completed such

transitions by reversing all the strings found. Non-halting

machines were multiplied by 2.

2. We also avoided 2 transitions (writing ‘0’ or ‘1’) from the initial

to the halting state. We completed such transitions by

N Including M
2(n{1)

times ‘0’.

N Including M
2(n{1)

times ‘1’.

3. Finally, we avoided 4 transitions from the initial state to itself (2

movements 62 symbols). We completed by including 2M
n{1

non-

halting machines.

With these completions, we obtained the output strings for the

blank symbol 0. To complete for the blank symbol 1 we took the

complement to 1 of each string produced and counted the non-

halting machines twice.

Then, by running M machines, we obtained a result

representing M(4nz2)
(n{1)

, that for n~5 is 5:5M.

Detecting non-halting machines
It is useful to avoid running machines that we can easily check

that will not stop. These machines will consume the runtime

without yielding an output.

The reduction in the enumeration that we have shown reduces

the number of machines to be generated. Now we present some

reductions that work after the machines are generated, in order to

detect non-halting computations and skip running them. Some of

these were detected when filling the transition table, others at

runtime.

Machines without transitions to the halting state. While

we are filling the transition table, if a certain transition goes to the

halting state, we can activate a flag. If after completing the

transition table the flag is not activated, we know that the machine

won’t stop.

In our reduced enumeration there are 2(n{1) (4n)2n{1
� �

machines of this kind. In D(5) this is 4:096|1012 machines. It

represents 42.41% of the total number of machines.

The number of machines in the reduced enumeration that are

not filtered as non-halting when filling the transition table is 5 562

153 742 336. That is 504.73 times the total number of machines

that fully produce D(4).
Detecting escapees. There should be a great number of

escapees, that is, machines that run infinitely in the same direction

over the tape.

Some kinds are simple to check in the simulator. We can use a

counter that indicates the number of consecutive not-previously-

visited tape positions that the machines visits. If the counter

exceeds the number of states, then we have found a loop that will

repeat infinitely. To justify this, let us ask you to suppose that at

some stage the machine is visiting a certain tape-position for the

first time, moving in a specific direction (the direction that points

Table 1. Non-halting machines filtered.

Filter number of TMs

machines without transitions to the halting state 1 610 612 736

short escapees 464 009 712

other escapees 336 027 900

cycles of period two 15 413 112

machines that consume all the runtime 366 784 524

Total 2792847984

doi:10.1371/journal.pone.0096223.t001
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toward new cells). If the machine continues moving in the same

direction for nz1 steps, and thus reading blank symbols, then it

has repeated some state s in two transitions. As it is always reading

(not previously visited) blank symbols, the machine has repeated

the transition for (s,b) twice, b being the blank symbol. But the

behavior is deterministic, so if the machine has used the transition

for (s,b) and after some steps in the same direction visiting blank

cells, it has repeated the same transition, it will continue doing so

forever, because it will always find the same symbols.

There is another possible direction in which this filter may

apply: if the symbol read is a blank one not previously visited, the

shift is in the direction of new cells and there is no modification of

state. In fact this would be deemed an escapee, because the

machine runs for nz1 new positions over the tape. But it is an

escapee that is especially simple to detect, in just one step and not

nz1. We call the machines detected by this simple filter ‘‘short

escapees’’, to distinguish them from other, more general escapees.

Detecting cycles. We can detect cycles of period two. They

are produced when in steps s and sz2 the tape is identical and the

machine is in the same state and the same position. When this is

the case, the cycle will be repeated infinitely. To detect it, we have

to anticipate the following transition that will apply in some cases.

In a cycle of period two, the machine cannot change any symbol

on the tape, because if it did, the tape would be different after two

steps. Then the filter would be activated when there is a transition

that does not change the tape, for instance

fs,kg?fs’,k,dg

where d[f{1,1g is some direction (left, right) and the head is at

position i on tape t, which is to say, reading the symbol t½i�. Then,

there is a cycle of period two if and only if the transition that

corresponds to fs’,t½izd�g is

fs’,t½izd�g?fs,t½izd�,{dg

Number of Turing machines
We calculated D(4) with and without all the filters as suggested

in [13]. Running D(4) without reducing the number or detecting

non-halting machines took 952 minutes. Running the reduced

enumeration with non-halting detectors took 226 minutes.

