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Abstract

The carcasses of large pelagic vertebrates that sink to the seafloor represent a bounty of food to the deep-sea benthos, but
natural food-falls have been rarely observed. Here were report on the first observations of three large ‘fish-falls’ on the deep-
sea floor: a whale shark (Rhincodon typus) and three mobulid rays (genus Mobula). These observations come from industrial
remotely operated vehicle video surveys of the seafloor on the Angola continental margin. The carcasses supported
moderate communities of scavenging fish (up to 50 individuals per carcass), mostly from the family Zoarcidae, which
appeared to be resident on or around the remains. Based on a global dataset of scavenging rates, we estimate that the
elasmobranch carcasses provided food for mobile scavengers over extended time periods from weeks to months. No
evidence of whale-fall type communities was observed on or around the carcasses, with the exception of putative sulphide-
oxidising bacterial mats that outlined one of the mobulid carcasses. Using best estimates of carcass mass, we calculate that
the carcasses reported here represent an average supply of carbon to the local seafloor of 0.4 mg m22d21, equivalent to
,4% of the normal particulate organic carbon flux. Rapid flux of high-quality labile organic carbon in fish carcasses
increases the transfer efficiency of the biological pump of carbon from the surface oceans to the deep sea. We postulate
that these food-falls are the result of a local concentration of large marine vertebrates, linked to the high surface primary
productivity in the study area.
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Introduction

In the absence of sunlight, most animals in the deep ocean

(below 200 m) are reliant on detritus from the surface waters as

their primary source of food. This is mainly composed of dead

plankton and fecal pellets produced by zooplankton, which are

exported to the deep seafloor as fine particles of ‘marine snow’.

Particulate organic carbon (POC) export to the deep-sea decreases

exponentially with depth and is believed to play a key role in

structuring deep-sea communities[1–3]. Temporal fluctuations in

the quantity and quality of POC can have marked effects on the

benthic community below, and some animals appear to be

specially adapted to respond to these changes[4].

While most detritus reaches the seafloor as millimetre sized

particles of marine snow, the remains of large plants, algae and

animals arrive as bulk parcels that create areas of intense organic

enrichment. Early investigation of this phenomenon looked at the

utilisation of wood and other plant remains in the deep-sea [5–7],

while baited camera traps revealed a host of scavengers that

consumed animal carcasses [8,9]. Additionally, chance photo-

graphs of intact mammal carcasses and skeletons on the deep-sea

floor were also reported [10–12], prompting discussion of the role

that food-falls play in deep-sea food chains [13]. Specifically, it was

doubted that food-falls could be frequent enough to support

apparent specialist scavengers [14].

These discussions were brought to the fore with the serendip-

itous discovery of an intact whale skeleton at bathyal depths off

California [15]. Intriguingly, the skeleton hosted chemoautotro-

phic fauna similar to those seen at hydrothermal vents, thriving off

hydrogen sulphide generated by the anaerobic decomposition of

skeletal lipids [16]. This finding showed that the very largest food-

falls may play more ecologically significant roles than simply

feeding scavengers. Subsequent studies of both natural and

experimentally implanted whale carcasses (whale-falls) have

provided evidence that these habitats go through several ecological

stages in which different trophic guilds dominate [17,18]. This

ecological succession is responsible for the comparatively high

species diversity at found whale-fall habitats [19], including

specialists such as the bone-eating Osedax worms [20] and bone-

eating snails Rubyspira [21]. Thus, whale-falls may play a significant

role in maintaining biodiversity over ecological and evolutionary

time scales by increasing the range of ecological niche space

[22,23].

The enhanced diversity associated with whale-fall habitats has

been attributed to their large size, high lipid content of the bones,

and their multi-decadal persistence on the seafloor [24–26], all of

which are probably interrelated [27]. There has been much

speculation about the ability of non-mammalian food-falls to host

whale-fall type communities [28–30] and the carcass size required

to attract and sustain whale-fall communities [31–33], but studies
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on the fate of vertebrate remains at bathyal depths have been

restricted to either small porpoise and dolphin carcasses [34,35] or

large whale carcasses e.g. [27,36]. Here we report the on chance

discovery of several large ‘fish-falls’ comprised of a whale shark

carcass and three mobulid ray carcasses from the deep seafloor off

Angola. We describe the associated fauna and discuss the role of

these large food-falls on deep-sea ecosystems.

