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Abstract

Wheezing is one of the most common respiratory symptoms in preschool children under six years old. Currently, no tests
are available that predict at early stage who will develop asthma and who will be a transient wheezer. Diagnostic tests of
asthma are reliable in adults but the same tests are difficult to use in children, because they are invasive and require active
cooperation of the patient. A non-invasive alternative is needed for children. Volatile Organic Compounds (VOCs) excreted
in breath could yield such non-invasive and patient-friendly diagnostic. The aim of this study was to identify VOCs in the
breath of preschool children (inclusion at age 2–4 years) that indicate preclinical asthma. For that purpose we analyzed the
total array of exhaled VOCs with Gas Chromatography time of flight Mass Spectrometry of 252 children between 2 and 6
years of age. Breath samples were collected at multiple time points of each child. Each breath-o-gram contained between
300 and 500 VOCs; in total 3256 different compounds were identified across all samples. Using two multivariate methods,
Random Forests and dissimilarity Partial Least Squares Discriminant Analysis, we were able to select a set of 17 VOCs which
discriminated preschool asthmatic children from transient wheezing children. The correct prediction rate was equal to 80%
in an independent test set. These VOCs are related to oxidative stress caused by inflammation in the lungs and
consequently lipid peroxidation. In conclusion, we showed that VOCs in the exhaled breath predict the subsequent
development of asthma which might guide early treatment.
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Introduction

During the few last decades biomarker discovery has become a

significant area in biomedical research. It focused on delivery of

diagnostic tools for accurate assessment when a healthy state

becomes dysfunctional at the earliest stage possible. The conjunc-

tion of advanced spectroscopy with multivariate analysis allows the

detailed breakdown of the molecular composition of biofluids, cells

and/or tissues [1]. Multivariate analysis enables extraction of the

information of interest from numerically large and complex

biological data. Breathomics or the analysis of the exhaled breath

is used less as a biological medium for metabolomics testing then

biofluids [2,3]. Similarly to other types of biological samples,

exhaled breath can be used to define biomarkers (or breath prints)

related to abnormal health status in humans. The metabolites

detected in exhaled breath originate from normal and deviant (for

instance inflammatory) metabolic processes occurring in the body

[4,5]. These processes produce volatile products, Volatile Organic

Compounds (VOCs), which are first released into the blood and

ultimately in the lungs into exhaled breath. Many degenerative

diseases are related to a form of chronic inflammation and/or

oxidative stress that leads to the excretion of specific volatile

compounds [3,6]. Several applications of breathomics have been

demonstrated for monitoring and diagnosing diseases, such as

asthma [7,8], lung cancer [9], chronic obstructive pulmonary

disease [10–12], cystic fibrosis [13,14], inflammatory bowel disease

[15] and non-alcoholic steatohepatitis [16].

We propose in this paper to use breathomics for the early

diagnosis of asthma. This disease involves inflammatory processes

and therefore is a suitable target for breathomics. Asthma is the

most common chronic illness in childhood and is defined as a

chronic condition with symptoms of wheezing, cough and

difficulties in breathing [17,18]. Though worldwide around 30%

of preschool children have at least one asthmatic symptom such as

coughing, wheezing and dyspnea [18], only one third will develop

asthma at later in life. The remaining group of children will have

transient symptoms, also called viral wheeze [19,20]. Nevertheless,

in preschool children, wheeze is a respiratory symptom which is

very often a reason for consulting a physician. The etiology of

preschool wheeze is complex and its development is a combination
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between genetic predisposition and environmental factors like

allergens, passive smoking, pollution and infections [21].

Diagnosing asthma in preschool children is very challenging.

Several tests can support the diagnosis of asthma, such as

spirometry, bronchoprovocation and sputum induction [22].

However, these tests are very difficult to perform with preschool

children due to their invasiveness and to the necessity of active

cooperation [23,24]. Therefore, it is currently impossible to

reliably predict what percentage of wheezing children will develop

asthma. Trustworthy diagnosis of asthma is only possible around

the age of six [25]. Thus identification of preschool children

developing asthma remains a challenge. Early diagnosis of asthma

in preschool children might improve specific therapies or justify

secondary prevention interventions [26]. The application of

breathomics seems well indicated here because of its noninvasive

nature and the great potential of applications in disease diagnosis

and monitoring [3]. Therefore the aim of the current study is to

investigate whether breath VOCs profiles are capable of

discriminating preschool children with asthma from transient

wheezing early after onset of wheezing. For that purpose Gas

Chromatography coupled with time-of-flight Mass Spectrometry

(GC-tof-MS) [12,27–29] in combination with multivariate analysis,

namely Random Forests (RF) [30] and dissimilarity Partial Least

Squares Discriminant Analysis (d-PLS-DA) [31], were used to

identify large number of VOCs. This database of VOCs was used

to search for classifying predictors. To our knowledge this is the

first study in which VOCs profiling is used to predict asthma in

preschool children.

