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Abstract

Phase-Contrast MRI (PC-MRI) is a noninvasive technique to measure blood flow. In particular, global but highly quantitative
cerebral blood flow (CBF) measurement using PC-MRI complements several other CBF mapping methods such as arterial
spin labeling and dynamic susceptibility contrast MRI by providing a calibration factor. The ability to estimate blood supply
in physiological units also lays a foundation for assessment of brain metabolic rate. However, a major obstacle before wider
applications of this method is that the slice positioning of the scan, ideally placed perpendicular to the feeding arteries,
requires considerable expertise and can present a burden to the operator. In the present work, we proposed that the
majority of PC-MRI scans can be positioned using an automatic algorithm, leaving only a small fraction of arteries requiring
manual positioning. We implemented and evaluated an algorithm for this purpose based on feature extraction of a survey
angiogram, which is of minimal operator dependence. In a comparative test-retest study with 7 subjects, the blood flow
measurement using this algorithm showed an inter-session coefficient of variation (CoV) of 4:07+3:03%. The Bland-Altman
method showed that the automatic method differs from the manual method by between {8% and 11%, for 95% of the
CBF measurements. This is comparable to the variance in CBF measurement using manually-positioned PC MRI alone. In a
further application of this algorithm to 157 consecutive subjects from typical clinical cohorts, the algorithm provided
successful positioning in 89.7% of the arteries. In 79.6% of the subjects, all four arteries could be planned using the
algorithm. Chi-square tests of independence showed that the success rate was not dependent on the age or gender, but
the patients showed a trend of lower success rate (p = 0.14) compared to healthy controls. In conclusion, this automatic
positioning algorithm could improve the application of PC-MRI in CBF quantification.
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Introduction

Phase-Contrast MRI (PC-MRI) is a noninvasive technique to

visualize blood vessels and measure blood flow velocity. It utilizes

the phase of an image to encode the velocity of flowing spins [1]

and has been validated for angiogram and quantitative flow

measurements [2–4].

One of the major utilities of PC-MRI is to quantify whole-brain

cerebral blood flow (CBF), by measuring and combining flow flux

at the main feeding arteries of the brain [5–10], e.g. left/right

internal carotid arteries (ICA) and left/right vertebral arteries

(VA). Comparing to other neuroimaging methods for the

evaluation of CBF, the most significant advantages of PC-MRI

are its simplicity and accuracy in absolute CBF quantification as

well as the relatively short scan duration. As a result, although PC-

MRI cannot provide spatial information of blood flow distribution,

it has increasingly been used in three major areas of clinic and

research applications. First, the knowledge of CBF, combined with

quantitative evaluation of cerebral arterial and venous oxygena-

tion, provides direct assessment of a highly desirable index,

cerebral metabolic rate of oxygen (CMRO2) [10–15]. Second, it

can be used for the calibration of other qualitative CBF methods

such as Dynamic Susceptibility Contrast (DSC) and Arterial Spin

Labeling (ASL) MRI, in which quantification is traditionally

confounded by factors such as arterial input function or labeling

efficiency [5,6]. Third, with the recent development of simulta-

neous Positron Emission Tomography (PET) and MRI system, the

PET CBF measurement procedures can be simplified considerably

by using PC-MRI to avoid the need of sampling arterial blood

during PET scanning. That is, one can acquire a relative PET

CBF map without arterial sampling and then utilizes global CBF

measured from PC-MRI to obtain a PET-MR ‘‘hybrid’’ CBF map

that is both quantitative and spatially resolved.
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It is therefore important to establish a reliable protocol of PC-

MRI for the accurate quantification of whole brain CBF at the

brain’s feeding arteries. The PC-MRI scans are usually positioned

based on a 3-D time-of-flight (TOF) angiogram of the neck region.

At present, the standard practice is that the operator inspects the

2-D maximum-intensity-projection (MIP) of the 3-D images,

identifies the ICA and VA vessels, and selects a plane that is

perpendicular to target vessel at the entry point of the skull.

However, given large variability in arterial anatomy across

individuals, the slice positioning of the PC-MRI scans requires

considerable training and expertise for the operator and contrib-

utes to measurement noise. Perhaps more importantly, these

requirements place a significant burden and stress on the MR

technologist, which may result in resistance and obstacles when

applying this technique in a broader scope of applications.

