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Abstract

Human cooperation and altruism towards non-kin is a major evolutionary puzzle, as is ‘strong reciprocity’ where no present
or future rewards accrue to the co-operator/altruist. Here, we test the hypothesis that the development of extra-somatic
weapons could have influenced the evolution of human cooperative behaviour, thus providing a new explanation for these
two puzzles. Widespread weapons use could have made disputes within hominin groups far more lethal and also equalized
power between individuals. In such a cultural niche non-cooperators might well have become involved in such lethal
disputes at a higher frequency than cooperators, thereby increasing the relative fitness of genes associated with
cooperative behaviour. We employ two versions of the evolutionary Iterated Prisoner’s Dilemma (IPD) model – one where
weapons use is simulated and one where it is not. We then measured the performance of 25 IPD strategies to evaluate the
effects of weapons use on them. We found that cooperative strategies performed significantly better, and non-cooperative
strategies significantly worse, under simulated weapons use. Importantly, the performance of an ‘Always Cooperate’ IPD
strategy, equivalent to that of ‘strong reciprocity’, improved significantly more than that of all other cooperative strategies.
We conclude that the development of extra-somatic weapons throws new light on the evolution of human altruistic and
cooperative behaviour, and particularly ‘strong reciprocity’. The notion that distinctively human altruism and cooperation
could have been an adaptive trait in a past environment that is no longer evident in the modern world provides a novel
addition to theory that seeks to account for this major evolutionary puzzle.
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Introduction

The puzzle of cooperation and strong reciprocity
Human cooperation and altruism towards non-kin poses two

fundamental questions for biology and the behavioural sciences.

Firstly, why do genes associated with these behaviours survive

when evolutionary theory appears to predict that a ‘cheating’

strategy is fitter and will thus drive such genes to extinction [1],

[2]? Secondly, ‘strong reciprocity’ is defined as a propensity to

cooperate unconditionally even if this is costly and provides

neither present nor future rewards to the co-operator/altruist [3],

[4]. Why, therefore, does this behaviour persist as it incurs a cost

and/or offers no present or future rewards [3], [4]?

Much current theory suggests that the first question can be

resolved by punishment of ‘cheats’ who do not reciprocate

altruistic acts i.e. reciprocal altruism [5], [6] and/or by cooper-

ative individuals recognizing each other by reputation and gaining

fitness by only associating with other cooperative individuals i.e.

indirect reciprocity [7], [8], [9], [10], [11].

‘Strong reciprocity’, however, has been observed in one-off,

anonymous encounters under experimental conditions [12] where

the reciprocal and reputation effects required by reciprocal

altruism or indirect reciprocity theory could not influence the

behaviour of participants [4]. Instead, it has been explained by

‘new’ group selection linked to extinction-threatening events [3],

[13], to cultural evolution [4], [14], to gene-culture co-evolution

[15] and to a combination of the last two factors [16], [17]. Others

explain it as a response to conditions of uncertainty in reciprocal

relationships [18] or as a maladaptive ‘misfiring’ of evolutionary

mechanisms in modern, experimental settings [19].

Extra-somatic weapons in human evolution
Human cooperation towards non-kin has often been seen as

unique in nature [8], [12], [14], [16], [20]. Here, we propose that

this very uniqueness might be attributable to unique selection

pressures likely to have been present in human evolution itself.

The invention of tools and weapons is generally seen as being an

important step in human evolution as it enabled hominins to

consume a high protein diet through the hunting of game and/or

scavenging of meat [21]. Such weapons should be distinguished

from somatic weapons (e.g. prominent canine teeth, pronounced

musculature), with only humans employing extra-somatic weapons

on a widespread and systematic basis. Here, we explore whether

their invention might have led to a cultural niche that could have

resulted in the evolution of distinctively human cooperation. It has

been claimed that cultural processes, particularly in humans, can

lead to the creation of niches that change selection pressures to

which individuals are exposed, thereby influencing their evolution

[22], [23], [24].
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The oldest complete hunting weapons yet discovered have been

dated to approximately 400,000 years ago [25], although it is

speculated that wooden weapons could have existed up to 1

million years before the present [26]. These wooden hunting

spears resemble projectile weapons [25] although there is some

question as to whether they would have been too heavy to have

been used as true projectiles [27] and may have been used instead

as thrusting weapons. Recent analysis has suggested that humans

first developed long-range projectile weaponry in Africa 70–

90,000 years ago [27]. Nearly every known human population

over the past 50,000 years has used projectile weapons (e.g. spears

and darts, bows and arrows) [28] and those few groups who lacked

them (e.g. Tasmanian Aborigines) are known to be descended

from populations that did possess them [28].