Materials and Methods

Standard definition video of chance encounters with large

elasmobranch carcasses observed during Subsea 7 Hercules

remotely operated vehicle (ROV) operations from the vessel M.

V. Bourbon Oceanteam 101 were analysed. Four clips collected

between 22nd June 2008 and 14th May 2010, ranging from 29

seconds to 4 minutes 58 seconds in length were available for

analysis. Full details of the video are shown in Table 1. The video

data were collected as part of seafloor surveys of seafloor structures

undertaken by BP Angola and partners in license block 18 offshore

of Angola (Figure 1). The data were made available for analysis via

the SERPENT Project (www.serpentproject.com).

The opportunistic nature of the data collection resulted in

several limitations. No faunal samples were collected, so all

taxonomic identifications are tentative (Table 2), based on

consultation with a selection of taxonomic experts. There is no

available indication of the sampling effort required to obtain these

four observations and there was no inherent sampling design in the

observations. The industrial class ROVs that were used to

undertake the surveys were not fitted with parallel lasers for

determining scale, making it difficult to attain accurate size

measurements of objects in the videos. As a result the data

reported here is primarily qualitative, using best estimates of size

where necessary, based on previously published data.

Quantitative values for comparison with previous studies were

calculated by combining the occurrence data from the video with

best estimates from the literature. Values for carcass size were used

to estimate the time that each carcass had been on the seafloor,

based on previously recorded rates of scavenging in the deep sea.

The mass and time values for each carcass were then integrated

over the entire area bounding their occurrence (convex hull) to

obtain an estimate of the mass flux to that area of seabed. Mass

flux was converted to carbon flux according to empirically

determined conversion factors reported in the literature. These

calculations are sensitive to changes in the area that the carcass

mass is integrated over and we chose the convex hull since it

requires the fewest assumptions. We consider this a conservative

estimate since much of this area was not surveyed and may have

contained further carcasses.

Results and Discussion

During routine seabed surveys over the course of two years, the

carcass of a whale shark and three mobulid rays were found by

chance on the seafloor at bathyal depths on the Angola continental

margin (Figure 1). It is extremely rare to encounter natural food-

falls; in five decades of deep-sea photography and exploration only

nine vertebrate carcasses have ever been documented[10–

12,15,27,37–40]. To find four in such close proximity is

unprecedented, suggesting that large food-falls are common in

the region. The cause of death of the animals identified here is

unknown and most carcasses appear to have arrived at the seabed

intact (see below). There is no targeted fishery for whale sharks and

mobulid rays off Angola, but ship strikes and accidental

entanglement are common sources of anthropogenic mortality

[41,42]. Natural mortality is usually the result of opportunistic

attacks by sharks and killer whales [43–45].

Whale shark carcass
Whale sharks (Rhincodon typus) have only recently been docu-

mented in oceanic waters off of Angola, and appear to be more

common in water depths over 1,000 m in this region [46]. This

affinity for deep-water suggests that whale shark carcasses may be

a common form of food-fall for deep-sea scavengers in this area.

The remnants of a whale shark were found at a depth of 1210 m,

resting dorsal-side up on the seafloor (Figure 2A). Only the

anterior part of the body remained, consisting of a fleshy head,

pectoral fins, pectoral girdle and a portion of the spine trailing

posteriorly.

Without an accurate scale we can only speculate on the actual

size of the carcass. Of the 10 records of whale sharks off Angola

reported by Weir[46] eight were estimated to be in the 5–7 m

length-range. One specimen observed over a prolonged period

swimming next to an oil platform was estimated to be ,15 m long

[46]. Additional records of large whale-sharks off Angola come

from strandings records of individuals measuring 11.5 m and

15.9 m in length [46]. If the mean length of the sighted sharks

reported by Weir [46] is taken as representative we can estimate

that carcass filmed here would be approximately 7.3 m long,

equating to ,3,600 kg body mass [47]. With reference to the

video footage, detailed anatomical measurements of an 8.75 m

long specimen [48] can provide some context of scale for features

observed here: its mouth was 1.7 m wide and the distance from the

snout to the origin of the pectoral fin was 2 m. The pectoral fin

was 1.47 m long, measured along its outer margin and 0.67 m

wide at its base.