In the present work, we aimed to alleviate this practical obstacle

by developing an algorithm that is capable of automatically

planning the PC-MRI scans in the majority of arteries, leaving

only a small fraction that requires manual positioning. The

performance of this automatic positioning algorithm was first

evaluated by a test-retest study, in which the reproducibility was

evaluated by comparing the measurements of whole brain CBF

between repeated sessions. Accuracy was evaluated by comparing

results using the automatic algorithm to those based on manual

positioning by a highly experienced operator. In a second, larger

scale study, we demonstrated the practicality of this automatic

positioning algorithm in 157 subjects over a wide age range, which

provided more accurate information on the success rate, reasons

for failure, and dependence of algorithm performance on age and

gender of the subjects.

Methods

The Automatic Positioning Algorithm
The general goal of PC-MRI for global CBF determination is to

measure the flow flux at the location where the feeding arteries

enter the brain, referred to as foramen magnum in anatomy

literature. Since the brain is supplied exclusively by four arteries,

left/right ICA and left/right VA, we will perform four PC-MRI

scans, with each targeting one specific artery. The automatic

positioning algorithm includes two major steps: 1) identification of

the four brain feeding arteries, left/right ICA and left/right VA,

from the angiogram, and 2) determination of the optimal

positioning for PC-MRI scans (one scan for each artery) based

on the geometric properties of the arteries. Figure 1 illustrates an

ideal case of scan planning following automatic positioning. The

ICA scans were placed at the level of foramen magnum,

perpendicular to the trajectory of the vessels. The VAs, on the

other hand, are known to travel medially and posteriorly at this

location [16], making the trajectory of the vessel unpredictable.

We therefore aimed to place the VA scan planes at a slightly distal

position, between the two turns at the level of cervical vertebra C1

and C2 on its trajectory, where the vessels are straighter. In

addition, algorithmic considerations were made such that the

computation is sufficiently fast to be used in situ during a scan

session.

Identification of brain feeding arteries. We first used the

Otsu’s method [17] to define voxels inside the body V from those

in the air. The Otsu’s method chooses the threshold to minimize

the intraclass variance of the object and background pixels. The

object region V included both the arteries and the surrounding

tissues. Then we used the mean m and the standard deviation s of

the object region to define the threshold for the arteries. Let

T(x)~I(x){m{j:s, ð1Þ

where j is an integer. The artery region consisted the pixels x such

that T(x)§0. Since intensities of the arteries are not homoge-

neous, we started with a high value of j and reduced it gradually to

find the optimal value. We used the length of the arteries in z (F–

H) direction to determine if the segmentation result was

satisfactory. We picked an integer j such that the length of the

arteries in z direction was at least 60% of the scan range in z

direction. This was to ensure that we extract the portion of the

vertebral arteries between the two turns at the levels of the cervical

vertebra C1 and C2. See Figure 2 for an example. The value of j

was determined on a subject-by-subject basis. Note that j should be

chosen such that it is high enough to ensure that static tissue is

excluded while it is low enough to include the arterial vessels. A

search range of 5 to 3 in descending order was used in our

experiments. The upper bound value of 5 was chosen because few

tissue voxels would exceed mean plus 5 times standard deviation.

At this threshold, if all four arteries are detected successfully (i.e.

length greater than or equal to 60% of the FOV along z direction),

then the segmentation step is completed. If not, the threshold is

reduced (by 1) and the lengths of the arteries are evaluated again.

This process is repeated until a minimum of 60% of each artery

was depicted or the j value has reached its lower bound value, 3.

We stopped at a threshold at 3 because, if we lower the threshold

to be less than 3, then static tissue clusters would appear, at which

point we could not distinguish an artery from a tissue cluster.

Therefore, we decided empirically that, if at threshold of 3 we still

could not find an artery, then that artery was too noisy (low

intensity) to be identified.

Figure 1. An ideal case of scan planning. The ICA scans were
placed at the level of foramen magnum, perpendicular to the trajectory
of the vessels. The VA scans were placed in the middle of the two turns
at the level of cervical vertebra C1 and C2 , perpendicular to the
trajectory of the vessels.
doi:10.1371/journal.pone.0095721.g001
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After thesholding, most arteries were segmented out as

connected objects. We were interested in detecting the left/right

ICA and left/right VA. These are the major brain feeding arteries

and were always placed in the center area of the image volume.

We used this information to identify them in the image volume.

We first identified the eight largest connected objects as the

candidates. We then used the middle slice in z direction to find the

four arteries we were interested in (See Figure 3). In the middle

slice, each artery branch was represented by the cross section.

