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Abstract

The koala retrovirus (KoRV) is the only retrovirus known to be in the midst of invading the germ line of its host species.
Hybridization capture and next generation sequencing were used on modern and museum DNA samples of koala
(Phascolarctos cinereus) to examine ca. 130 years of evolution across the full KoRV genome. Overall, the entire proviral
genome appeared to be conserved across time in sequence, protein structure and transcriptional binding sites. A total of
138 polymorphisms were detected, of which 72 were found in more than one individual. At every polymorphic site in the
museum koalas, one of the character states matched that of modern KoRV. Among non-synonymous polymorphisms,
radical substitutions involving large physiochemical differences between amino acids were elevated in env, potentially
reflecting anti-viral immune pressure or avoidance of receptor interference. Polymorphisms were not detected within two
functional regions believed to affect infectivity. Host sequences flanking proviral integration sites were also captured; with
few proviral loci shared among koalas. Recently described variants of KoRV, designated KoRV-B and KoRV-J, were not
detected in museum samples, suggesting that these variants may be of recent origin.

Citation: Tsangaras K, Siracusa MC, Nikolaidis N, Ishida Y, Cui P, et al. (2014) Hybridization Capture Reveals Evolution and Conservation across the Entire Koala
Retrovirus Genome. PLoS ONE 9(4): e95633. doi:10.1371/journal.pone.0095633

Editor: Jean-Pierre Vartanian, Institut Pasteur, France

Received January 15, 2014; Accepted March 28, 2014; Published April 21, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: NN was supported by start-up funds and a state-mini grant from California State University, Fullerton and a Faculty-Student research Grant from
California State University, Fullerton. MS was supported by an HHMI scholarship. KH was supported by the Smithsonian Institution. The project described was
supported by Grant Number R01GM092706 from the National Institute of General Medical Sciences (NIGMS). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript. The Vienna Zoo is a public entity, e.g. a state funded zoo.

Competing Interests: NS and AR are PLoS ONE Editorial Board members. This does not alter the authors’ adherence to PLoS ONE editorial policies and criteria.

* E-mail: greenwood@izw-berlin.de

. These authors contributed equally to this work.

Introduction

Endogenous retrovirus-like elements (ERVs) are common in the

genomes of vertebrates, comprising 8% of the human genome [1].

ERVs derive from retroviruses that invaded the germ line of

ancestral host organisms, becoming permanent genomic elements

in the host lineage. Although most ERVs have adapted to become

non-pathogenic and non-functional in their host, a role in human

health and disease has been established for some ERVs [2,3]. One

ERV in the human germ line has been co-opted as a functional

gene, syncytin, which is critical for normal development of the

human placenta [4]. Recently, another human ERV has been

found to play a critical role in the progression of Hodgkin’s

lymphoma [5]. Despite their biomedical importance, the process

by which ERVs invade their host germ lines has been difficult to

study, given that almost all known ERVs are many thousands or

millions of years old.

The only retrovirus known to be in the midst of transitioning

from an exogenous to an endogenous form is the koala retrovirus

(KoRV). KoRV is currently invading the germ line of its host

species, the koala (Phascolarctos cinereus), but is not found in the

genomes of all koalas [3,6–8]. KoRV is ubiquitous among

northern Australian koalas, but is less common in southern

Australian mainland and island populations [8–10]. PCR and

sequencing of KoRV env genes in museum specimens of koalas

from the late 1800s revealed that KoRV was already ubiquitous

among northern Australian koalas at that time [6]. While env has

been examined in historical samples, little is known about the

historical variability or stability of the rest of the KoRV genome or

changes in integration site diversity over time.