Running all the Turing machines with 5 states in the reduced

enumeration up to 500 steps for the calculation of D(5) took 18

days using 25686264 CPUs running at 2128 MHz with 4 GB of

memory each (a supercomputer located at the Centro Informático

Cientı́fico de Andalucı́a (CICA), Spain). In order to save space in

the output of D(5), our C++ simulator produced partial results

every 109 consecutive machines according to the enumeration.

Every 109 machines, the counters for each string produced were

updated. The final classification is only 4.1 Megabytes but we can

estimate the size of the output had we not produced partial results

on the order of 1.28 Terabytes for the reduced space and 6.23

Terabytes for the full one. If we were to include in the output an

indication for non-halting machines, the files would grow an extra

1.69 Terabytes for the reduced enumeration and 8.94 Terabytes

for the full one.

Results

Samples of strings extracted from the output frequency of these

machines are shown in Tables 2, 3, 4, 5, 6, 7 and 8; highlighting

various important features found in the distributions. Table 2

provides a glance at D(5) showing the 147 most frequent (and

therefore simplest) calculated strings out of 99 608. The top strings

of D(5) conform to an intuition of simplicity. Table 3 shows all the

2n strings for n~7, hence displaying what D(5) suggests are the

strings sorted from lowest to highest complexity, which seems to

agree well with the intuition of simple (from top left) to random-

looking (bottom right).

Reliability of the approximation of D(5)
Not all 5-state Turing machines have been used to build D(5),

since only the output of machines that halted at or before 500 steps

were taken into consideration. As an experiment to see how many

machines we were leaving out, we ran 1:23|1010 Turing

machines for up to 5000 steps (see Fig. 2d). Among these, only

50 machines halted after 500 steps and before 5000 (that is less

than 1:75164|10{8 because in the reduced enumeration we

don’t include those machines that halt in one step or that we know

won’t halt before generating them, so it is a smaller fraction), with

the remaining 1 496 491 379 machines not halting at 5000 steps.

As far as these are concerned–and given the unknown values for

the Busy Beavers for 5 states–we do not know after how many

steps they would eventually halt, if they ever do. According to the

following analysis, our election of a runtime of 500 steps therefore

provides a good estimation of D(5).

The frequency of runtimes of (halting) Turing machines has

theoretically been proven to drop exponentially [3], and our

experiments are closer to the theoretical behavior (see Fig. 2). To

estimate the fraction of halting machines that were missed because

Turing machines with 5 states were stopped after 500 steps, we

hypothesize that the number of steps S a random halting machine

needs before halting is an exponential RV (random variable),

defined by Vk§1,P(S~k)!e{lk: We do not have direct access

to an evaluation of P(S~k), since we only have data for those

machines for which Sƒ5000. But we may compute an

approximation of P(S~kjSƒ5000), 1ƒkƒ5000, which is

proportional to the desired distribution.

A non-linear regression using ordinary least-squares gives the

approximation P(S~kjSƒ5000)~ae{lk with a~1:12 and

l~0:793. The residual sum-of-squares is 3:392|10{3, the

number of iterations 9 with starting values a~0:4 and l~0:25.

Fig. 3 helps to visualize how the model fits the data.

The model’s l is the same l appearing in the general law

P(S~k), and may be used to estimate the number of machines we

lose by using a 500 step cut-off point for running time:

P(kw500)&e{500l&6|10{173. This estimate is far below the

point where it could seriously impair our results: the less probable

(non-impossible) string according to D(5) has an observed

probability of 1:13|10{9.

Although this is only an estimate, it suggests that missed

machines are few enough to be considered negligible.

Features of D(5)
Lengths. 5-state Turing machines produced 99 608 different

binary strings (to be compared to the 1832 strings for D(4)). While

the largest string produced for D(4) was of length 16 bits and only

all 2n strings for n~8 were produced, the strings in D(5) have

lengths from 1 to 49 bits (excluding lengths 42 and 46 that never

occur) and include every possible string of length lv12. Among

the 12 bit strings, only two were not produced (000110100111 and

111001011000). Of n~13, . . . ,15 about half the 2n strings were

produced (and therefore have frequency and complexity values).
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Fig. 4 shows the proportion of n-long strings appearing in D(5)
outputs, for n[f1, . . . ,49g.