It has been suggested that the invention of extra-somatic

weapons in human evolution could have had an important impact

on relationships within hominin groups [5], [6], [29]. In many

species, intraspecific conflict has been observed to be of the

‘limited war’ type in which ritualized tactics or inefficient somatic

weapons are used to settle disputes without death or serious injury

resulting [30]. However, in the case of early humans, the lethal

effectiveness of extra-somatic weapons is likely to have selected

against those behavioural adaptations that inhibit intraspecific

violence observed in many other species. Specifically, the

development of extra-somatic weapons could have resulted in:

N an increased frequency of agonistic encounters as dominant

individuals, hitherto reliant on physical size, strength and

intimidation alone to gain access to valued resources (e.g.

mating with females, hunted meat), would have been more

open to challenge [29];

N a greater likelihood that such encounters would have proved

lethal for the protagonists due to the effectiveness of the

weapons and the speed with which they could have resulted in

serious injury or death [29] and;

N a consequently greater symmetry or equalization in power

between individuals [5], [6], [29] as it could have proved as

easy for a subordinate to kill a dominant as vice versa.

In such a cultural niche it is likely that natural selection would

have discriminated strongly against individuals whose behaviour

provoked an above average level of within-group aggression

against them. ‘Cheats’ and non-cooperators might well have

experienced involvement in such lethal disputes at a higher

frequency than others and thus faced a correspondingly greater

risk of injury or death. Providing that the costs of involvement in

agonistic encounters, where weapons were employed, exceeded

the benefits of ‘cheating’ and non-cooperation then such strategies

would have proved maladaptive.

In contrast, cooperators inclined to reduce their fitness in order

to help others within their group could as a result have been less

likely to have become involved in lethal disputes and might

consequently have experienced relatively greater fitness. Providing

that the cost of this helping behaviour was less than the selective

benefit of a reduced frequency of involvement in lethal fights then

cooperation could have proved an adaptive strategy in this cultural

niche.

To test this hypothesis, we employed two versions of the

evolutionary Iterated Prisoner’s Dilemma (IPD) model – one in

which weapons use was absent and one in which it was present.

We used computer simulation to measure the performance of a

range of IPD strategies, both cooperative and non-cooperative, in

order to quantify the effects of weapons use on them.

Methods

The traditional iterated prisoner’s dilemma (IPD) model
The IPD model [31], [32] is a classic formulation of how mutual

co-operation can evolve in a world of selfish individuals and its

process is well known (see Supporting Information, File S1. The

iterated prisoner’s dilemma (IPD) model). Each player has a choice

of whether to cooperate or defect on each move. If both cooperate

each receives three points but if both defect each gets only one

point. If one cooperates and the other defects then the former

receives no points and the latter five points. On any single move it

always pays to defect but cooperation has been found to emerge

where the endpoint of the series of interactions between two

players is unknown [32]. In modelling the IPD, this uncertainty is

reflected in the duration of each interaction being determined by a

certain probability or discount parameter (see File S1). Computer

tournaments have been used to identify those strategies that

perform best, with ‘Tit for Tat’ (TFT) (cooperate on the first move

and then copy the opponent’s last move) [31] and Pavlov [33]

generally found to be most successful.

The evolutionary IPD model
The evolutionary IPD model [34] extends the principle of the

traditional IPD model by reflecting the payoffs received by players

in one generation in terms of copies of themselves represented in

the next generation. Stochastic universal sampling is used to

ensure that players produce offspring in proportion to payoffs

received so that those with higher payoffs reproduce at a

proportionately higher rate than those with lower payoffs. In so

far as payoffs reflect fitness the evolutionary IPD model can be

seen to mimic natural selection, although recombination and

mutation are not simulated.

In our evolutionary IPD model a population of 40 players

compete against each other on a round robin basis. We chose 25

widely recognized IPD strategies taken from the scientific

literature [34], of which 14 have been classified as cooperative

and 11 as non-cooperative [35] (see Supporting Information, File

S2: IPD strategies employed).