Note that one connected object may have multiple cross sections

because of the existence of branches. We represented each cross

section by its centers. Among the eight connected objects, the VAs

were the furthest in the posterior direction and had no branches.

In addition, left VA was located in the left half of the image and

right VA was located in the right half of the image. After detecting

the VAs, the carotid arteries were identified as the two largest

remaining objects with one in the left half and one in the right half

of the image. Part of the external carotid artery (ECA) was

extracted with the ICA during segmentation since the common

carotid artery bifurcates into an ICA and an ECA. The branch

closest to the center of the image was identified as the ICA.

To extract the skeleton curve of an artery, we reconstructed the

artery surface based on the segmentation, the whole artery was like

a curved tube. We started with one end of the tube, found the

center of the intersection plane, and then used this point as the

source point to calculate the level curves on the surface. The

centers of these level curves formed the skeleton curve represen-

tation of the artery. We extracted the curve representation for both

left VA and right VA.

Determination of the scan positioning. To determine the

scan positioning of VAs, we decided to identify the two turning

points at the level of cervical vertebra C1 and C2 on each VA.

Since the shape of the VA varies substantially, it is difficult to

detect the turning points directly. We first detected a rough

turning points region of VA by comparing the derivative in z

direction of the VA to a corresponding template (left VA derivative

template or right VA derivative template, obtained from the

averaging of ten typical subjects). The matching of the template

and VA derivative was based on cross-correlation. The cross-

correlation cc(k) depended on the offset k between the VA

derivative of the subject and the template.

Let j~fjigN
i~1 be the VA derivative of a subject and

g~fgigM
i~1 be the corresponding template. The cross-correlation

between j and g is

cc(k)~

Pmin (N{k{1,M)
i~0 jizkgi if k § 0,Pmin (N,Mzk{1)
i~0 jigi{k if k v 0,

(
ð2Þ

where 1{MƒkƒN{1. We could identify the best matching by

finding k̂k such that cc(k̂k) was the largest.

Using the positions of the turning points of the template, we

found a rough turning points region of the subject VA. We then

need to find the precise positions of the turning points of the

subject VA. The rough region we got can be segmented into three

subregions by the two turning points. Hence we defined the

turning points as the best dividing points such that the total

variance of the three subregions was minimized. More precisely,

let fjign
i~1 be the VA derivative in the turning point region. Let

jk1
and jk2

be the VA derivatives at the two turning points P1 and

P2. In other words, k1 and k2 are the indices of P1 and P2. Then

fk1,k2g~argmink1,k2

Xk1{1

i~1

(ji{m1)2z
Xk2{1

i~k1

(ji{m2)2

z
Xn

i~k2

(ji{m3)2,

ð3Þ

Figure 2. Identification of the brain feeding arteries from the angiogram. Top left two panels show the maximum intensity projection (MIP)
of the arteries in two planes. Top right panel shows the 3D segmentation results of the carotid arteries and vertebral arteries.
doi:10.1371/journal.pone.0095721.g002

Figure 3. Detection of left and right VAs, left and right ICAs
using the middle slice of the thresholded image volume. The
cross sections from the same object are represented by the same color.
doi:10.1371/journal.pone.0095721.g003
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where

m1~
1

k1{1

Xk1{1

i~1

ji, ð4Þ

m2~
1

k2{k1

Xk2{1

i~k1

ji, ð5Þ

m3~
1

n{k2z1

Xn

i~k2

ji: ð6Þ

The best dividing points (or k1 and k2) could be found by

dynamic programming [18]. The middle point of the two turning

point was selected to place the scan plane.

The template was used to find a rough turning points region of

the subject VA. Once the region was found, the detection of the

turning points would not depend on the template. Hence the

method had some tolerance about the inaccuracy of the template.

However, if the template was not good enough in determining the

region to work with, the method would fail. To test the effect of the

template, a second template was obtained from the averaging of

another ten subjects. Figure 4 shows the turning points detection

results on left VA of a subject using both templates. The regions

found (between the two red bars) based on template matching

were different. However, the turning points detected were the

same.

The angulation of the PC-MRI imaging slice was determined so

that the normal direction of the plane was along the tangent of the

artery skeleton curve, where the tangent vector was determined by

the best fitting line in a small neighborhood. An example of left

VA scan positioning is shown in Figure 5.