Two protein motifs, one in Gag and another in Env, have been

associated with reduced infectivity of KoRV relative to the closely

related gibbon ape leukemia virus (GALV). A CETTG motif in

GALV Env is highly conserved across gammaretroviruses, while

SRLPIY in GALV Gag is associated with promoting viral release

[3]. Both protein motifs differ between KoRV and GALV, and

these differences are believed to lower the relative infectivity of

KoRV [3]. In historical samples of koalas, both motifs matched

that of modern koalas, with no differences or polymorphisms

detected in koala samples going back to the late 1800s [6]. The

reduced virulence of KoRV relative to GALV, and the lack of

historical polymorphisms, has led to a hypothesis that the changes

to these two protein domains may have both preceded and

enabled the invasion of the koala germ line by KoRV.
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Several laboratories have recently reported novel variants of

KoRV [11,12]. One variant has been designated KoRV-B, with

the originally identified KoRV labeled KoRV-A [12]. KoRV-B

has greater virulence than KoRV-A, and has been isolated only

from a subset of the koalas housed at the Los Angeles Zoo, and not

from wild koalas. The KoRV-B long terminal repeat (LTR) U3

region includes 4 repeats of a core enhancer element, whereas

KoRV-A has only one. The KoRV-B Env also has a different

receptor-binding domain [12]. KoRV-B has the CETTG motif

that is present in other infectious gammaretroviruses, but that has

the sequence CETAG in KoRV-A. While KoRV-A uses the

sodium dependent phosphate transporter membrane protein (PiT-

1 or SLC20A1) as a receptor for viral entry, KoRV-B uses the

thiamine transporter protein 1 (THTR1 or SLC19A2) [12].

Another recently identified variant, designated KoRV-J, also

utilizes the THTR1 receptor for viral entry although KoRV-J does

not have the CETTG motif of KoRV-B [11]. KoRV-J has been

detected in zoo koalas [11]. Both KoRV-J and KoRV-B may be

recently arisen variants, differing from KoRV-A in the LTR and

env sequences, although they have not been examined in historical

samples.

KoRV variants such as KoRV-B show differences in regions

beyond env and thus, it would be of interest to characterize

polymorphisms, not just for env, but also across gag, pol, LTRs, and

the koala genomic sequences flanking KoRV proviral loci.

However, PCR based methods are labor intensive and often

unsuccessful when applied to historical samples. To examine

KoRV evolution, we here applied a hybridization capture method

to modern and ancient koala DNA, including multiple koala

specimens in a single next generation sequencing run, in order to

capture DNA sequences spanning the full length of the KoRV

proviral genome. Recently developed solution hybridization

capture methods allow for the specific enrichment of target

sequences from genomic libraries, using PCR amplicons as ‘‘bait’’

to which target DNA hybridizes [13,14]. Even when the target

sequences is divergent, both long (200–500 nt) and short (,30

nucleotide) DNA fragments can be captured and sequenced

efficiently [15], allowing use of the method with both modern and

ancient DNA. This enabled us to characterize polymorphisms

across the entire KoRV genome and koala genomic sequences

flanking KoRV proviral loci. Polymorphisms were analyzed, and

used to model potential changes to protein structure, or to identify

potential changes to transcription factor binding sites in the LTRs.

The flanking sequence data was used to identify integration sites

common to more than one koala, identifying endogenous loci.

Hybridization capture also allowed us to investigate whether

KoRV-B, KoRV-J, and other recently described variants [11,12]

were present in a modern deep sequenced koala, or in historical

samples.

Materials and Methods

Koala Samples and DNA Extraction
Archival and modern samples are described in Table 1. All

archival samples were extracted in a dedicated ancient DNA

laboratory in the Department of Wildlife Diseases of the Leibniz

Institute for Zoo and Wildlife Research under plexiglass UV hoods

dedicated to DNA extraction. The ancient DNA laboratory was

never used for molecular or genetic work on modern samples, and

followed procedures designed to minimize the possibility of

contamination, such as wearing protective clothing during

extractions to avoid contamination from the researchers. Each

extraction involved approximately 250 mg of dried skin, and used

the Geneclean Ancient DNA extraction kit from MP Biomedicals,

USA, following the manufacturer’s protocol. Mock extractions

were performed for each set of museum specimens as controls for

potential contamination during the extraction process. Each DNA

extract was further purified using Qiaquick spin columns (Qiagen)

as described previously [16]. DNA extraction from a blood sample

of modern koala Pci-SN265 (zoo koalas in North America and

Europe are included in the North American regional studbook,

and are here designated by studbook number, ‘‘SN’’) was

performed in a separate laboratory in a different floor of the

Leibniz Institute for Zoo and Wildlife Research. This extraction

was performed using the Qiagen DNeasy Blood & Tissue Kit

following the manufacturer’s protocol. The extracted DNA was

then fragmented using a Covaris-S220 to generate 150 bp

fragments.