In each round (see Supporting Information, File S3: Definitions

of terms) eight strategies were chosen at random with five players

initially adopting a particular strategy. To ensure that each

strategy was simulated a sufficient number of times to remove the

effects of chance we repeated each round 100 times per generation

and averaged the payoffs. Strategies were chosen randomly so

that, for example in the initial round, there was an 8/25 = 0.32

probability of any one strategy being chosen. With 100 rounds in

that game, each strategy was therefore run an average of

100*0.32 = 32 times. As strategies were subsequently eliminated,

this probability was adjusted throughout the competition. With

stochastic universal sampling used to choose players for the next

generation on the basis of payoffs received in the previous one, the

game was repeated for 100 generations, showing how each of the

25 strategies increased, decreased or were eliminated over the

duration of the competition.

The performance of each strategy was measured by the number

of times each survived for the full 100 generations. As long as a

single player adopting a particular strategy was present at the end

then that strategy was deemed to have survived. Survival time is

seen as providing a comprehensive index of the performance of

IPD strategies [35] and in this context offers a measure of the

relative fitness of individuals adopting each strategy.

Weapons and Human Cooperation
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The ‘weapons use’ IPD model
The ‘weapons use’ IPD model we designed for this study was

based on the evolutionary IPD model but we also set out to

simulate the effects of extra-somatic weapons on the fitness of

players. Our model works on the basis that a defection is, in effect,

a refusal to cooperate and an attempt to exploit the other player. It

therefore assumes that the more defections there are between

players, the greater will be the chance of a dispute occurring

between them. It thus captures a key aspect of the real world –

that, in relationships with others, ‘cheats’ and uncooperative

individuals (i.e. those inclined to defect) are more likely to be

involved in disputes than ‘nice’ individuals who are more inclined

to cooperate.

When a player accumulated 200 defections as a result of moves

both by the player and the player’s opponents a dispute was

deemed to occur. To simulate an environment of equalized power,

each player had the same probability of being eliminated in each

dispute (i.e. p = 0.05). If either or both were eliminated they took

no further part in the competition. If they were not, the process

continued until a further 200 defections were accumulated and

another dispute was deemed to occur.

Thus, as well as stochastic universal sampling reflecting the

payoffs of players who adopt a particular strategy, our model quite

separately reflected the effects on fitness of elimination as a result

of disputes. In the ‘weapons use’ IPD model, therefore, the

performance of each strategy was a measure of both decisions on

whether to cooperate or defect and also the effects of the number

of defections leading to disputes.

Finally, in all simulations we contrasted the performance of

strategies under the evolutionary IPD model (i.e. without weapons

use) with that under the ‘weapons use’ IPD model to quantify the

impact of weapons use. We were thus able to simulate the relative

impact of weapons use on the fitness of individuals adopting each

strategy in this environment.

Other points
Our population of 40 players lies within the typical size range of

15–50 observed in modern hunter/gatherer groups [36]. Never-

theless we are aware that there is mobility between hunter/

gatherer groups [37] and that therefore a typical hunter/gatherer

would interact with more than 40 individuals over a lifetime.

However, we make the simplifying assumption that transfers in

and out of groups would have had a broadly neutral effect on the

frequency with which each player would encounter the 25 IPD

strategies modelled. This point is reflected in the re-running of

each round 100 times per generation with different combinations

of strategies being encountered in each round.

The ‘weapons use’ IPD model has three key parameters (i.e.

average number of interactions with other players in a generation,

number of defections before a dispute occurs, probability of being

eliminated as a result of a dispute) that, taken together, determine

the fitness of each player. The values chosen, however, were not

arbitrary but based on a population consisting entirely of players

who always defect (AllD) and who are thus at the extreme end of

the continuum of behaviour being examined. Based on the values

selected, in an AllD population there is a probability of p = 0.50 of

being eliminated in an average lifetime (see Supporting Informa-

tion, File S4: The parameters and values used). These values

therefore provide a clear benchmark against which the perfor-

mance of the 25 IPD strategies was calibrated.

Results

The performance of the cooperative and non-cooperative

strategies in our sample is illustrated in Figures 1 and 2

respectively. We found that all cooperative strategies survived,

on average, an additional 5.6 generations under simulated

weapons use (see Table 1), a significant variation (paired samples

t-test: t13 = 3.22; p = 0.003 one-tailed). In contrast, we found that

non-cooperative strategies survived, on average, 8.8 fewer

generations under simulated weapons use (see Table 2), which

was also a significant variation (paired samples t-test: t10 = 7.47;

p = 0.00001 one-tailed).