The carcass was attended by 18 zoarcids (eelpouts), cf. Pachycara

crassiceps, which have also been observed at baited camera traps in

this area [49]. No active feeding on the carcass was observed, and

most of the fish remained stationary on or near the carcass. This

‘roosting’ behavior is typical of Pachycara species, which have long

residence times at bait [50,51]. Although some zoarcids are

thought to directly consume bait [50], benthic fauna are their

main prey [52,53] particularly small crustaceans such as amphi-

pods[51,54,55]. Pachycara sp. have previously been observed

scavenging an elasmobranch carcass, creating ‘‘long, deep groves’’

as they feed on amphipods that have bored into the flesh [50].

Such grooves can bee seen in the head portion of the carcass,

indicating that these fish have actively fed on the carcass (Video

S1). Witte [50]noted that the dorsal part of the elasmobranch

carcass was the primary site of consumption by all scavengers,

which might explain why the posterior part of the carcass is

missing. No other fauna were observed on or around the carcass,

but the camera did not allow detection of low densities of

macrofauna that may have been present.

Mobulid carcasses
As with whale sharks, the occurrence of mobulid rays (genera:

Mobula and Manta) off Angola was poorly documented until recent

hydrocarbon exploration facilitated dedicated surveys for marine

megafauna [56] and additional recent observations at exploration

drilling locations (http://archive.serpentproject.com/2148/).

Sightings of mobulids observed in this region range in size

between 1–3 m disc diameter, typical of Mobula japonica/M. mobular

species complex, which was positively identified in the area [56].

This equates to a mass of 10–280 kg in weight, whereas individuals

of Manta birostris are typically 4.5 m disc diameter, though can

reach over 7 m (1,200 kg)[45,57,58].

Food-Falls in the Deep Sea
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Carcass 1. The remains of an individual Mobula were found

1.46 km south of the whale-shark carcass at a depth of 1233 m

(Figure 2B). The skeleton was mostly intact and articulated, with

its anterior-posterior axis aligned in a southeast-northwest

direction. There was very little flesh remaining, and most of the

right wing and head region were covered in sediment. The entire

left wing was unsedimented, while the right was exposed revealing

a fully articulated skeletal structure, held in place by connective

tissue.

The carcass was attended by at least 20 zoarcid fish, one of

which appeared to be feeding to the right of the skull (Video S2). A

singular hagfish, Myxine ios [59] was observed feeding on the left

wing of the ray (time 00:14 in VideoS2), before swimming off to

the west of the carcass. A grenadier, possibly Coryphaenoides marshalli

or Coryphaenoides guentheri (from depth distribution), was initially

seen approaching the carcass from the west-southwest and

abruptly changing direction towards the southeast when over the

carcass. It then paused and drifted for a few seconds before

heading away to the east, without directly contacting the carcass.

Throughout the observation a small benthic ray (likely Bathyraja

sp.) could be seen in the background to the northwest of the

carcass. At one point it approached the carcass and skirted its

Figure 1. Map showing the locations of elasmobranch carcasses (inset) observed on the Angola continental margin.
doi:10.1371/journal.pone.0096016.g001
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posterior flank, but did not seem to come into contact with it, and

then moved away again. A synaphobranchid eel, likely Synapho-

branchus kaupii, was observed slowly swimming directly over the

carcass, but again did not interact with it before approaching the

ROV and swimming away. As this fish swam away another exactly

like it was seen approaching the carcass, again from the northwest,

and did not interact with the carcass. The only invertebrate

observed was a starfish (Asteroidea), lying a short distance to the

west of the carcass.