To decide the scan positioning of the left ICA, we identified the

intersection point of the left ICA and the horizontal plane passing

through the upper turning point on the left VA. That point was

selected to place the scan plane. The angulation was determined in

the same way as that for VAs. The scan positioning of the right

ICA was decided similarly. Figure 6 shows the automatic PC-MRI

scan positioning results for four subjects.

Evaluation Study
Experiments were performed on a 3-T MR system (Philips

Medical Systems, Best, The Netherlands) using body coil

transmission and head coil reception. The study protocol was

approved by the Institutional Review Board of the University of

Texas Southwestern Medical Center, the University of Texas at

Dallas and the VA North Texas Health Care System. All subjects

gave informed written consent before participation.

An axial 3D TOF angiogram was used to visualize the feeding

arteries of the brain and to provide input to the automatic

positioning algorithm for PC-MRI slices. The top of the

angiogram imaging slab was positioned at the level of the bottom

of pons, with the bottom slice at the level of C4 vertebra. This

allowed the operator to visualize the feeding arteries of the brain

which is necessary for PC-MRI slice positioning. The imaging

parameters of the TOF angiogram were: TR=TE=flip angle~

20 ms=3:45 ms=18o
, FOV~160|160|70:5 mm3, voxel size~

1:0|1:0|1:5 mm3, number of slices = 47, one 60 mm saturation

slab positioned above the imaging slab, scan duration = 1.4 min.

The automatic positioning algorithm was implemented on a

Dell workstation with a 2.4 Hz Intel xeon 6-core CPU processor

(E5645) and 16G RAM. The operator exported the PAR/REC

files of the TOF angiogram from the scanner console, and copied

them to the workstation for processing. Once the algorithm

finished the processing and reported the three off-center and three

angulation parameters for each feeding artery, the operator can

Figure 4. Effects of the template on turning points detection. Top panels show two left VA derivative templates and red stars show the
turning points of the templates. Middle panels show the matching between the left VA derivative of a subject and the two templates. Red vertical
lines show the rough regions of turning points which are determined by padding around the turning points of the templates. Bottom panels show
the regions determined by matching with the templates. Red stars show the turning points detected and red triangles show the position of the scan
plane.
doi:10.1371/journal.pone.0095721.g004
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Figure 5. Determination of the scan positioning of the left VA. Top left panel shows the left VA derivative template, bottom left panel shows
the left VA derivative of a subject. Red stars show the turning points and red triangles show the position of the scan plane. Right panel shows the
positioning in 3D. The blue curve shows the left VA. The green points show the turning points. The red point and the yellow and green lines show the
scan plane.
doi:10.1371/journal.pone.0095721.g005

Figure 6. Illustration of the automatic PC-MRI scan positioning shown on 2D MIP images of the 3D axial TOF angiogram for 4
subjects. The trace of the VAs are shown in red lines and optimal PC-MRI scanning positions of the four major brain feeding arteries are shown in
yellow lines, with artery centers shown as red stars.
doi:10.1371/journal.pone.0095721.g006
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then input these six parameters onto the scanner console to

position the PC-MRI scan of the corresponding artery.

Two studies were performed to evaluate the performance of the

automatic positioning algorithm. Study 1 (N = 7) was a technical

study in which the participants were recruited solely for the

purpose of the present study. Accuracy and reproducibility were

examined. Study 2 (N = 157) was performed to evaluate the

practicality of the proposed procedures, by attaching the

sequences to ongoing studies of real patient cohorts (i.e. not just

highly motivated young controls).

Study 1: a comparative test-retest study between

automatic and manual positioning. The purpose of this

study has two folds: first is to evaluate the accuracy of the whole

brain CBF quantification using PC-MRI with the automatic

positioning by comparing to that positioned by an experienced

operator; second is to evaluate the reproducibility by comparing

the measurements of whole brain CBF between repeated sessions.

Seven young, healthy subjects (4 males, 3 females, 26:4+3:7
years) were examined. Each subjects had two MRI sessions

continuously but with a 5 min break in the middle. The subjects

came out of the scanner room after the first session and were

repositioned for the second session. In each session, the subjects

had the 3D TOF angiogram, four PC-MRI scans manually

positioned by an experienced operator (PL), and four PC-MRI

scans automatically positioned by the algorithm. Each set of the

four PC-MRI scans targeted the four feeding arteries of the brain,

left ICA, right ICA, left VA and right VA, respectively. The order

of manual positioning and automatic positioning was counterbal-

anced across subjects. The operator for manual positioning was

blinded from positioning information given by the automatic

algorithm.