Materials and Methods

Study design and asthma diagnosis
The study population consists of children from the ‘‘Asthma

DEtection and Monitoring’’ (ADEM) study (registered at clinical-

trial.gov: NCT 00422747) that started in the Netherlands

(Maastricht). The Ethics Committee of Maastricht University

approved the study protocol. Moreover all parents gave written,

informed consent. The aim of this study is to develop a non-

invasive instrument for an early asthma diagnosis by using

biomarkers of airway inflammation in exhaled breath. The

complete design of the ADEM study including the patient

recruitment, primary hypotheses and power calculations has been

published before [32]. Briefly, children between the age of 2–3

years old were selected based on respiratory symptoms, with

inclusion criterion requiring at least 2–3 episodes of wheezes

during child’s life (based on parents-completed International Study

of Asthma and Allergies in Childhood (ISAAC) questionnaire).

Additionally a control group was obtained of children aged 2–3

years without any episodes of wheeze and other recurrent

respiratory symptoms during their life (also based on parents-

completed ISAAC questionnaire). Exclusion criteria were: mental

retardation, cardiac anomalies, congenital malformations, other

diseases of the lungs/airways, Crohn’s disease or rheumatic

arthritis, and the inability to perform lung function measurements

or exhaled breath collection. After written informed consent,

children and parents were invited for a visit to the lung function

laboratory. The lung function assistant and/or research physician

further evaluates appropriateness for participation. A question-

naire including information on demographic data, medical history

of the child, family history, day-care attendance, housing,

prescribed drug therapy, exposure to pets, and passive smoking

was completed. In the ADEM study children were followed

prospectively until the age of 6 years. In the study in total 252

children were encompassed. From these children 202 individuals

with recurrent wheezing symptoms were selected and 50 healthy

controls without wheezing episodes until inclusion [33]. At the age

of six years children who participated in the study were classified

as healthy, transient wheezers or true asthmatic by an experienced

pediatric pulmonologist and a computer algorithm based on status

at inclusion (healthy control or transient wheezers), symptoms,

lung function and used medication. A detailed description of final

diagnosis of asthma in ADEM study can be found elsewhere [34].

Note that at age of six years one child, who was at inclusion

selected as healthy, was classified as asthmatic. Moreover from the

set of 202 children, 6 of them remained unclassified in term of

diagnosis.

Over these years each child delivered 3–7 breath samples.

Table 1 shows the overview of clinical characteristics and number

of breath samples and individuals used in the study. Different

measurements of the lung function were performed both at

inclusion and age 6 (see Table 1). Significant differences (p,0.05)

in lung function (FEV1/FVC at age 6) were only observed

between healthy and asthma as well as between healthy and

transient wheezers. Eczema was more frequent in transient

wheezers and asthmatic children compared to healthy. There

were no differences in age or gender between studied groups.

Sampling and measurements
The subjects involved in the study breathed through a facemask

connected to a valve of a resistance-free 1L plastic bag (Tedlar

bag, SKC Ltd, Dorset, UK). One hour before sampling, eating

and exercise were not allowed. The use of inhaled corticosteroids

was stopped four weeks before the measurements except in 7

patients due to severe asthma symptoms. Children participated in

the study were sampled randomly without division on healthy

controls and children with wheezing. All samples from subjects

taking part in this study were collected in the same room in order

to prevent the appearance of a background bias. The plastic bags

were emptied via pump with constant flow over a stainless-steel

two-bed sorption tube, filled with carbograph 1TD/Carbopack X

(Markes International, Llantrisant, Wales, UK) within 1 h after

collection. The air-tight capped tubes were kept at room

temperature until analysis (in average for three weeks). The

capped tubes can be kept at room temperature up to six months

without significant changes of VOCs profile. The bags were

cleaned by filling and empting 2 times with nitrogen and reused

for next measurements. In this study 1L of mixed breath (end-tidal

and dead space air) was collected. Dead-space air comprises only a

small part (30 ml) of the total sample of exhaled air collected and

we have shown that the contribution of dead-space air to the total

volume of whole breath does not lead to sensitivity issues in

measuring VOCs by GC-tof-MS [28].