Carcass 2. A second mobulid carcass was found ,1.5 km

west of the first carcass at a depth of 1237 m. The skeleton was

articulated and bare of flesh, but both wings were covered in

sediment, with only a small portion of the left wing tip protruding

above the sediment. The remainder of the skeleton rested above

the sediment and was attended by at least 54 zoarcid fish. Several

fish were observed actively feeding on remnants of flesh inside the

skeleton, but most were inactive, exhibiting roosting behaviour as

they wait to prey upon small invertebrate scavengers (Video S3).

An apparent zone of enrichment can be seen extending around

the skeleton, demarcated by white mat, presumably made up of

sulphide oxidising bacteria, common at whale-falls [17]. This mat

represents the area of seafloor where organic matter from the

carcass has become incorporated into the sediment and is being

broken down anaerobically. The video footage is not of sufficient

quality to permit detection of individual macrofauna but no large

aggregations of chemoautotrophic clams or other fauna typical of

sulphide-rich sediments could be observed in or around the zone

of enrichment.

The relative size of the skeleton in relation to the zoarcids,

coupled with much higher numbers of fish attending the skeleton

suggests that it may be that of the larger manta ray, Manta birostris.

Other skeletal features also suggest this may be the case, but

diagnostic features at the anterior end of the carcass are not visible

in the video footage, so we are unable to confirm this (M. Paig-

Tran, personal communication). There is a single record of M.

birostris off Angola, but this oceanic species is believed to be widely

distributed throughout the tropics and subtropics [45].

Carcass 3. A third mobulid carcass (Mobula sp.) was found

180 m to the east of carcass 1, one year later on. The skeleton was

mainly articulated, with the exception of the left wing, the remains

of which appeared to be deposited at the rear of the skeleton. Thin

threads of flesh were hanging on the skull and a chunk of flesh at the

posterior end of the spine. The head of the carcass was pointing

towards the north-northwest, indicating that it was not simply a

resighting of carcass 1. Furthermore, this carcass still had flesh

visible suggesting it was more recently deposited than carcass 1.

The carcass was attended by 13 zoarcid fish (cf. Lycodes terranovae)

three of which were juveniles (Video S4). No feeding was observed

and fish remained stationary until disturbed by the ROV.

Time of deposition
It is difficult to asses the full significance of these natural food-

falls without an estimate of the time that they have been on the

seafloor prior to discovery. Radiochemical dating techniques have

previously been used to estimate the age of several naturally

occurring whale-falls [26], but without physical samples this

method cannot be employed here. Another option is to compare

the amount of soft tissues left on the carcasses with known

scavenging rates to constrain the time that the carcasses have been

on the seafloor. Deep-sea scavenging assemblages have been well

documented off Southern California, where scavenging rates

appears to be a logarithmic function of the carcass weight [27].

Subsequent studies of food-falls (mostly whale carcasses) from

several ocean basins provide data for a global analysis of carcass
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scavenging rates (Figure 3). The logarithmic relationship between

scavenging rates and carcass size appears to be a global

phenomenon, although the data are more variable than the

analysis for the Southern California basins, as might be expected.

According to this relationship a 3,000 kg whale shark is expected

to be scavenged at a rate of ,32 kgd-1, resulting in total

consumption of the carcass in 3 months. Approximately 20% of

the whale shark carcass was still present when observed, indicating

that this carcass had been on the seafloor for over two months. For

comparison a gray whale carcass, of similar size to whale shark

carcass (5000 kg), had 90% of it’s soft tissues removed by mobile

scavengers in four months at 1220 m depth in the San Catalina

Basin off California, equivalent to 37 kgd-1 [18]. Based on the

same relationship, the smaller Mobula carcasses (carcasses 1 & 3)

had probably been on the seafloor for at least 1-2 weeks.