We were surprised at the success of one strategy in particular -

‘Always Cooperate’ (AllC) - in our simulations. When we

contrasted the performance of AllC with all other cooperative

strategies we found it survived an additional 23.5 generations

under simulated weapons use as opposed to an average of only an

additional 4.2 generations for all other cooperative strategies (see

Table 1). This demonstrated a very significant improvement in

performance (one-sample t-test: t11 = 16.03; p = 5.7*129 one-tailed)

for AllC over all other cooperative strategies in this cultural niche.

Finally, throughout our simulations we have assumed an

elimination rate of p = 0.05. To explore whether variation in the

negative impact of weapons use on fitness might produce different

trends we adjusted the elimination rate by stages from p = 0.00

(without weapons use) to p = 0.25 (or five times the rate used in our

original simulation). To simplify illustration of the key patterns we

averaged the performance of non-cooperative strategies and

contrasted that of AllC with the average for other cooperative

strategies (see Figure 3). We found that for non-cooperative

strategies and for all cooperative strategies other than AllC the

influence of weapons use was most marked between p = 0.00 and

p = 0.05 but thereafter the effect tailed off. In contrast, the

performance of AllC generally continued to improve above

p = 0.05 rather than tailing off. In response to simulated weapons

use, AllC improved from being the least successful cooperative

strategy at p = 0.00 to being the most successful at p = 0.15 and

p = 0.25 (see Table 3).

Discussion

Under simulated weapons use, the performance of cooperative

strategies improved significantly compared with an environment

where weapons use was absent. In contrast, the performance of

non-cooperative strategies declined significantly under simulated

weapons use compared with an environment where this effect was

not modelled. Our hypothesis was therefore supported. The higher

incidence of disputes encountered between non-cooperative

players and the adverse effect this had on individual fitness

appears to explain the patterns found, despite the usual payoffs

from the IPD model.

We believe that these findings have important implications for

understanding how distinctively human cooperation might have

evolved. The traditional IPD model shows how cooperation can

emerge in a world of selfish individuals but our model

demonstrates that, in an environment of widespread weapons

use, this tendency could have been boosted to a substantially

greater degree. The invention of extra-somatic weapons has been

rightly recognized as an important step in human evolution but

this is the first time, as far as we are aware, that its likely indirect

impact on human cooperation has been modelled. We therefore

consider that these findings provide an important new perspective

in helping us to better understand the evolution of human

cooperation.

Weapons and Human Cooperation
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As discussed above, the traditional IPD model and reciprocity

theory have difficulty accounting for the evolutionary puzzle of

‘strong reciprocity’ and other forms of the costly punishment of

‘cheats’. The unexpected success of the ‘Always Cooperate’ (AllC)

strategy in our simulations, we believe, has important implications

for resolving this puzzle. With the traditional IPD model, AllC is

easily exploited and is thus relatively unsuccessful [32]. Under the

evolutionary IPD model (i.e. without simulated weapons use), AllC

proved the least successful of all cooperative strategies (see Table 1).

However, despite the lower payoffs that it usually receives and the

additional burden of fighting defectors with weapons, an AllC

strategy flourished under the ‘weapons use’ IDP model. Its

performance improved substantially more than that of all other

cooperative strategies in an environment of simulated weapons use

(see Table 1) and, from being the poorest performing cooperative

strategy in the absence of weapons use, it became the best

performing when the negative effect of weapons use was increased

to p = 0.15 and p = 0.25 (see Table 3).

We suggest that the unexpected success of an AllC strategy has

important implications for understanding the evolution of ‘strong

reciprocity’. The two distinguishing features of ‘strong reciprocity’

are that (i) it is unconditionally cooperative and (ii) it is prepared to

inflict costly punishment on ‘cheats’ [3], [4]. Under the ‘weapons

use’ evolutionary IPD model, an AllC strategy (i) by definition,

cooperates unconditionally and (ii) becomes involved in disputes

with defecting strategies that involve an equal probability of

elimination from the game. An AllC strategy is therefore

equivalent to one of ‘strong reciprocity’ in this cultural niche.

The fact that, among all the strategies simulated, AllC responded

best to an environment where lethal weapons use was common

(see Figure 3 and Table 3) thus provides a new explanation for the

evolutionary puzzle of ‘strong reciprocity’.