The exhaled air samples were measured by means of GC-tof-MS

[35]. All collected samples were measured randomly, i.e. the batch

of 26 samples a random set of breath samples obtained from

healthy controls and children with wheezing. The GC-tof-MS

method applied here is a non-targeted GC-tof-MS method, i.e. no

prior identification of the compounds was performed. All

chromatographic conditions were optimized by us previously

[28] and consequently in consultation with the producer of our

instrument and based on common chromatographic experience

we chose a column and the temperature programming that were

suitable to detect many different classes of volatile compounds and

at the same time keep the best possible separation of the

compounds at a high sensitivity and a high dynamic range. The

detailed parameters of GC-tof-MS measurements are listed in

Table 2.

VOCs As a Diagnostic Tool in Asthma
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Data preprocessing
The conceptual flowchart presenting the approach including the

data preprocessing and data analysis used in our study is presented

in Figure 1. The first step in the approach consists of the

preprocessing of raw output data from GC-tof-MS. This phase is

particularly important, because it has influence on all subsequent

steps. Data preprocessing techniques usually can improve the

quality of the data, thereby helping to make the accuracy and

efficiency of the subsequent data analysis process better. All data

preprocessing steps were performed in Matlab version R2013a.

First of all, the beginning and end of each chromatogram

(retention index in minutes either ,1.3 or .23 min) were

removed because of noisy mass spectra at the beginning of the

chromatograms and column bleeding at the end of each run. The

next step consists of noise removal and baseline correction

(removing chromatographic background). Denoising was per-

formed by means of wavelets transformation (with Daubechies

wavelet and two levels of compressions by wavelet toolbox, Matlab

2013a) [36]. In the following step the background was corrected

via P-splines with smoothing parameter a of 108 and penalty of 0.1

[37]. In order to apply multivariate analysis the chromatographic

drifting due to column ageing, temperature differences and

different sample composition has to be corrected. Retention times

of all samples were corrected by Correlation Optimized Warping

(COW) using segment length of 20 and degree of warping in

segment length of 7 [38]. The algorithm for COW is available in

[39]. Total ion current (TIC) chromatograms were progressively

aligned using segmental linear compression and/or stretching in

order to maximize the correlation to a reference chromatogram.

For each peak in TIC chromatogram the area under the peak is

calculated. Note that these areas are proportional to relative

amount of measured compounds. The absolute concentrations of

the compounds were not determined. Next, the peak areas and the

corresponding mass spectra are compared for all samples. In order

to merge the same compounds along all available samples the

similarity (based on correlation) between mass spectra is calculat-

ed. To make the spectra comparable the final step of preprocessing

involved normalization to total area. For Random Forest (RF) [30]

models the data were not scaled, while before dissimilarity Partial

Least Squares Discriminant Analysis (d-PLS-DA) [31] model rank

transformation was applied to the data. RF and d-PLS-DA were

performed in Matlab R2013a (Statistics Toolbox) and in-house

written function.

The example of four breathograms before and after prepro-

cessing is shown in Figure S1.

Explorative and supervised analysis
In step 2 of our approach the explorative analysis by means of

robust-Principal Component Analysis (r-PCA) [40] and PCA was

first used to control the presence of outliers and to find eventual

trends and groupings in the data. The strategy for supervised data

analysis involved first (step 3) dividing data into a training set (80%

of samples per class) and an independent test set (20% of samples

per class) by using the Duplex algorithm [41]. The training set was

used for optimization steps (i.e. variable selection and selecting

model complexity) and for developing a classification model, here

RF [30] and d-PLS-DA [31]. The test set was subsequently used to

validate the constructed model. In case of RF model an extra

validation is employed using so called out-of-bag (oob) error. For

each RF tree one-third of the training samples were left out and

not used in the construction of the classification model.

RF analysis
The VOCs data of our ADEM study contain three main classes:

healthy controls, transient wheezing and asthma. In step 4 of our

approach, two RF models were constructed, each based on 1000

trees. First the classification algorithm was applied on data

containing all samples belonging to healthy controls and asthma to

find VOCs related to abnormal status occurring in the lungs. The

second model was constructed on data containing all transient

wheezers and asthmatic children with the purpose to find

compounds related solely to asthma. Compound importance is

found by permuting the values of each variable in the oob cases

and predicting the values of these samples [30]. By randomly

permuting the values in the predictor variable ‘‘i’’, the association

with the class vector is lost. When the prediction accuracy for the

cases in oob decreases significantly in comparison with non-

permuted variables values, it indicates a strong relation of the

predictor variable ‘‘i’’ with the response (i.e. classes). The

difference in prediction accuracy before and after permuting the

values of variable ‘‘i’’, averaged over all trees, is a measure of

Table 1. Clinical characteristics of the children involved in the study subdivided in healthy, transient wheezers and asthma at age
6.