The manual positioning of PC-MRI scans was based on the 2D

MIP images of the 3D axial TOF angiogram, and utilized the

same criteria as those in the automatic positioning algorithm.

Specifically, the PC-MRI slices for ICAs were placed at the level of

foramen magnum, and slices for VAs were placed to be in the

middle between the two turns of VAs at the level of cervical

vertebra C1 and C2. For all PC-MRI scans, the center of the FOV

was placed to overlap with the center of the targeted artery, and

the imaging slices were tilted to be perpendicular to the targeted

artery. Imaging parameters of PC-MRI are: single slice,

voxel size~0:5|0:5|5 mm3, FOV~200|200|5 mm3, max-

imum velocity encoding = 80 cm/s, 4 averages, scan duration of

one PC-MRI scan is 0.5 min.

In addition, a T1-weighted magnetization-prepared rapid

gradient-echo (MPRAGE) image (voxel size~1|1|1 mm3)

was acquired in the first session of each subject to provide an

estimation of the brain volume for the quantification of CBF in the

unit of ml/100 g tissue/min.

Data processing of the PC-MRI followed methods used

previously [10,11]. Briefly, a ROI was manually drawn on the

targeted artery of each PC-MRI scans based on the magnitude

image. The operator was instructed to trace the boundary of the

targeted artery without including adjacent vessels. The phase

signals, i.e. velocity values, within the mask were summed to yield

the blood flux (in ml/min) of each artery. The whole brain CBF (in

ml/100 g/min) was further obtained by normalizing the total flux

of all four arteries to the intracranial mass (in gram), which was

estimated from the high resolution T1-MPRAGE image using the

software FSL (FMRIB Software Library, Oxford University).

For each PC-MRI positioning strategy and for each artery, the

reproducibility index, inter-session Coefficient of Variation (CoV ),

was calculated as follows:

CoV~
jFlux1{Flux2jffiffiffi

2
p

:Mean(Flux1, Flux2)
ð7Þ

where Flux1 and Flux2 represent the measurement #1 and #2

from the two sessions, respectively. Note that the inter-session

CoV is expected to contain repositioning error, PC-MRI

measurement noise, and subject physiologic variation.

Since the center of the FOV of the PC-MRI scans was

attempted to be placed to overlap with the center of the targeted

artery in both manual and automatic positioning, the distance

between the center of the targeted artery on the resulting PC-MRI

images and the center of the image was calculated. The size of the

targeted artery on the resulting PC-MRI images was also recorded

based on the manual boundary tracing.

The agreements between the blood flow values measured by

PC-MRI with automatic positioning and manual positioning were

evaluated with the Bland-Altman method [19,20]. Bland-Altman

method was also used to compare the measurements between the

two sessions. Two-way ANOVA with repeated measures was

performed to compare between the four feeding arteries and

between the two positioning strategies using the averaged blood

flux of the two sessions. The same analyses were performed for

inter-session CoV, artery sizes, and off-center distance of the

targeted artery on PC MRI imaging slice. In all analyses, a

pv0:05 is considered statistically significant.

Study 2: a large-scale application study. For study 2, a

total of 157 subjects (83 males and 74 females) ranging from 13–55

years old were studied, including 71 patients and 86 healthy

controls. Among the 71 patients, 19 have schizophrenia, 18 have

anorexia, 18 have marijuana dependence and 16 have cocaine

dependence. Thus, a total of 628 (157|4) arteries were evaluated

to test whether it is feasible to utilize our algorithm on a routine

basis. Each subject had the identical 3D axial TOF angiogram as

described earlier. The resulting axial images were input to the

automatic positioning algorithm for processing. The failure cases,

including the cases in which the algorithm failed to provide the six

positioning parameters as well as the cases in which the algorithm

output were not correctly targeting the corresponding arteries

were recorded and carefully investigated.

Based on whether the algorithm was successfully providing the

positioning information, the 157 subjects were grouped into three

subsets: all successful group (successfully positioned all four feeding

arteries), one-artery failed group (successfully positioned three of

the four feeding arteries), and all failed group (failed to position all

four arteries, the algorithm would not return positioning

information if less than three arteries were detected.). Given that

arterial size and amount of motion (thereby SNR of the TOF

images) may be dependent on subject age, gender and subject

category (control or patient), the PC-MRI data were evaluated by

the Chi-square test of independence on the contingency tables.

The subjects are grouped into three age groups for this analysis:

13–24 years old (N = 47), 25–40 years old (N = 55) and 41–55

years old (N = 55). A pv0:05 is considered statistically significant.