The cumulative probability of every n-long string gives a

probability law on N�. Fig. 5 shows such a law obtained with D(5),
with D(4), and with the theoretical 2{n appearing in Levin’s semi-

measure. The most important difference may be the fact that this

law does not decrease for D(5), since length 2 is more likely than

length 1.

Global simplicity. Some binary sequences may seem simple

from a global point of view because they show symmetry (1011

1101) or repetition (1011 1011). Let us consider the string s~1011

as an example. We have PD(5)(s)~3:267414|10{3. The

repetition ss~10111011 has a much lower probability

PD(5)(ss)~4:645999|10{7. This is not surprising considering

the fact that ss is much longer than s, but we may then wish to

consider other strings based on s. In what follows, we will consider

three methods (repetition, symmetrization, 0-complementation).

The repetition of s is ss~10111011, the ‘‘symmetrized’’

s�ss~10111101, and the 0-complementation 10110000. These

three strings of identical length have different probabilities

(4:645999|10{7, 5:335785|10{7 and 3:649934|10{7 respec-

tively).

Let us now consider all strings of length 3 to 6, and their

symmetrization, 0-complementation and repetition. Fig. 6 is a

visual presentation of the results. In each case, even the minimum

mean between the mean of symmetrized, complemented and

repeated patterns (dotted horizontal line) lies in the upper tail of

the D(5) distribution for 2n-length strings. And this is even more

obvious with longer strings. Symmetry, complementation and

repetition are, on average, recognized by D(5).

Table 4. Minimal examples of emergence: the first 50 climbers.

00000000 000000000 000000001 000010000 010101010

000000010 000000100 0000000000 0101010101 0000001010

0010101010 00000000000 0000000010 0000011010 0100010001

0000001000 0000101010 01010101010 0000000011 0101010110

0000000100 0000010101 000000000000 0000110000 0000110101

0000000110 0110110110 00000010000 0000001001 00000000001

0010101101 0101001001 0000011000 00010101010 01010010101

0010000001 00000100000 00101010101 00000000010 00000110000

00000000100 01000101010 01010101001 01001001001 010101010101

01001010010 000000000001 00000011000 00000000101 0000000000000

doi:10.1371/journal.pone.0096223.t004

Table 5. The 20 strings for which jR4{R5j§600.

sequence R4 R5

010111110 1625.5 837.5

011111010 1625.5 837.5

100000101 1625.5 837.5

101000001 1625.5 837.5

000011001 1625.5 889.5

011001111 1625.5 889.5

100110000 1625.5 889.5

111100110 1625.5 889.5

001111101 1625.5 963.5

010000011 1625.5 963.5

101111100 1625.5 963.5

110000010 1625.5 963.5

0101010110 1625.5 1001.5

0110101010 1625.5 1001.5

1001010101 1625.5 1001.5

1010101001 1625.5 1001.5

0000000100 1625.5 1013.5

0010000000 1625.5 1013.5

1101111111 1625.5 1013.5

1111111011 1625.5 1013.5

doi:10.1371/journal.pone.0096223.t005
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Table 6. Top 20 strings in D(5) with highest frequency and therefore lowest Kolmogorov (program-size) complexity.

sequence frequency ( (s)) complexity (K (s))

1 0.175036 2.51428

0 0.175036 2.51428

11 0.0996187 3.32744

10 0.0996187 3.32744

01 0.0996187 3.32744

00 0.0996187 3.32744

111 0.0237456 5.3962

000 0.0237456 5.3962

110 0.0229434 5.44578

100 0.0229434 5.44578

011 0.0229434 5.44578

001 0.0229434 5.44578

101 0.0220148 5.50538

010 0.0220148 5.50538

1111 0.0040981 7.93083

0000 0.0040981 7.93083

1110 0.00343136 8.187

1000 0.00343136 8.187

0111 0.00343136 8.187

0001 0.00343136 8.187

From frequency (middle column) to complexity (extreme right column) applying the coding theorem in order to get KD(5) which we will call K (s) as our current best
approximation to an experimental (s), that is D(5), through the Coding theorem.
doi:10.1371/journal.pone.0096223.t006