Healthy Transient wheezers Asthma

Total number of breath samples 185 546 343

Number of individuals at inclusion 49 121 76

Number of individuals at age 6 49 121 76

Age of inclusion (mean 6 std) 3.360. 5 3.360.65 3.160.7

Male/Female 24/25 62/59 45/31

FEV1* at age 6 (in ml; mean 6 std) 185662111 189562164 172061963

FEV1/FVC** at age 6 (mean 6 std) 90.565.8 88.266.9 86.267.3

Eczema at inclusion (in %) 22% 34% 46%

Eczema at age 6 (in %) 22% 37% 47%

MicroRint*** at inclusion (in kPa*s*L21) 1.4560.38 1.4560.35 1.5560.37

* Forced expiratory volume in 1 second in spirometry;
** Tiffeneau-Pinelli index: the proportion of a person’s forced vital capacity in the first second of expiration;
*** a test to measure airway resistance.
doi:10.1371/journal.pone.0095668.t001
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variable importance. The higher the number, the more important

the predictor variable ‘‘i’’ is.

Each model was validated in step 5 by means of oob error

estimate and separately by the independent test set. It ought to be

mentioned that validation is a crucial step of any supervised

algorithm [42–44]. A classification model is considered statistically

valid if it shows good prediction ability on an independent test set.

Two types of predictions for independent test set were calculated.

The first one did not account for multiple measurements per

subject. The second type called subject-level classification rate, was

obtained on individual level by majority votes. The subject

classification was calculated as the class with the maximum

number of votes across all measurements for the subject. The tie

was treated as undefined class. In step 6 proximities for each RF

model were obtained. The proximities originally formed an n6n

matrix (where n is a number of samples). After each tree was

constructed, all of the data were put down the tree. If two samples

ended in the same terminal node their proximity was increased by

one. The final proximity was normalized by dividing by the

number of constructed trees. Proximity can be compared to

similarity matrix, thus the higher the number, the more similar the

samples are. In other words it represents similarity scores

computed between two samples. Combination of the two

classification models (step 7 in Figure 1) allows visualization of

the differences between healthy controls, transient wheezers and

asthmatics. For that purpose proximities of both RF models

(healthy vs. asthma and transient wheezer vs. asthma) were used

and PCA was performed on them. By using loadings obtained

from each PCA model it is possible to project the remaining

samples (i.e. the ones not used in the RF model) into the PCA

score plot (here the first two PCs). In this way for each sample new

scores were obtained [45]. By combining these new scores it is

then possible to visualize relation between all samples used in the

study (step 7 in Figure 1).

D-PLS-DA analysis of transient wheezers and asthmatic
children at the early age

The main goal of the paper is to demonstrate the feasibility of

VOCs profiling to differentiate early stage of asthma from

transient wheeze in preschool children. Therefore, in order to

represent only the differences in VOCs profile between asthma

and transient wheeze at the day of inclusion and to corroborate the

results found by RF, d-PLS-DA was constructed using compounds

selected by the previous two RF models. D-PLS-DA is a variation

of PLS-DA, where the original data are first transformed into

dissimilarity measure. In d-PLS-DA a linear model is then

constructed according to equation 1:

y~Dbzr ð1Þ

where, D is a dissimilarity matrix, y is a vector of group

memberships, b is a vector of regression coefficient, and r is a

vector of model residuals.

The Euclidean distance was selected as the dissimilarity measure

[31]. A crucial step in a PLS model construction is the selection of

the optimal number of latent variables (LVs) (so called model

complexity). Usually, this is done by using the cross-validation

(CV) procedure. Here leave-one-out CV was applied. In this

approach during an iterative process one sample from training set

is left out at each step, while the remaining samples are then used

to build d-PLS-DA models using different number of LVs. For

each sample that is removed, the average prediction errors are

obtained. They express the performance of the classification model

with respect to the number of LVs. The optimal number of LVs

was selected based on the minimal error of the root mean square

error of cross-validation (RMSECV).