Results

Study 1
For study 1, all seven subjects successfully completed the two

sessions, and the automatic positioning algorithm successfully

provided positioning information for all arteries. So a total of 28

arteries were measured and each artery was measured twice by the

automatic positioning method and twice by the manual one.

Automatic Positioning of Phase-Contrast MRI
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A two-way ANOVA with repeated measures of arteries (LICA,

RICA, LVA, RVA) and positioning methods (automatic, manual)

on the quantified average flux values of the two sessions was

conducted. The main effect of the positioning strategy was not

significant (p~0:42). Thus, the automatic positioning algorithm

does not create systematic bias in the results, as compared to an

experienced operator. Figure 7a shows a scatter plot of the flux

measurements using the two positioning strategies: automatic

versus manual. Figure 7b shows a scatter plot of the flux

measurements: difference (automatic-manual) versus average of

values measured by the two positioning methods. Figure 7b shows

that the difference between measurements increases as the flux

measurement rises. Hence the logarithmic transformation was

applied to the measurements to remove this relationship.

Figures 7c–f show the Bland-Altman plots using loge transformed

flux measurements for each of the four arteries (LICA, RICA,

LVA and RVA). The geometric mean ratios of LICA, RICA,

LVA and RVA flux values by the automatic and manual methods

are 1.002, 1.025, 1.004 and 1.017 respectively. The automatic

method differs from the manual method by {13%,16%
{11%,18% {17%,21% {17%,25%
RICA, LVA and RVA flux measurements respectively. Bland-

Altman method was also applied to the whole brain CBF

measurements using the two positioning strategies (Figure 8).

The geometric mean ratio of CBF values by the automatic and

manual methods was 1.01. The automatic method differs from the

manual method by between {8% and 11%, for 95% of whole

brain CBF measurements. This is comparable to the variance in

CBF measurement using manually-positioned PC MRI alone,

which is between {10% and 11%. Previous studies have reported

that the CBF variance using Positron Emission Tomography

(PET) is about {17%,17% [21], and that using ASL technique is

about {30%,30%
matic and manual positioning strategies we observed in CBF

measurements is within the limit of current CBF technologies. The

mean whole brain CBF across subjects were 56:22+7:59 ml/

100 g/min and 56:83+8:11 ml/100 g/min from the automatic

positioning and manual positioning of the PC-MRI scans,

respectively. A paired t test between results using the two

positioning methods (automatic vs. manual) was conducted using

the mean CBF values of the two sessions. The effect of the

positioning strategy was not significant (p = 0.42).

The inter-session CoV for the flux measured with automatic

PC-MRI positioning was 4:07+3:03% across all 28 arteries, and

Figure 7. Comparison between the blood flow measurements using the automatic positioning algorithm and using manual
positioning. (a) Scatter plot of the two blood flow measurements: automatic versus manual. Each color represents the data points from one kind of
artery. Each dot represents data from one artery of one subject in one session (n~56). The solid line indicates the line of equality.(b) Scatter plot of
the two blood flow measurements: difference (automatic-manual) versus average of values measured by the two positioning methods. The solid line
indicates the mean difference between two measurements. (c)-(f) Bland-Altman plot comparing the blood flow measurements of each of the four
arteries (LICA, RICA, LVA and RVA) obtained by the two positioning methods after loge transformation (n~7, with 2 replicates for each artery of each
subject). For all the Bland-Altman plots, the solid line indicates the mean difference between two measurements. The dashed lines indicate the 95%
confidence interval.
doi:10.1371/journal.pone.0095721.g007
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that measured with manual positioning by an experience operator

was 5:25+2:93%. A two-way ANOVA with repeated measures of

arteries (LICA, RICA, LVA, RVA) and positioning methods

(automatic, manual) on inter-session CoV was conducted. The

main effect of positioning strategy was not significant (p~0:34). It

can be seen that the inter-session CoV , which includes the

repositioning noise, the measurement noise, and subject physio-

logic fluctuations, is considered low for the automatic positioning,

suggesting high reliability of the automatic positioning algorithm

used.