There are several reasons to suggest that these values are

minimum estimates for the amount of time that the carcasses have

been present on the bottom. Very little scavenging was observed in

the video footage, despite a large amount of flesh on some

carcasses, showing that they were no longer being scavenged at

maximal rates. Additionally, available evidence suggests that

elasmobranch carrion is scavenged at much lower rates than other

forms of carrion (Figure 3). When presented with elasmobranch

and tuna bait on a baited camera trap, scavengers clearly preferred

tuna and only consumed the elasmobranch once the tuna was

gone (Jannasch 1977). Another study reported an extremely low

scavenging rate of 0.38 kg/day on an elasmobranch carcass at

1900 m in the Western Arabian Sea [50]. Repeated experiments

in this region using teleost fish as bait showed a 10-fold increase in

scavenging rates compared to that when elasmobranch was used

[51].

Depressed scavenging rates on elasmobranch carcasses may be

the result of their tough, denticulate skin, making flesh difficult to

access, or the flesh itself may be unpalatable. Decomposing

elasmobranch flesh contains high concentrations of ammonia,

related to the physiological mechanisms used in buoyancy control.

Other uncharacterized chemicals that are found in rotting

elasmobranch flesh (necromones) have been proven to strongly

deter shark scavenging and invoke an alarm response, even among

different species of elasmobranch [60]. If this phenomenon

extends to deep-sea scavenging elasmobranchs, it can be assumed

that the Portugese dogfish, Centroscymnus coelolepis, would have been

deterred from scavenging the elasmobranch carcasses. This will

have severely hindered utilization of the carcasses by other species,

since C. coelolepis is the dominant scavenger off the Angola margin

[49].

Ecological role of large fish-falls
There is no evidence that the animal communities associated

with the whale shark and ray carcasses had progressed beyond a

scavenging stage (sensu Smith & Baco) [27]. Only mobulid carcass

2 showed signs of seabed enrichment, but the high abundance of

macrofauna evident at whale-falls in the enrichment opportunist

Table 2. Fauna observed at elasmobranch carcasses.

Carcass Taxon observed Abundance

Whale shark Pachycara crassiceps 18

Mobulid carcass 1 Asteroidea 1

Myxine ios 1

Coryphaenoides sp. 1

Bathyraja sp. 1

Synaphobranchus kaupii 2

Pachycara sp. 20

Mobulid carcass 2 Pachycara sp. 54

Mobulid carcass 3 Lycodes terranovae 13

doi:10.1371/journal.pone.0096016.t002

Figure 2. Still images showing each of the observed carcasses. A Whale shark (Rhincodon typus); B Mobulid carcass 1; C Mobulid carcass 2; D
Mobulid Carcass 3. Images have been enhanced. Originals and details of enhancements are available in Figure S1.
doi:10.1371/journal.pone.0096016.g002
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stage were not observed here. The absence of characteristic whale-

fall fauna at the whale shark and mobulid carcasses may indicate

that carcasses of this size and nature do not support whale-fall type

communities. This is not surprising considering the nature of

elasmobranch carcasses. Their flesh is primarily muscular and

lacks the fatty blubber layer carried by whales. Their skeleton is

unmineralised and so is prone to rapid degradation, even

compared to teleost bones [61]. Indeed, fossil remains of

elasmobranchs are almost exclusively restricted to teeth. Nor do

their skeletons hold stores of lipid-rich bone marrow as seen in

marine mammals, which may contribute to their rapid degrada-

tion [25]. At whale carcasses it is the breakdown of this lipid-rich

bone marrow and blubber that generates the hydrogen sulphide

and methane to support chemosynthetic fauna [16,62,63].

Therefore, it seems unlikely that large fish carcasses are capable

of sustaining chemosynthetic fauna over ecologically significant

time periods, as seen at whale-falls.

In contrast to the chemosynthetic fauna described from whale-

falls, Osedax bone worms appear to utilise the collagen matrix of

bones, not lipid-rich marrow [64] and experimental evidence

shows that they are capable of living on fish bones [61]. The Osedax

genus appears to have a wide distribution being found off

California [65], Japan [66], Sweden [67] and the Southern

Ocean [40], so can be expected to be found off the West Africa

margin. Despite the collagen-rich food resource presented by the

skeletons of the marine vertebrates, no evidence of Osedax could be

detected on any of the carcasses. Only carcass 3 was investigated in

close enough detail to detect low-density Osedax colonisation and

no worms could be observed. In the early stages of carcass

colonisation Osedax may not be visible in ROV surveys, but over

time their abundance increases to the point at which they densely

cover bone surfaces and become evident at the macroscale [67].