Results

Data
In total 1124 GC-MS spectra were measured of which 50 were

removed due to poor quality of the recorded spectra. The final

1074 breath-o-grams were preprocessed as described in Materials

and Methods and the resulting data matrix contained 3256

variables (peaks representing individual VOCs). The data set has a

lot of zeros, since not each compound is present in each breath

sample (typically 300–500 compounds are measured per breath

sample). To reduce the number of zeros present, the following

procedure was applied, which will be referred here as the ‘‘20%

rule’’. A variable is kept if it has a nonzero value for at least 20% of

samples in at least one of the experimental groups. After the 20%

rule, the final data matrix contains 527 variables.

Explorative and supervised analysis
After pre-processing, the explorative analysis was performed by

means of r-PCA and PCA. Since each individual delivered several

breath samples (from 3 to 7), inter-individual variation may

obscure the information of interest. The 1074 breathograms are

not independent measurements. Having multiple measurements

for each individual was addressed in selecting the training and test

set samples. The test set contained always all measurements

belonging to the same subject. Thus the RF classification model

was never trained on part of measurements of the same subject

and test on the remaining measurements of the same subject.

Moreover, to diminish the influence of inter-individual variation

centering per individual was performed. This allows converting all

the relative compound concentrations to fluctuations around zero

for each individual instead of around the population mean. In

other words biological mean for each individual is set to zero.

Initially, r-PCA was applied to the mean centered breath-o-grams

of 1074 samples, to check for outliers. No outliers were detected.

As can been seen in the PCA score plot of all breath-o-grams no

clear groupings are observed since the samples from all three

groups overlap (Figure 2A). This indicates that the majority of the

Table 2. GC-tof-MS measurements and used parameters.

Step Description Parameters used

1 Desorption of the tubes 10 min under a flow of Helium (50 ml/min); Temp:350uC

2 Injection of the sample onto GC column Carrier gas: helliom (1.5 ml/min); Temp.: 40uC for 5 minutes then increased by 10uC until 270uC

3 Mass spectrometer scanning 35–350 AMU (5scans/second)

doi:10.1371/journal.pone.0095668.t002
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variance in the data does not correspond to the available groups. It

is important to mention that further PC’s did not show groupings

either. This observation justifies the use of supervised analysis.

RF analysis
In our study we have three groups (healthy, transient wheezing,

true asthma) and although RF can be used for more than two

classes, we decided to split the classification into two separate

models. This approach gives simpler interpretations of the

outcomes, since it focuses on one particular aspect at a time. In

the RF model of healthy vs. asthma the studied aspect is for

instance inflammation in the lungs, which is a common feature of

asthma and transient wheeze. In the second RF model, i.e.

transient wheezers vs. asthma, the features are directly related to

either asthma or wheezing.

The comparison between healthy and asthma has been

performed in order to find the compounds that represent deviant

processes in the lungs. This model leads to a set of 12 compounds

that allows differentiating healthy and asthma. The overall

prediction for the independent test set was 77.1% with correct

classification rate for asthma and healthy equal to 74.6% and

81.5%, respectively. The subject-level correct prediction for

asthma and healthy was equal to 73.2% and 82.3%, respectively,

In Figure 2B the Receiver Operating Characteristic (ROC) curve

is shown for the independent test set. This ROC curve and the

area under the curve (85.8%) indicate that healthy individuals and

asthma group are quite well separated and the RF model has a

good model performance.

In the second RF model we compared children suffering from

asthma and transient wheezers. This model had relatively good

performance with the overall correct classification for the test set of

70.9%. The correct prediction for the test set for asthma and

transient wheezes was correspondingly equal to 71.4% and 70.1%.

The subject-level correct classification for transient wheezers and

asthma reached 73.3% and 72.1%, respectively. The ROC curve

for the independent test set is shown in Figure 2C. The RF model

yields 12 compounds capable to discriminate asthma and transient

wheezers.

Combining PCA score plots of proximities
As indicated in the Materials and Methods section, proximities

obtained from RF models give the possibility to study groupings

and trends in the data. The higher the proximity is between two

samples, the greater the similarity. For RF model 1 (healthy vs.

asthma) and RF model 2 (transient wheezers vs. asthma)

proximities were calculated and next PCA was performed on

these proximities matrices. The projection of remaining samples

(i.e. not used in RF model) into PCA plane enables creating for

each sample a set of new scores. Since the two first PCs describe

the largest amount of variance (here around 50%), for each sample

4 new scores are created (two scores from each PCA model).