Table 7. 20 random strings (sorted from lowest to highest complexity values) from the first half of D(5) to which the coding
theorem has been applied (extreme right column) to approximate K(s).

string length string complexity (K (s))

11 11011011010 28.1839

12 101101110011 32.1101

12 110101001000 32.1816

13 0101010000010 32.8155

14 11111111100010 34.1572

12 011100100011 34.6045

15 001000010101010 35.2569

16 0101100000000000 35.6047

13 0110011101101 35.8943

15 101011000100010 35.8943

16 1111101010111111 25.1313

18 000000000101000000 36.2568

15 001010010000000 36.7423

15 101011000001100 36.7423

17 10010011010010011 37.0641

21 100110000000110111011 37.0641

14 11000010000101 37.0641

17 01010000101101101 37.4792

29 01011101111100011101111010101 37.4792

14 11111110011110 37.4792

doi:10.1371/journal.pone.0096223.t007
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Another method for finding ‘‘simple’’ sequences is based on the

fact that the length of a string is negatively linked to its probability

of appearing in D(5). When ordered by decreasing probability,

strings show increasing lengths. Let’s call those sequences for

which length is greater than that of the next string ‘‘climbers’’. The

first 50 climbers appearing in D(5) are given in Table 4 and show

subjectively simple patterns, as expected.

Strings are not sorted by length but follow an interesting

distribution of length differences that agrees with our intuition of

simplicity and randomness and is in keeping with the expectation

from an approximation to m(s) and therefore K(s).
Binomial behavior. In a random binary string of length n,

the number of ‘0s’ conforms to a binomial law given by

P(k)~2{n n

k

� �
. On the other hand, if a random Turing

machine is drawn, simpler patterns are more likely to appear.

Therefore, the distribution arising from Turing machine should be

more scattered, since most simple patterns are often unbalanced

(such as 0000000). This is indeed what Fig. 7 shows: compared to

truly random sequences of length n, D(5) yields a larger standard

deviation.

Bayesian application. D(5) allows us to determine, using a

Bayesian approach, the probability that a given sequence is

random: Let s be a sequence of length l. This sequence may be

produced by a machine, let’s say a 5-state Turing machine (event

M ), or by a random process (event R). Let’s set the prior

probability at P(R)~P(M)~ 1
2
. Because s does not have a fixed

length, we cannot use the usual probability P(s)~ 1
2l , but we may,

following Levin’s idea, use P(sjR)~ 1
22l . Given s, we can compute

Table 8. Bottom 21 strings of length n = 12 with smallest frequency in D(5).

100111000110 100101110001 100011101001

100011100001 100001110001 011110001110

011100011110 011100010110 011010001110

011000111001 000100110111 111000110100

110100111000 001011000111 000111001011

110100011100 110001110100 001110001011

001011100011 110000111100 001111000011

doi:10.1371/journal.pone.0096223.t008

Figure 2. Distribution of runtimes from D(2) to D(5). On the y-axes are the number of Turing machines and on the x-axes the number of steps
upon halting. For 5-state Turing machines no Busy Beaver values are known, hence D(5) (Fig. d) was produced by Turing machines with 5 states that
ran for at most t~5000 steps. These plots show, however, that the runtime cutoff t~500 for the production of D(5) covers most of the halting Turing
machines when taking a sample of 105 machines letting them run for up to t~5000 steps, hence the missed machines in D(5) must be a negligible
number for t~500.
doi:10.1371/journal.pone.0096223.g002
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Figure 3. Observed (solid) and theoretical (dotted) P(S~kjSƒ5000) against k. The x-axis is logarithmic. Two different scales are used on the
y-axis to allow for a more precise visualization.
doi:10.1371/journal.pone.0096223.g003

Figure 4. Proportion of all n-long strings appearing in D(5)
against n.
doi:10.1371/journal.pone.0096223.g004