Previous studies have recorded Osedax colonisation on isolated

carcasses within 9–10 weeks [68,69] so it may be that the carcasses

have not yet been colonised by the local Osedax population or

juveniles may be too small to detect. It is therefore not possible to

conclusively rule out the presence of Osedax at these carcasses,

owing to the low resolution of the video footage, but observations

here suggest they do not occur in the high densities reported from

other whale-falls [65,66]. The intact nature of the skeletons also

seem to preclude sustained Osedax activity, at least on the mobulid

carcasses. Perhaps Osedax may have been responsible for the

deterioration of the posterior section of the whale shark carcass as

the bones became exposed by scavengers, but no evidence of

Osedax on the present vertebra was observed.

The observations here suggest that even the largest non-

mammalian carcasses are primarily a significant food source for

mobile scavengers in the deep sea and do not support further

successional stages seen at whale falls. An extensive baited camera

study off Angola (13 sites between 1293 m and 2453 m) showed

that five species dominated the local scavenging assemblage: the

Portuguese dogfish Centroscymnus coelolepis, the snubnosed eel

Simenchelys parasitica, the arrow tooth eel Synaphobranchus kaupii, the

blue hake Antimora rostrata and Pachycara crassiceps [49]. Of these,

only Synaphobranchus and Pachycara were observed at the elasmo-

branch carcasses in this study. The reduced feeding of C. coelolepis

at the carcasses (discussed above) would have also hindered the

feeding of S. parasitica, which is reliant C. coelolepis to tear through

the tough skin and expose soft flesh [49]. The total dominance of

zoarcid fish at these carcasses, with occasional appearances of

myxinids, macrourids and synaphobranchids is in keeping with

scavenging community composition at experimental bait deploy-

ments in the Arabian Sea [51]. Numerous baited camera studies

have shown that zoarcids are late-arriving scavengers, with high

Figure 3. Relationship between carcass mass and the rate at which it is scavenged, based on a global dataset comprising different
carcass types: Nmammal; & teleost; X elasmobranch; m squid. A logarithmic regression (solid black line defined by the equation) y =
4.345ln(x) 2 3.222)explained a significant proportion of the variance in the relationship; R2 = 0.84, F(1,30) = 154.6, p ,0.001. Data and references are
presented in Dataset S1. Areas highlighted in turquoise indicate possible range in mass of the mobulid carcasses (left) and whale shark carcass (right).
Corresponding dashed gray lines show best estimate for the mass of each carcass type and hence scavenging rate according to the regression
equation.
doi:10.1371/journal.pone.0096016.g003

Food-Falls in the Deep Sea

PLOS ONE | www.plosone.org 6 May 2014 | Volume 9 | Issue 5 | e96016



residence times at food-falls [34,35,50,51]. Zoarcids became the

dominant scavengers at a 23 kg elasmobranch carcass after

,48 hours, (coinciding with a decrease in crustacean scavengers)

and remained in high abundances until the experiment ended

after 126 hours [50]. Baited camera observations have lasted only

a matter hours to days, but the evidence presented here shows that

zoarcid fish remain dominant at carcasses for extended time

periods, in the order of months.

Food-falls and bentho-pelagic coupling
The survey area is located just to the south of the Zaire/Congo

River plume, where upwelling results in high levels of primary

productivity, in the order or 100–200 mg C m22d21 [70,71]. Of

this ,5–10% (9.8 mg C m22d21) is exported to the deep sea as

particulate organic carbon (POC) [72]. However, POC flux only

accounts for 25% of the carbon requirements of the deep-sea

benthic community in this area [72]. This deficit is a common

feature of deep-sea carbon budgets and suggests that additional

sources are important in sustaining deep-sea communities [73].

Lateral carbon transfer from the continental shelf probably makes

up a large proportion of the unaccounted carbon on this margin

[72], but there is growing evidence that large, fast-sinking food-

falls can also transfer significant amounts of carbon from the upper

ocean to the deep seafloor [74–76].