Projecting the samples into PCA performed on proximities of RF

models for groups transient wheezers and asthma resulted in score

1 and score 2, while for groups healthy and asthma in score 3 and

score 4. The combination of score 1, score 2 and score 3 represents

the relation between the groups and their separation. The

corresponding graph for all 1074 breath samples is shown in

Figure 3A. As can be seen the three studied groups are separated

using these three scores. The overlaps observed between samples

belonging to healthy and transient wheezers as well as between

Figure 1. Flowchart of the different steps in data preprocessing and analysis. In step 7 model 1 corresponds to RF analysis of groups
healthy and asthma, while model 2 to RF analysis of groups transient wheezers and asthma.
doi:10.1371/journal.pone.0095668.g001
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asthma and transient wheezers indicate the partial similarity in

VOCs profile of these groups. Interestingly there is clear

separation between samples related to healthy and asthma groups.

It ought to be mentioned that Figure 3A shows all breath samples

collected from children at 2 to 4 years old and followed

prospectively until the age of 6 years. However, it is possible to

focus only on breath samples collected from children at the early

age (i.e. inclusion at age 2–4 years) and at day of definitive

diagnosis (i.e. age 6 years), and to visualize the possible separation

and relation between groups. Figure 3B presents only the breath

samples collected from children at the early age (i.e. inclusion at

age 2–4 years old). As can be observed the separation between

asthma and transient wheezers groups is achieved. The fractional

overlap between the groups of healthy and transient wheezers

indicates similarities in VOCs profile at early age of 2–4 years. It is

worthwhile to point out that the asthmatic and transient wheeze

samples are well separated mostly along score 3. In Figure 3C the

visualization of individuals sampled at age 6 years (day of final

diagnosis) is demonstrated. Similarly to the previous two figures

the best separation exists between asthma and healthy groups.

Nevertheless, the asthmatic and transient wheezing samples create

two separate clouds of points.

D-PLS-DA model of asthmatic and transient wheezers at
inclusion

To further confirm the outcomes obtained from RF models we

used d-PLS-DA as a corroborative technique to demonstrate the

differences between asthma group and transient wheezers group at

inclusion (i.e. at age 2–4 years). In this model we used the

significant compounds found by RF model 1 (healthy vs. asthma)

and RF model 2 (transient wheezers vs. asthma). In total 17

compounds were used. The optimal complexity of the model

found by RMSECV is 2 LVs. The resulting d-PLS-DA score plot

is shown in Figure 4. As can be seen the groups are not perfectly

separated. Interestingly, the transient wheezers group shows more

variation than the asthma group, since the spread of the samples is

large. This indicates that the group of transient wheezing children

is more heterogeneous then the asthma group. The d-PLS-DA

model was validated by using test set. The overall accuracy of the

d-PLS-DA model for the test set is 80%. More importantly this

model has good prediction ability for both groups with correct

classification rate of 73.3% and 86.7% for asthmatic and transient

wheezers individuals, respectively. This means that limited

number of compounds in exhaled breath sampling at the early

age (2–4 years old) can predict with high accuracy whether a

wheezing child is a transient wheeze or develop true asthma at age

6.

Compound identifications
The chemical identification of the 17 VOCs was done by means

of spectrum recognition using the The National Institute of

Standards and Technology library in combination with spectrum

interpretation by an experienced mass-spectrometrist and identi-

fication based on retention times of compounds. From a set of 17

VOCs it was possible to chemically identify 14 of them while three

remains unknown. These 3 compounds could not be identified due

to insufficient mass spectrum, overlap in the retention time or

absence of mass spectrum in the library. Table 3 shows the list of

14 identified VOCs and their relative concentrations change in

breath samples obtained from asthmatic children at day of

inclusion. Up or down regulation of relative VOC concentration is

indicated as (+) or (2), respectively, with reference to transient

wheeze. As can be observed the discriminatory compounds belong

mostly to different alkanes.

Discussion

The analysis of the total array of VOCs in exhaled breath has

gained popularity over the last few years as a diagnostic and

monitoring tool in medical settings. Hundreds of different VOCs

are present in human breath and their relative concentrations may

change in response to abnormal physiological processes in the

body. VOCs are a various group of carbon-based chemicals that

are volatile at ambient temperature which are formed in the body,

for instance as a result of lipid peroxidation, protein metabolism or

cholesterol biosynthesis [5]. Due to their low solubility in blood

VOCs are easily excreted into breath after entering the lungs.