Figure 5. Cumulative probability of all n-long strings against n.
doi:10.1371/journal.pone.0096223.g005
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P(Rjs)~
P(sjR)P(R)

P(s)
,

with

P(s)~P(sjM)P(M)zP(sjR)P(R)~
PD(5)(s)

2
z

1

22lz1
:

Since P(R)~ 1
2

and P(sjR)~ 1
22l , the formula becomes

P(Rjs)~
1

22lPD(5)(s)z1
:

There are 16 strings s such that P(Rjs)v10{16 (the ‘‘least

random strings’’). Their lengths lie in the range ½47,49�. An

example is: 1110111011101110111011101110111011101111

1010101. The fact that the ‘‘least random’’ strings are long can

intuitively be deemed correct: a sequence must be long before we

can be certain it is not random. A simple sequence such as

00000000000000000000 (twenty ‘0s’) gives a P(Rjs)~0:006.

A total of 192 strings achieve a P(Rjs)w1{1:7|10{4. They

all are of length 12 or 13. Examples are the strings

1110100001110, 1101110000110 or 1100101101000. This is

consistent with our idea of a random sequence. However, the

fact that only lengths 12 and 13 appear here may be due to the

specificity of D(5).
Comparing D(4) and D(5). Every 4-state Turing machine

may be modeled by a 5-state Turing machine whose fifth state is

never attained. Therefore, the 1832 strings produced by D(4)
calculated in [13] also appear in D(5). We thus have 1832 ranked

elements in D(4) to compare with. The basic idea at the root of

this work is that D(5) is a refinement (and major extension) of

D(4), previously calculated in an attempt to understand and

evaluate algorithmic complexity. This would be hopeless if D(4)
and D(5) led to totally different measures and rankings of

simplicity versus complexity (randomness).

Agreement in probability. The link between D(4) and D(5)
seen as measures of simplicity may be measured by the

Figure 6. Mean ± standard deviation of D(5) of 2n-long strings given by process of symmetrization (Sym), 0-complementation
(Comp) and repetition (Rep) of all n-long strings. The dotted horizontal line shows the minimum mean among Sym, Comp and Rep. The
density of D(5) (smoothed with Gaussian kernel) for all 2n-long strings is given in the right-margin.
doi:10.1371/journal.pone.0096223.g006
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determination coefficient r2, r being the Pearson correlation

coefficient. This coefficient is r2~99:23%, which may be

understood as ‘‘D(4) explains 99.23% of the variations of D(5)’’.
The scatterplot in Fig. 8 displays D(5)(s) against D(4)(s) for all

strings s of length n~3, . . . ,8 (8 being the largest integer l such

that D(4) comprises every l-long sequence).

The agreement between D(5) and D(4) is almost perfect, but

there are still some differences. Possible outliers may be found

using a studentized residual in the linear regression of D(5) against

D(4). The only strings giving absolute studentized residuals above

20 are 0 and 1. The only strings giving absolute studentized

residuals lying between 5 and 20 are all the 3-long strings. All 4-

long strings fall between 2 and 5. This shows that the differences

between D(5) and D(4) may be explained by the relative

importance given to the diverse lengths, as shown above (Fig. 5).

Agreement in rank. There are some discrepancies between

D(5) and D(4) due to length effects. Another way of studying the

relationship between the two measures is to turn our attention to

ranks arising from D(5) and D(4). The Spearman coefficient is an

efficient tool for comparing ranks. Each string may be associated

with a rank according to decreasing values of D(5) (R5) or D(4)
(R4). A greater rank means that the string is less probable. Fig. 9

displays a scatterplot of ranks according to D(5) as a function of

Figure 7. Distributions of the number of zeros in n-long binary sequences according to a truly random drawing (red, dotted), or a
D(5) drawing (black, solid) for length 4 to 12.
doi:10.1371/journal.pone.0096223.g007
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D(4)-rank. Visual inspection shows that the ranks are similar,

especially for shorter sequences. The Spearman correlation

coefficient amounts to 0.9305, indicating strong agreement.