Blood samples of San Diego Zoo koalas were collected during

routine physical exams and genomic DNA was isolated from buffy

coat using the Qiagen DNeasy Blood & Tissue Kit following the

manufacturer’s protocol. DNA from blood samples of wild koalas

had been extracted using a phenol-chloroform method. These

samples were used to generate baits.

Ethics Statement
All experiments involving koala tissues were approved by the

Internal Ethics Committee of the Leibniz Institute for Zoo and

Wildlife Research, approval number 01-01-2013. Work involving

other modern koala samples was conducted at the University of

Illinois at Urbana-Champaign (UIUC), under IACUC approval

number 12040.

Polymerase Chain Reaction
All museum specimen were initially screened for a KoRV pol

fragment by PCR (Table 1) performed in a volume of 34 ml using

5.5 ml of extract, 10 nm of primers, 0.5 U Platinum HiFi supermix

(Invitrogen), 1ml of bovine serum albumin (Fermentas), and 1 ml of

primers P1aF ‘5-TTGGAGGAGGAATACCGATTACAC-39

with P1aR ‘5-GCCAGTCCCATACCTGCCTT-39 [8]. Cycling

conditions were: 94uC for 4 min; 60 cycles at 94uC for 30 s, 55uC
for 30 s, 72uC for 30 s; and 72uC for 10 min, with the samples

then held at 4uC [17]. The high cycle number (60) PCR was only

used for screening museum koala samples for the presence of

KoRV and not for polymorphism analyses. The modern sample

was screened by PCR amplification performed in a volume of

34 ml using 1 ml (26.7 ng/ml) of extract, 10 nM of each primer,

0.5 U of Platinum HiFi supermix (Invitrogen). Cycling condition

were: 94uC for 4 min; 35 cycles at 94uC for 30 s, 55uC for 30 s,

72uC for 30 s; and 72uC for 5 min, with the samples then held at

4uC. PCR products were visualized on a 3% gel. All gels used

GelRed nucleic acid gel stain by Biotium. PCR products were

purified using the NucleoSpin Gel and PCR Clean up kit

(Macharey-Nagel). PCR products were commercially sequenced

by the Sanger method using the forward and reverse PCR primers

(StarSeq, Germany). Primers used in this study are listed in Table

S1. The Sanger sequences were not included in the hybridization

capture alignments but were only used to establish the presence of

KoRV in museum and modern samples.

Illumina Library Preparation
Aliquots from each DNA extract were used in generating

Illumina libraries. Archival extract libraries were generated in the

ancient DNA facility in a library-dedicated plexiglass PCR UV

hood, while the modern koala library was generated in a modern

DNA laboratory in a different part of the Institute. Libraries were

generated as described in Mayer et al. [18]. Each library contained

a unique index adapter to allow for subsequent discrimination

Conservation of KoRV
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among samples after the sequencing of pooled libraries. A negative

control extraction library was also prepared and indexed

separately to monitor any contamination introduced during the

experiment. Indexes were added by PCR using Amplitaq Gold

DNA polymerase (Applied Biosystems [ABI]) in 100 ml reactions.

Cycling condition were: 94uC for 5 min; 10 cycles at 94uC for

30 s, 55uC for 30 s, 72uC for 30 s; and 72uC for 5 min; the

samples were then held at 4uC. After indexing, the samples would

effectively be at little or no risk from cross contamination either

from the other libraries or from laboratory DNA. Quantitative

PCR (qPCR) was performed after index PCR with a standard that

was developed using 100 bp PCR product with Illumina primer

binding sites ligated at the 59 and 39 ends as described in Mayer et

al. [18]. The qPCR standard curve was obtained using a series

dilution of the standard. The assay was performed in a Stratagene

MxPro 3000p qPCR system using Brilliant III Ultra-Fast SyBr

Green qPCR master mix (Agilent) with Illumina bridge primers P5

and P7 [18] to determine the number of molecules in each sample.