In this paper we demonstrated the use of VOCs in exhaled

breath may lead to development of alternative ways of monitoring,

diagnosing and studying health status. The detection of exhaled

VOCs by GC-tof-MS produces huge datasets of biological

variables. The analysis of such data requires the use of machine

learning methods [46]. Based on previous experiences and

preliminary results (not shown) we decided to use RF and d-

PLS-DA as classification methods in discriminating transient

wheezers and asthmatic children. In contrast, a linear method

(PLS-DA) failed. The two classification algorithms are suitable for

dealing with different degrees of nonlinear problems. Here, RF

was firstly used to select significant variables and next for

visualizing the relation/differences between studied classes. D-

PLS-DA, a method based on a completely different paradigm, was

applied to corroborate the results obtained by RF and thus

ensured the certainty of the selected variables and their

discriminatory power.

One aspect of the current study is the presence of cluster-

correlated data (i.e. multiple measurements are available for each

individual). This might cause an underestimation of the classifi-

cation error or overstating the significance of the effect

interest[47]. In case of RF it has been shown [48,49], that it is

justified not to account for cluster-correlated measurements if two

precautions are respected. Firstly, the outcomes should be

validated on an independent test set, which is not used in the

building of the RF classification model. Secondly, it is required to

use an additional post-processing step that involves a prediction

performance to obtain subject-level classification [49]. This was

also verified in our case (data not shown). Both requirements were

met in our current study. The performance of RF was relatively

similar with or without taking into account cluster correlated

measurements. In average the overall correct classification for

approach accounting for cluster correlated measurement was

equal, for 100 iterations, to 77.863.2% and 71.762.3%. The

approach used in this study led to averaged correct classification

rate, for 100 iterations, 76.961.3%and 71.561.5%. Clearly, the

results are comparable. However, one can see that the standard

deviations are larger when accounting for cluster correlated

measurements. The similarity of these results might be explained

by bootstrap aggregating, i.e. sampling with replacement used by

RF algorithm. Within bootstrap aggregating, a subject sampled

with replacement from a population can be similar to another

sample from the same population (e.g. repeated measurement of

the same subject). Therefore, sampling very similar repeated

measurements has almost the same effect as sampling with

replacement. In case of low correlation between the repeated

measurements, the replicates are nearly independent thereby

eliminating the cluster correlation issue.

Obviously, VOC data from GC-tof-MS are numerically very

complex and contain many irrelevant and redundant features.

Therefore we applied variable selection to make sure that accurate

information extracted from the data can be used in the final
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classification model. Using only a limited number of compounds

we were able to distinguish healthy, asthmatic and transient

wheezing individuals with very good prediction in an independent

test set. More importantly we were able to distinguish between

preschool asthma and transient wheezers at an early age, i.e.

inclusion age was 2–4 years. The overall correct classification rate

was equal to 80%. Although imperfect such a result based on the

analysis of VOCs in exhaled breath is a very attractive alternative

for assessing asthma in children at that age. Current methods are

invasive and very often not possible to perform in preschool

children, because these tests require active cooperation from the

examined person. Collection of breath samples is safe, non-

invasive and easy to perform even in infants.

A limited number of 17 VOCs was equipped to classify children

with asthma and transient wheeze at the onset of the disease. The

same set of VOCs was also capable of differentiating all available

samples (see Figure 3A) as well as children with asthma and

transient wheeze at age of final diagnosis, i.e. age of 6 years (see

Figure 3C). The boxplots of 5 most discriminatory VOCs (2-

methylhexane, octane, 2,3,6-trimethyloctane, acetone and 2,6,10-

trimethyldodecane) are included in the supplementary material

(Figure S2). The variation of VOCs at age of inclusion (2–4 years)

and at age of final diagnosis (i.e. age of 6 years) for transient

wheezers and asthmatic children is for most of the discriminatory

compounds comparable. The variability of octane and 2,3,6-

trimethyloctane is higher in asthmatic group at age of 6 years in

comparison to asthmatic group at age of inclusion (Figure S2 B

and C). The set of discriminatory compounds was not unique to

asthmatic children but was also observed in transient wheezes in

higher or lower concentration. The set of discriminatory

compounds shown in Table 3 are mostly hydrocarbons. In case

of asthma, airway inflammation plays a crucial role in the

pathophysiology of the disease. Because of the imbalance between

oxidants and antioxidants a degradation of polyunsaturated fatty

acids, found in cellular membranes, takes place during the airway

inflammation [4,5]. This imbalance is caused by the continuous

production of reactive oxygen species (ROS), which is triggered by

an influx of leukocytes characteristics for lung inflammation.