Location of the target artery relative to the center of the PC-

MRI image was examined. The off-center distance was

1:06+0:62 mm when using the automatic positioning algorithm

and 1:64+1:19 mm when using manual positioning. A two-way

ANOVA with repeated measures of arteries (LICA, RICA, LVA,

RVA) and positioning methods (automatic, manual) on mean off-

center distance of the two sessions was conducted. The positioning

method has a trend of significant effect with p = 0.089. A two-way

ANOVA with repeated measures of arteries (LICA, RICA, LVA,

RVA) and positioning methods (automatic, manual) was also

conducted on the estimated size (in mm2) of the arteries from the

acquired PC-MRI images. The main effect of the positioning

strategy was not significant (p~0:39).

Study 2
For study 2, the automatic positioning algorithm was applied to

a separate group of 157 subjects. The average processing time of

the algorithm was 93:36+26:65 seconds, ranging from 30:42
seconds to 178:72 seconds.

As shown in Table 1, in 125 subjects, the algorithm successfully

provided information on all four arteries with a subject-based

successful rate of 79:6%. For the rest, the algorithm failed to

provide any information in 11 subjects. In another 20 subjects, the

algorithm successfully provided positioning information for three

arteries but one. There was one subject for whom the algorithm

provided wrong positioning information for one artery. Therefore,

out of a maximum of 628 (i.e. 157|4) arteries, the algorithm

successfully provided the positioning information for 563 arteries,

equivalent to a success rate of 89:7%. Since the operator had to

position PC scans on the failed arteries manually, this indicates

that the operator’s work load was reduced by 89.7%.

Further investigation showed that, the 11 subjects, for whom the

automatic positioning algorithm failed for all four arteries, can be

separated into two types: 1) the quality of angiogram was bad due

to subject motion (n~8). As a result, the algorithm failed at the

segmentation step due to low contrast to noise ratio. 2) both the

left VA and right VA are small in the subjects, consequently the

algorithm aborted as designed when it failed to identify at least

three arteries (n~3). In the 20 subjects for whom the algorithm

only provided positioning information for three arteries, the one

artery that failed to be identified always appeared thin in the

angiogram, and it was always one of the VAs which typically has

smaller size than the ICAs. For the one artery that the algorithm

provided wrong information, it was because the algorithm falsely

identified the right ECA as right ICA.

We would like to know if the age, gender and subject category

(control/patient) affect the algorithm performance. Since the

algorithm performance values in this study take ordered discrete

values (0, all successful, 1, one-artery failed, 2, all failed), analysis-

of-variance (ANOVA) can not be applied. We use the Chi-square

test of independence on the contingency table. The subjects were

grouped into three age groups (13–24 years old,15–40 years

old,41–55 years old). The Chi-square test showed no significant

effect of age (p~0:32) and gender (p~0:82) (Table 1). There were

more patients than control subjects in the all failed group, but the

effect of subject category was not significant (p~0:14).

Discussion

The present study proposed a novel automatic algorithm for the

positioning of PC-MRI at the feeding arteries of the brain. The

algorithm takes a 3D TOF angiogram dataset as input, and

generates six positioning parameters for each of the feeding artery

as output, which can then be directly typed in the MRI user

interface to define the imaging slice location and angulation of the

PC-MRI scans. The comparative test-retest study showed that the

PC-MRI measured blood flow using the automatic positioning

algorithm is precise (inter-session CoV~4%) and consistent with

that measured with manual positioning by an experienced

operator (p~0:34). Further application of this algorithm in 157

consecutive participants demonstrated that it is feasible to utilize

the proposed procedure in typical clinical populations.

PC-MRI, as a noninvasive technique to measure blood flow

accurately and rapidly, has been commonly used in clinic and

research to quantify whole brain CBF [7–9]. It has also been

utilized to normalize other regional CBF methods such as ASL

and DSC-MRI [5,6,10]. Some studies used a single PC-MRI slice

at the level of cervical vertebrae C3 to measure the brain’s four

feeding arteries, where all four arteries (left/right ICA, left/right

VA) were parallel to each other [5,6]. While this position allows

Table 1. Subject information in groups and the p values of the Chi-square tests of independence.

Performance Groups Chi-square test of Independence

All
successful

One-artery
failed

All
failed p value

Total number of subjects 157 125 21 11 –

Age 13–24 38 5 4Age groups

Age 25–40 47 7 1

0.32

Age 41–55 40 9 6

Gender Male 66 12 5 0.82

Female 59 9 6

Category Control 71 10 3 0.14

Patient 54 11 8

doi:10.1371/journal.pone.0095721.t001
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the arteries to be ‘‘captured’’ in one PC scan, it could introduce

bias caused by complications such as arterial branching outside of

brain, lower gradient strength as away from iso-center of the

scanner, and late branching of common carotid artery which

would result in the inclusion of blood from external carotid artery.