Not all strings are equally ranked and it may be interesting to

take a closer look at outliers. Table 5 shows the 20 strings for

which jR4{R5j§600. All these sequences are ties in D(4),
whereas D(5) distinguishes 5 groups. Each group is made up of 4

equivalent strings formed from simple transformations (reversing

and complementation). This confirms that D(5) is fine-grained

compared to D(4).

The shortest sequences such that jR4{R5j§5 are of length 6.

Some of them show an intriguing pattern, with an inversion in

ranks, such as 000100 (R5~85,R4~77) and 101001 with reversed

ranks.

On the whole, D(5) and D(4) are similar measures of simplicity,

both from a measurement point of view and a ranking point of

view. Some differences may arise from the fact that D(5) is more

fine-grained than D(4). Other unexpected discrepancies still

remain: we must be aware that D(5) and D(4) are both

approximations of a more general limit measure of simplicity

versus randomness. Differences are inevitable, but the discrepan-

cies are rare enough to allow us to hope that D(5) is for the most

part a good approximation of this properties.

Kolmogorov complexity approximation. It is now

straightforward to apply the Coding theorem to convert string

frequency (as a numerical approximation of algorithmic probabil-

ity (s)) to estimate an evaluation of Kolmogorov complexity (see

Tables 6 and 7) for the Turing machine formalism chosen. Based

Figure 8. D(5) against D(4), for n-long strings.
doi:10.1371/journal.pone.0096223.g008
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on the concept of algorithmic probability we define:

KD(n)(s)~{ log2 D(n)(s)

First it is worth noting that the calculated complexity values in

Tables 6 and 7 are real numbers, when they are supposed to be the

lengths of programs (in bits) that produce the strings, hence

integers. The obvious thing to do is to round the values to the next

closest integer, but this would have a negative impact as the

decimal expansion provides a finer classification. Hence the finer

structure of the classification is favored over the exact interpre-

tation of the values as lengths of computer programs. It is also

worth mentioning that the lengths of the strings (as shown in

Table 7) are almost always smaller than their Kolmogorov

(program-size) values, which is somehow to be expected from this

approach. Consider the single bit. It not only encodes itself, but the

length of the string (1 bit) as well, because it is produced by a

Turing machine that has reached the halting state and produced

this output upon halting.

Also worth noting is the fact that the strings 00, 01, 10 and 11 all

have the same complexity, according to our calculations (this is the

case from D(2) to D(5)). It might just be the case that the strings

are too short to really have different complexities, and that a

Turing machine that can produce one or the other is of exactly the

same length. To us the string 00 may look more simple than 01,

but we do not have many arguments to validate this intuition for

such short strings, and it may be an indication that such intuition is

misguided (think in natural language, if spelled out in words, 00

does not seem to have a much shorter description than the shortest

description of 01).

Compare this phenomenon of program-sizes being greater than

the length of these short strings to the extent of the problem posed

by compression algorithms, which collapse all different strings of

up to some length (usually around 100 bits), retrieving the same

complexity approximation for all of them despite their differences.

One way to overcome this minor inconvenience involved in using

the alternative approach developed here is to subtract a constant

(no greater than the smallest complexity value) from all the

complexity values, which gives these strings lower absolute random

complexity values (preserving the relative order). But even if left

‘‘random’’, this alternative technique can be used to distinguish

and compare them, unlike the lossless compression approach that

is unable to further compress short strings.

The phenomenon of complexity values greater than the lengths

of the strings is transitional. Out of the 99,608 strings in D(5), 212

have greater string lengths than program-size values. The first

string to have a smaller program-size value than string length is the

string 10101010101010101010 101010101010101010101 (and its

complementation), of length 41 but program-size of 33.11 (34 if

rounded). The mean of the strings with greater program-size than

length is 38.35, The string with the greatest difference between

length and program-size in D(5) are strings of low Kolmogorov

complexity such as 0101010001000100010001000100010

001000100010001010, of length 49 but with an approximated

Kolmogorov complexity (program-size) value of 39.06. Hence far

from random, both in terms of the measure and in terms of the

string’s appearance.