Additional amplification was followed using Herculase II DNA

polymerase (Agilent) with P5 and P7 Illumina library outer

primers with the same cycling conditions. DNA products were

purified using Minelute columns (Qiagen) after each amplification

step. Final quantification was performed on an Agilent 2200 tape

station D1K tape.

Primer Design and Preparation of Baits
PCR products used as ‘‘bait’’ for capturing sequences from the

Illumina libraries were generated at the University of Illinois to

limit the amount of koala and KoRV amplicons present in the

laboratories in Berlin. DNA of one northern koala, Pci-SN404 (see

above) and three southern koalas (PCI-157 and PCI-142 from the

Stony Rises and PCI-106 from the Brisbane Ranges of southern

Australia) were used in preparing the bait. Primers were newly

designed to cover the complete KoRV genome outside the envelope

region. For the envelope region, previously designed primers were

used [6] but with primer combinations that would yield amplicon

sizes of approximately 500 bp. For the other KoRV regions, novel

primers based on the published KoRV sequence (GenBank:

AF151794) [7] were designed using Primer3 (http://fokker.wi.mit.

edu/primer3/input.htm) [19] to yield amplicons of approximately

500 bp. The KoRV genome was amplified in thirty-eight 500 bp

overlapping products using the primers shown in Table S1. The

PCR mix consisted of 1 X PCR Buffer II (ABI), 1.5 mM MgCl2
(ABI), 0.4 mM of final concentration of each primer, 200 mM of

each dNTP (ABI), with 0.04 units/ml final concentration of

AmpliTaq Gold DNA Polymerase (ABI). The PCR algorithm

consisted of an initial 95uC for 10 min; with cycles of 15 sec at

95uC; followed by 30 sec at 60uC, 58uC, 56uC, 54uC, 52uC (2

cycles at each temperature) or 50uC (last 30 cycles); and 1 min at

72uC; with a final extension of 7 min at 72uC. An aliquot of each

PCR product was visualized on a 1% agarose gel with ethidium

bromide. PCR products were enzyme-purified [20] and Sanger-

sequenced to verify that the target region had been amplified. The

PCR products were purified using Qiaquick columns (Qiagen) and

then quantified using a NanoDrop ND-1000 (Thermo-Scientific).

KoRV amplicons were then blunt-ended, ligated to a biotin

adapter, and immobilized on streptavidin magnetic beads in

equimolar amounts of 1.3 mg as described previously [14].

Hybridization Capture
Mixtures of blocking agent, blocking oligos, and indexed koala

libraries were heated to 95uC to separate the DNA strands [14].

One aliquot from each index library was mixed with streptavidin

beads bound with biotinylated KoRV PCR products. Samples

were incubated for 48 hours at 65uC under rotation in a Labnet

mini incubator. After 48 hours the beads were washed and the

hybridized libraries eluted by heating. The DNA concentration

was measured by quantitative PCR (qPCR), and the eluted

libraries were further amplified accordingly using P5 and P7

Illumina outer primers. The products were then pooled at

equimolar concentrations for paired-end sequencing on an

Illumina MiSeq platform at the National High-Throughput

DNA Sequencing Center, University of Copenhagen.

Sequence Assembly, Identification of Polymorphisms and
Integration Site Analysis

Sequences were separated based on their index sequence at the

National High-Throughput DNA Sequencing Center, University

of Copenhagen, Denmark. The programs cutadapt v1.2 and

trimmomatic [21,22], respectively, were used to remove adaptor

sequences and poorly sequenced reads. After trimming, reads that

were shorter than 20 bp were excluded from further analyses.

Reads were mapped to the KoRV full genome reference sequence

(NCBI: AF151794) using BWA version 0.6.2 [23] with default

parameters. The resulting SAM files were further processed with

samtools [24] and picard (http://picard.sourceforge.net) for

sorting and removal of clonality, respectively. The Perl script

mapDamage was run on the museum data using the default

settings to determine the percentage of DNA damage present,

before SNP calling [25]. Variant call analysis was performed using

VarScan 2.2.3 with the following settings -min-coverage 8, -min-

var-freq 0.01, and -p-value 5e-02 [26]. The resulting variants were

further curated using Geneious 6.0.4 for visualization. Negative

control reads were also compared to the reference KoRV

sequence. The 59 and 39 LTRs were distinguished from each

other by examining sequences adjacent to the LTR sequence for

genomic flank sequences or for KoRV sequence (gag leader or env).