Therefore, it has been suggested to acquire PC-MRI at a higher

location immediately adjacent to foramen magnum using four

separate scans in order to achieve more accurate quantification of

whole brain CBF [11]. However, such positioning of PC-MRI is

not trivial due to large variability in arterial trajectory across

individuals. There has been no available tool to assist the slice

positioning of PC-MRI scans, thus considerable training and

experience are needed for the operators. Our automatic position-

ing algorithm was designed to mitigate this problem by making the

PC-MRI measured CBF minimal operator dependent.

Our results showed that, the inter-session CoV of blood flow

measurement using the proposed automatic positioning algorithm

was comparable to, if not better than that obtained with manual

positioning by an experienced operator. The resulting blood flow

quantification was also consistent between the automatic and

manual positioning (Figures 7, 8). We note that the increase of

difference between the two positioning methods at larger blood

flow is due to the increase of physiologic noise associated with

larger blood flow. These results suggested that our PC-MRI

automatic positioning algorithm could achieve reliable blood flow

measurements without special needs in the operators’ skills and

experience. This feature would make this algorithm optimal for

test-retest studies and multi-center studies, as the operator-related

variation could be minimized.

The efficacy of the proposed automatic positioning algorithm

was evaluated in a large scale study with 157 subjects. The subjects

population includes wide age range, both gender, and both healthy

controls and patients. The patients included had no known

vascular diseases. The algorithm takes an average of 93:36+26:65
seconds to execute, with an artery-based success rate of about

90%. The failure of the algorithm is mainly caused by the vertebral

arteries being too small (on one side or on both sides), and the

quality of 3D TOF angiogram being poor due to subject’s motion.

Although the subject’s age and gender might affect the quality of

the TOF angiogram due to their effect on blood flow velocity

[23,24], the results of the large scale study suggested that they have

no apparent effect on the performance of the algorithm. However,

the patients (with either schizophrenia, drug addiction, or

anorexia) tend to have more motions that made the algorithm

completely fail for all arteries although the effect is not significant

(p~0:14). Although further improvement is needed, these results

showed that the proposed automatic positioning algorithm could

be utilized in a broad range of studies.

Multilevel threshold based segmentation method is used to

identify the four brain feeding arteries because this kind of method

is usually fast, and the automatic positioning algorithm needs to be

fast enough to be used during a scan session. The successful rate of

the automatic positional algorithm heavily depends on the

segmentation step. To improve the successful rate, further

investigation of fast artery segmentation method is needed,

especially in the cases of thin vertebral arteries and apparent

subject motions. Another limitation of the current algorithm is the

requirement of a minimum of three detectable arteries in order for

the algorithm to generate the positioning outputs. This require-

ment was placed in the algorithm because at least one VA is

needed to determine the z-coordinate of the foramen magnum.

However, this constraint precluded the algorithm from being

applied to individuals in whom both sides of the vertebral arteries

are small in caliber.

A practical limitation is that, at present, the algorithm script is

being performed on a dedicated workstation (different from the

scanner console). As a result, the workflow of the procedure is that

the operator needs to export the 3D TOF data and transport them

to the workstation for processing, and then type in the algorithm

output back into the scanner console. We are working with our

MRI vendor to implement the algorithm on the scanner console

and the output of the algorithm will be directly imported to the

scanning software, which will further improve the practicality and

workflow of the proposed procedure.

Conclusions

We have proposed an automatic positioning algorithm for the

placement of PC-MRI scans in the estimation of global CBF. The

algorithm is shown to be capable of producing precise and

Figure 8. Comparison between the whole brain blood flow measurements using the automatic positioning algorithm and using
manual positioning. (a) Bland-Altman plot comparing the whole brain cerebral blood flow measurements obtained by the two positioning
methods after loge transformation (n~7, with 2 replicates for each subject). (b) Bland-Altman plot comparing two whole brain cerebral blood flow
measurements obtained by the manual positioning method after loge transformation (n~7). For all the Bland-Altman plots, the solid line indicates
the mean difference between two measurements. The dashed lines indicate the 95% confidence interval.
doi:10.1371/journal.pone.0095721.g008
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accurate scanning guidance compared to manual positioning by

an experienced operator. Further application of the algorithm

demonstrated the feasibility of utilizing this procedure in typical

clinical populations. Although further improvement is needed, this

automatic positioning algorithm would improve the application of

PC-MRI in CBF quantification.
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