Figure 1. Cooperative strategies: average number of generations survived out of 100 generations (without and with weapons use).
doi:10.1371/journal.pone.0095742.g001

Figure 2. Non-cooperative strategies: average number of generations survived out of 100 generations (without and with weapons
use).
doi:10.1371/journal.pone.0095742.g002
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Our model does not allow players to avoid costly disputes and

thus opt out of their adverse effects on individual fitness as this

reflects a likely key feature of the development of extra-somatic

weapons in human evolution. For, in the resulting environment or

cultural niche, it would scarcely have been possible to ‘disinvent’

such weapons or opt out of their use. Attempted invasion of a

population of weapons users by those who avoided the use of

weapons, and the costs involved, is likely to have resulted in the

death of such individuals at the hands of those in possession of

superior weapons technology. It would not therefore have been

possible to ‘cheat’ by adopting a less costly strategy that avoided

weapons use as doing so would have been likely to have resulted in

extinction.

One argument that could be raised against our hypothesis is

that the development of weapons would have led to variation in

the skills needed for their use and would not therefore have

resulted in the equalization of power within hominin social groups

assumed by our model. We agree that it is likely that differences in

skill in weapons use would have emerged in this cultural niche, as

suggested by the variation in hunting skills observed in modern

hunter/gatherer groups [38]. But this point need not invalidate

our hypothesis. The very swiftness and effectiveness with which

Table 1. Cooperative strategies: average survival time in 100 evolutionary games (for details of strategies see S 2: IPD strategies
employed).

Strategy
Without weapon use
(generations) (p = 0.00)

With weapon use
(generations) (p = 0.05) Change (generations)

AllC 24.26 47.72 23.46

TFT 44.56 48.46 3.90

GRIM 36.84 35.29 21.55

TFTT 41.44 51.05 9.61

Pavlov 28.75 32.96 4.21

GTFT 41.01 52.66 11.65

HTFT 33.76 35.61 1.85

SM 41.62 47.51 5.89

TTFT 36.62 36.54 20.08

CTFT 45.65 47.05 1.40

ATFT 42.72 45.72 3.00

SGRIM 38.96 49.53 10.57

FBF 40.84 44.74 3.90

Gradual 36.36 36.94 0.58

Total 500.03 577.84 78.39

Note: Average change in performance for all strategies is 78.39/14 = 5.6 generations. Average change in performance of all strategies other than ‘Always Cooperate’ is
54.93/13 = 4.2 generations.
doi:10.1371/journal.pone.0095742.t001

Table 2. Non-cooperative strategies: average survival time in 100 evolutionary games (for details of strategies see S 2: IPD
strategies employed).

Strategy
Without weapon use
(generations) (p = 0.00)

With weapon use
(generations) (p = 0.05) Change (generations)

AllD 8.92 3.01 25.91

NP 18.37 6.33 212.04

RP 34.72 17.93 216.79

Adaptive 24.41 10.67 213.74

Prober 8.10 2.93 25.17

STFT 12.97 5.02 27.95

Handshake 13.55 3.58 29.97

Fortress 3 7.90 3.48 24.42

Fortress 4 9.41 3.75 25.66

HM 12.43 4.42 28.01

Rand 12.03 4.57 27.46

Total 162.81 65.69 297.12

Note: Average change in performance is 297.12/11 = 28.8.
doi:10.1371/journal.pone.0095742.t002
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such weapons could have been employed would have made it

relatively easy for any individual to be killed [29]. No one, we

suggest, however skilful in the use of weapons, would have been

immune to the risk of serious injury or death if they defected too

often in interactions with other group members.

Our view is supported by the egalitarian ethos observed in

modern hunter/gatherer societies and the extraordinary extent to

which such societies go to suppress potential causes of violence

[29], [39], [40]. It is also supported by a study of the! Kung where

22 cases of homicide that occurred prior to the introduction of

effective legal sanctions by outside civil authorities were examined

[39]. Many of these homicides appeared to have had random

causes. However, four of these cases of homicide were interpreted

as being sanctioned by the community against individuals with a

propensity for disruption and violence [39] (i.e. those likely to have

consistently defected against other group members). We therefore

conclude that it is likely that selection in this cultural niche would

have acted primarily against poor co-operators rather than those

less skilled in weapons use.