Randomness in D(5). Paradoxically, the strings at the

bottom of D(5) as sorted from highest to lowest frequency and

therefore lowest to highest Kolmogorov (random) complexity are

not very random looking, but this is to be expected, as the actual

most random strings of these lengths would have had very low

frequencies and would not therefore have been produced. In fact

what we are looking at the bottom are some of the longest strings

with greatest structure (and hence with lowest Kolmogorov

complexity) in D(5). Table 8, however, shows the bottom of the

length n~12 classification extracted from D(5), for which all, but

2, 2n binary strings were produced, hence displaying more

apparent randomness in the subset of length n~12 but still likely

unstable due to the fact that they were produced by a relatively

small number of Turing machines (in fact 2 strings of length 12

were never produced), compared to the ones at the top for n~12
that, as we have shown, can be expected to be stable (from

comparing D(4) and D(5)).
Robustness of KD(n). An important question is how robust is

KD(n), that is how sensitive it is to n. We know that the invariance

theorem guarantees that the values converge in the long term, but

the invariance theorem tells nothing about the rate of conver-

gence. We have shown that D(nz1) respects the order of D(n)
except for very few and minor value discrepancies concerning the

least frequent strings (and therefore the most unstable given the

few machines generating them). This is not obvious despite the fact

that all Turing machines with n states in (n,m) are included in the

space of (nz1,m) machines (that is, the machines that never reach

one of the nz1 states), because the number of machines in

(nz1,m) overcomes by far the number of machines in (n,m), and

a completely different result could have been then produced.

However, the agreement between D(n) and D(nz1) seems to be

similarly high among, and despite, the few cases nƒ6 in hand to

compare with. The only way for this behaviour to radically change

for nw5 is if for some n
0
, D(n

0
) starts diverging in ranks from

D(n
0
{1) on before starting to converge again (by the invariance

theorem). If one does not have any reason to believe in such a

change of behavior, the rate of rank convergence of D(n) is close

to optimal very soon, even for the relatively ‘‘small’’ sets of Turing

machines for small n.

One may ask how robust the complexity values and classifica-

tions may be in the face of changes in computational formalism

(e.g. Turing machines with several tapes, and all possible

variations). We have shown [28] that radical changes to the

Figure 9. R5 (rank according to D(5)) against R4. The grayscale
indicates the length of the strings: the darker the point, the shorter the
string.
doi:10.1371/journal.pone.0096223.g009
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computing model produce reasonable (and correlated with

different degrees of confidence) ranking distributions of complexity

values (using even completely different computing models, such as

unidimensional deterministic cellular automata and Post tag

systems).

We have also calculated the maximum differences between the

Kolmogorov complexity evaluations of the strings occurring in

every 2 distributions D(n) and D(nz1) for n~2, . . . ,4. This

provides estimations for the constant c in the invariance theorem

(Eq. 2) determining the maximum difference in bits among all the

strings evaluated with one or another distribution, hence shedding

light on the robustness of the evaluations under this procedure.

The smaller the values of c the more stable our method. The

values of these bounding constants (in bits) among the different

numerical evaluations of K using D(n) for n~2, . . . ,5 after

application of the Coding theorem (Eq. 3) are:

jKD(2)(s){KD(3)(s)jƒc~4:090; 4:090; 3:448; 0:39

jKD(3)(s){KD(4)(s)jƒc~4:10; 3:234; 2:327; 2:327

jKD(4)(s){KD(5)(s)jƒc~5:022; 4:274; 3:40; 2:797

Where KD(n)(s) means K(s) evaluated using the output

frequency distribution D(n) after application of the Coding

theorem (Eq. 3) for n~2, . . . ,5 (n~1 is a trivial non interesting

case) and where every value of c is calculated by quartiles

(separated by semicolons), that is, the calculation of c among all

the strings in the 2 compared distributions, then among the top 3/

4, then the top half and finally the top quarter by rank. Notice that

the estimation of c between D(2) and D(3), and D(3) and D(4)
remained almost the same among all strings occurring in both, at

about 4 bits. This means one could write a ‘‘compiler’’ (or

translator) among the two distributions for all their occurring

strings of size only 4 bits providing one or the other complexity

value for K based on one or the other distribution. The differences

are considerably smaller for more stable strings (towards the top of

the distributions). One may think that given that the strings with

their occurrences in D(nz1) necessarily contain those in D(n) for

all n (because the space of all Turing machines with an additional

state always contain the computations of the Turing machines will

less states), the agreement should be expected. However, the

contribution of D(n) to D(nz1) contributes with log the number

of strings in D(nz1). For example, D(4) contributes only 1832

strings to the 99 608 produced in D(5) (that is less than 2%). All in

all, the largest difference found between D(4) and D(5) is only of 5

bits of among all the strings occurring both in D(4) and D(5) (1832

strings), where the values of K in D(4) are between 2.285 and

29.9.