To provide a minimum estimate of the importance of these

carcasses to the biological pump some simple calculations can be

made. If the estimated carbon content of the carcasses (8% wet

wt.) [77,78] is integrated over the entire area bounding their

occurrence (1.23 km2) and over the estimated time since first and

last deposition (738 days), then the average rate of carbon delivery

to the seabed by the elasmobranch carcasses equates to 0.4 mg

m22d21, i.e. 0.2% of the total surface primary production. This

figure exceeds (by an order of magnitude) previous estimates of the

relative importance of whale carcasses as sources of carbon. For

example, Smith calculates that ‘‘it is difficult to imagine that the

flux of great-whale detritus would exceed 0.3% of seafloor POC

flux anywhere in the deep sea’’[24], yet in this instance large

elasmobranch food-falls are equivalent to 4% of the total POC flux

to the seafloor. This figure is more in line with the 11–13% of

POC flux, estimated to be the total contribution from carrion

across all taxa to carbon input to the Santa Catalina Basin [79].

On this local scale the carcasses of planktivorous elasmobranchs

appear to play a important role in the supply of organic carbon

from the surface ocean to the deep seafloor. The most direct

beneficiaries are deep-sea scavenger populations, which have been

show to mirror fluctuations in the abundance of fish in surface

waters [80].

Whale sharks and mobulid rays feed directly on patchy dense

aggregations of zooplankton, which means that their distributions

are closely linked to environmental determinants of food

availability; more so than other large marine animals that feed

at higher trophic levels [81]. Sea-surface temperatures have been

found to be the best correlate of whale shark sightings in oceanic

waters, with 90% of sightings in the Indian Ocean occurring

between 26–30uC [82]. Sea-surface temperatures off northern

Angola, especially in spring and summer, closely match this

optimal temperature envelope [71] and sightings of whale sharks

appear to corroborate the association [46]. Mobulids show a

preference for slightly cooler waters in the range of 20–26uC [45],

which is more characteristic of autumn and winter sea surface

temperatures off Angola [71]. This area of the Angola margin also

has a particularly rich cetacean fauna with high relative

abundances of sperm whales and humpback whales [83] and

sightings of the most massive bony fish, the ocean sunfish (Mola

mola), are common [56], probably related to their diet of

zooplankton [84]. We therefore suggest that this region is a

‘hotspot’ for planktivorous megafauna, created by a combination

of high surface primary productivity and optimal temperature

ranges for poikilothermic plankton feeders.

Pelagic communities that have a high proportion of large

planktivorous megafauna are expected to have an increased flux of

carbon from surface to deep waters through two interrelated

mechanisms. Firstly, surface primary production can support a

higher total biomass of large animals than that of small ones

because of increasing metabolic efficiencies that scale with size, i.e.

less energy is lost through trophic transfer [85]. Secondly, larger

animals have lower rates of predation than smaller ones, so a

higher proportion of their biomass is exported to the deep sea

rather than recycled in the pelagic food chain [85]. These

theoretical predictions are supported by our findings, indicating an

enhanced transfer efficiency of the biological pump in this area,

with increased food supply to the deep-sea benthic community.

Conclusions

In contrast to previous assumptions, food-falls of large animal

carcasses can be common in parts of the deep-sea, as evidenced by

the finding of four large elasmobranch carcasses over an area of

just 1.48 km2 on the Angola continental margin. These carcasses

can support scavenger communities on the deep seafloor for weeks

to months at a time, but unlike larger marine mammal carcasses,

they do not appear to host characteristic ‘‘whale-fall’’ fauna and

are primarily significance for mobile scavengers. Large food-falls

may be particularly frequent where oceanographic conditions

create areas of high productivity, attracting planktivorous mega-

fauna. Our results suggest that in such areas the large food-falls

can account for a significant proportion of carbon export to the

deep-sea, approximately 10 times larger than previous estimates

for a single taxon. This increased export is expected to result in a

relatively high proportion of local surface primary production

reaching the deep-seafloor, supporting a more abundant commu-

nity of deep-sea scavengers.
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