During this process hydrocarbons are created by lipid peroxida-

tion of v-3 and v-6 polyunsaturated fatty acids. The alkanes found

to be discriminatory in our study belong to longer chain alkanes

which might be more specific to asthma. Previously similar types of

alkanes were found in asthma [7,8,29,50,51]. It has been proposed

that the group of compounds of C7 to C12 alkanes and their

methylated derivatives are indicative for lung cancer [52] but also

require further exploration as potential biomarkers for asthma [8].

Figure 2. The outcomes of PCA and ROC analysis. (A) PCA score plot of 1074 breath-o-grams performed on 527 VOCs excreted in breath
samples obtained from healthy, transient wheezing and asthmatic children. There is no clear grouping visible; (B) ROC curve for independent test set
of the RF model obtained for groups healthy and asthma using 12 VOCs. The area under the curve is 85.8%; the sensitivity and specificity for the
optimal cut-off of 0.52 (indicated as circle in the figure) are respectively equal to 81.5% and 74.2% (C) ROC curve for independent test set of the RF
model obtained for groups transient wheezers and asthma using 12 VOCs. The area under the curve is 77.8%; the sensitivity and specificity for the
optimal cut-off of 0.51 (indicated as circle in the figure) are respectively equal to 74.6% and 70%.
doi:10.1371/journal.pone.0095668.g002
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Figure 3. Projection into score 1, score 2 and score 3 delivered from PCA on proximities of RF model 2 (transient wheeze vs.
asthma) and model 1 (healthy vs. asthma). (A) of all 1074 breath samples obtained from children collected over time starting at age 2 and
finishing at age 6 years old; (B) of breath samples collected at early age (i.e. inclusion at age 2–4 years); (C) of breath samples obtained at day of final
diagnosis (i.e. age 6 years old). Each breath sample is color-coded accordingly to group’s membership: healthy, transient wheeze and asthma.
doi:10.1371/journal.pone.0095668.g003

Figure 4. d-PLS-DA score plot, projection of objects into the space of two PLS latent variables of data containing children with
transient wheeze and asthma at the early age (inclusion age 2–4 years old).
doi:10.1371/journal.pone.0095668.g004
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Our findings are in line with previous ones [7,50] and may be

explained by the complex equilibrium between formation and

removal of VOCs in the body. Besides oxidative stress assumption,

the changes in VOCs relative concentration can be explained by

differences in gas exchanges over the blood- lung barrier between

asthma-affected and transient wheezers-affected lungs. This

consequently might influence the alterations in relative VOCs

level in exhaled breath. Acetone was one of the found

discriminatory compounds. This is the most abundant VOC in

exhaled breath. Therefore, the changes in acetone level may be

due to artifact caused by normalization to total area. Consequent-

ly, another type of normalization, namely probabilistic quotient

normalization, was applied and the results compared. No

differences were observed. Thus the changes in acetone level are

the results of biological processes.

Breath analysis has been used in various studies and several

VOCs have been reported as discriminatory for asthma, COPD

and CF [7,11]. However in most of the studies, due to for instance

limited number of subjects, the outcomes were not completely

validated, i.e. only cross-validation was used. On contrary, in our

study we used an external test set (so called independent test set).

This is a higher level of validation and therefore gives stronger

certainty to the findings. Nevertheless, further validation in new

cohorts is recommendable before the use of these discriminatory

compounds in the clinic.

Concluding Remarks

In conclusion, we demonstrated that a VOCs profile in exhaled

breath was able to discriminate healthy, transient wheezing and

asthmatic children. The VOCs profile allowed distinguishing

children with transient wheeze from true asthmatic. Asthma is an

inflammatory disease of the lung with oxidative stress in the cells

lining bronchi which leads to lipid peroxidation. This process

seems to play a crucial role in the production of differentiating

VOCs in exhaled breath of asthmatic subjects. However, it cannot

be excluded that the VOCs come from other pathways. Further

research is needed to establish the etiological pathways. Despite

the potential use of VOCs in clinical practice many aspects need to

be standardized, such as sampling procedures and measurements.

The development of international recommendations for standard-

ized procedures in the analysis of VOCs of exhaled breath would

improve inter-laboratory comparisons.

Supporting Information

Figure S1 The example of 4 breathograms; (A) before
data preprocessing and (B) after applying denoising,
baseline correction and alignment.

(TIF)

Figure S2 The boxplots of the most discriminatory
compounds for transient wheezers and asthmatic chil-
dren at age of inclusion (age 2–4) and age of final
diagnostic (age 6): (A) 2-methylhexane; (B)octane; (C)
2,3,6-trimethyloctane; (D) acetone; (E) 2,6,10-trimethyl-
dodecan.
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