The most important contribution that this study makes,

however, is to suggest a novel alternative to explanations of

altruism and cooperation based on reciprocal altruism [5] and

indirect reciprocity [7], [8]. If the patterns discovered in these

simulations were to have been reflected in human evolution, then

genes associated with cooperation, altruism and ‘strong reciproc-

ity’ are likely to have increased in frequency in ancestral

Figure 3. Effects of variation in the elimination rate on: ‘Always Cooperate’ (AllC), the average for other cooperative strategies and
the average for all non-cooperative strategies.
doi:10.1371/journal.pone.0095742.g003

Table 3. Cooperative strategies: effects of variation in elimination rate on survival rate (for details of strategies see S2: IPD
strategies employed).

Strategy
Without weapon
use (p = 0.00) With weapon use (varying elimination rates expressed by the value of p)

0.05 0.10 0.15 0.20 0.25

AllC 24.26 47.72 49.49 58.39 51.90 54.46

TFT 44.56 48.46 45.71 49.69 42.22 43.95

GRIM 36.84 35.29 28.93 31.92 30.68 29.40

TFTT 41.44 51.05 47.05 49.76 53.73 49.41

Pavlov 28.75 32.96 35.96 35.37 35.43 36.65

GTFT 41.01 52.66 53.15 52.25 51.05 51.36

HTFT 33.76 35.61 32.30 28.68 27.92 28.24

SM 41.62 47.51 41.67 41.94 39.20 40.71

TTFT 36.62 36.54 35.94 32.96 33.70 37.95

CTFT 45.65 47.05 41.37 45.41 44.54 40.14

ATFT 42.72 45.72 41.25 44.49 41.18 41.35

SGRIM 38.96 49.53 52.51 48.47 51.35 49.82

FBF 40.84 44.74 48.12 48.59 47.62 42.26

Gradual 36.36 36.94 34.79 33.35 32.66 31.69

doi:10.1371/journal.pone.0095742.t003
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populations. These selection pressures might even have favoured

genes linked to closely allied behaviours and emotions such as

prosociality, reciprocity, a sense of ‘fairness’, guilt and moralistic

aggression. If so, then genes associated with distinctively human

cooperation towards non-kin would come to be expressed in

modern populations, like those of any other adaptive behavioural

trait, given appropriate stimuli in contemporary environments.

What is being suggested here, therefore, is that distinctively

human cooperative and altruistic behaviour evolved because it was

an adaptive behavioural trait like any other - but in a cultural

niche that no longer exists in the contemporary world (in this case,

due to the development of civil societies and modern legal systems

suppressing widespread weapons use). Another example of a past

environment, no longer evident in the modern world, which might

have favoured genes associated with human cooperation and

altruism, has been examined elsewhere [41].

What could be called the ‘altruism as an adaptive trait in past

environments’ hypothesis can be seen to offer a relatively

parsimonious account of this major evolutionary puzzle. It avoids

the complex and costly monitoring and punishment of the

behaviour of others required by reciprocity theory [9], [42],

[43], [44], [45], [46], [47], [48], [49] because the key determinant

of altruistic behaviour would simply be the frequency of genes

associated with this behaviour across the whole population over

evolutionary time. It also avoids the need for repeated interactions

[5] and reputation effects [7], [8] required by reciprocity theory.

This, of course, has a special relevance to the evidence for ‘strong

reciprocity’ described at the start of this article i.e. the experiment

that demonstrated altruistic behaviour can persist in the form of

altruistic punishment of cheats in one-off, anonymous encounters

where reciprocity and reputation effects are not possible [12]. The

‘altruism as an adaptive trait in past environments’ hypothesis is

therefore capable of resolving this puzzle by demonstrating that

‘strong reciprocity’ could have been a successful adaptation to a

past cultural niche, thus requiring no other mechanism for it to be

expressed in modern populations.

The hypothesis tested in this study is based on the intuitively

simple notion that the invention of extra-somatic weapons would

have made competition far more costly to individual fitness.

Intuition, however, is not the same as rigorous testing of a

hypothesis. What is much less clear or predictable is how the range

of widely contrasting and often complex IPD strategies simulated

in this study would perform in a cultural niche where such a

condition is commonplace. This point is amply illustrated in the

unexpected success of the AllC strategy and the implications which

that success has for understanding the origins of human altruism

and cooperative behaviour. We consider that the resulting patterns

found in this study provide an important new insight into the two

major evolutionary puzzles outlined in the Introduction. The

challenge now is to test this novel hypothesis by using other

methodologies (e.g. a population genetic model) to establish

whether the same effects are replicated.
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