Concluding remarks

We have put forward a method based on algorithmic

probability that produces frequency distributions based on the

production of strings using a standard (Rado’s) model of Turing

machines generally used for the Busy Beaver problem. The

distributions show very small variations, being the result of an

operation that makes incremental changes based on a very large

number of calculations having as consequence the production of

stable numerical approximations of Kolmogorov complexity for

short strings for which error estimations of c from the invariance

theorem were also estimated. Any substantial improvement on

D(5), for example, by approximation of a D(n) for nw5, is

unlikely to happen with the current technology as the number of

Turing machines grows exponentially in the number of states n.

However, we have shown here based both on theoretical and

experimental grounds that one can choose informed runtimes

significantly smaller than that of the Busy Beaver bound and

capture most of the output determining the output frequency

distribution. An increase of computational power by, say, one

order of magnitude will only deliver a linear improvement on

D(5).

The experimental method presented is computationally expen-

sive, but it does not need to be executed more but once for a set of

(short) strings. As a result this can now be considered an alternative

to lossless compression as a complementary technique for

approximating Kolmogorov complexity. An Online Algorithmic

Complexity Calculator (OACC) implementing this technique and

releasing the data for public use has been made available at

http://www.complexitycalculator.com.

The data produced for this paper has already been used in

connection to graph theory and complex networks [30], showing,

for example, that it produces better approximations of Kolmo-

gorov complexity of small graphs (by comparing it to their duals)

than lossless compressibility. In [25] it is also shown how the

method can be used to classify images and space-time diagrams of

dynamical systems, where its results are also compared to the

approximations obtained using compression algorithms, with

which they show spectacular agreement. In [33], it is used to

investigate the ratios of complexity in rule spaces of cellular

automata of increasing size, supported by results from block

entropy and lossless compressibility. In [15], it is also used as a tool

to assess subjective randomness in the context of psychometrics.

Finally in [23], the method is used in numerical approximations to

another seminal measure of complexity (Bennett’s Logical Depth),

where it is also shown to be compatible with a calculation of strict

(integer-value) program-size complexity as measured by an

alternative means (i.e. other than compression). The procedure

promises to be a sound alternative, bringing theory and practice

into alignment and constituting evidence that confirms the possible

real-world applicability of Levin’s distribution and Solomonoff’s

universal induction (hence validating the theory itself, which has

been subject to criticism largely on grounds of simplicity bias and

inapplicability). As Gregory Chaitin has pointed out [7] when

commenting on this very method of ours:

The theory of algorithmic complexity is of course now

widely accepted, but was initially rejected by many

because of the fact that algorithmic complexity depends

on the choice of universal Turing machine and short

binary sequences cannot be usefully discussed from

the perspective of algorithmic complexity. ... discovered

employing [t]his empirical, experimental approach, the

fact that most reasonable choices of formalisms

for describing short sequences of  bits give consistent

measures of algorithmic complexity! So the dreaded

theoretical hole in the foundations of algorithmic

complexity turns out, in practice, not to be as serious

as was previously assumed. ... [hence, of this

approach] constituting a marked turn in the field

of algorithmic complexity from deep theory to

practical applications.
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scaling (albeit limited by computational power) of the method is

robust and much less dependent on formalism and size sample

than what originally could have been anticipated by the invariance

theorem.

Materials and Methods

Additional material can be found at the Algorithmic Nature Group

website (http://www.algorithmicnature.org). An Online Algorith-

mic Complexity Calculator implementing this technique and

making the data available to the research community is accessible

at http://www.complexitycalculator.com.
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