The 59LTR is preceded by a koala genomic flank and followed by

a KoRV gag leader, while the 39LTR is preceded by KoRV env

and followed by a koala genomic flank. Where possible, LTR

sequences that also included a KoRV non-LTR sequence or a

koala genomic flanking sequence were used to distinguish between

59 and 39 LTR polymorphisms (Figure 1). Consensus sequences

generated were deposited in GenBank (accession numbers

KF786280–KF786286). Illumina reads mapping to KoRV for

each koala were deposited in the NIH Short Read Archive

(SRP03960187947).

Integration sites were identified in sequence reads that

contained 59 or 39 LTR sequences extending into non-KoRV

sequences. To examine whether proviral integration sites identi-

fied in the ancient samples were present among modern koalas,

koala genomic sequences flanking the integration sites found by

hybridization were queried against sequences flanking the

integration sites of six modern koalas (three northern and three

southern koalas, Table 1) that had been generated using a different

method (Ishida et al. manuscript in preparation). Integration site

sequences were also queried against a koala (Pci-SN404) whole

genome sequence generated using one-sixteenth of a PicoTiter-

Plate of 454 GS-FLX+ Technology (Roche Applied Science)

following standard protocols.

Statistical Analyses and Tests of Selection
For non-synonymous polymorphisms, a ‘‘radical’’ change was

defined as a mutation that produces a negative score in both

BLOSUM62 and BLOSUM90 substitution matrices. Associations

between variables were examined using a 262 contingency table,

testing for significance using Fisher’s exact test implemented in

GraphPad (graphpad.com/quickcalcs/contingency1.cfm). The
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number of synonymous and non-synonymous substitutions was

determined, and the Nei-Gojobori method [27] was used to

determine the proportion of synonymous substitutions per

synonymous sites and the proportion of non-synonymous substi-

tutions per non-synonymous sites. MEGA, version 5.2 [28] was

used to estimate Tajima’s D, and to implement the codon-based

Z-test for selection and the codon-based Fisher’s exact test of

selection. These were determined for the concatenated KoRV

codons of gag, pol, and env, and for each of the three separately.

Bonferroni correction for multiple hypothesis testing divided a p

value of 0.05 by the number of hypotheses tested.

The dN/dS ratio provides an indicator of the selective pressures

that acted upon a gene, with low values indicating purifying

selection and increases in values indicating relaxation of constraint

or positive selection. To account for the different phase of

polymorphisms at the same site we generated an individual

sequence for each different phase of a polymorphism and analyzed

all of the individual sequences. For the modern koala, available

sequences were long enough for phase to be determined for many

(but not all) polymorphisms (Figure 1, positions underlined in

green). For historical samples, sequence lengths were short, and

the phase of polymorphisms could only rarely be determined. To

test for this signature of selection in this dataset, we calculated dN/

dS using two different approaches: the GA-Branch and FUBAR

methods [29]. In the first case estimates were obtained using a

fixed tree topology generated by the Neighbor-joining method.

The nucleotide model was specified as GTR; otherwise, the

default GA-Branch configuration was used. This dataset, which

compares all identified polymorphisms (even if they are not

present in the consensus sequence) against the modern sequence,

was also analyzed using the Z-test for selection and Tajima’s D.

Identification of Protein Domains and Functional
Residues, and Protein Modeling

The corresponding amino acid sequences were subjected to

domain identification analysis using the Conserved Domains

Database (CDD) from NCBI. We also examined whether any of

the observed polymorphisms alter amino acid residues of known

function using the Conserved Features/Sites option of the CDD

database.

To examine the structural characteristics of KoRV variants, we

predicted their three-dimensional structures using the SWISS-

MODEL server [30]. Only models with high statistical support

(high reliability score as defined by QMEAN4 values) [31] were

considered for further analyses. Using this strategy we were able to

reliably model several regions corresponding to different domains

of all three viral polypeptides (Gag, Pol, and Env). Pairwise

structural alignments and structural superimposition were per-

formed using the DaliLite server [32]. Models and Figures were

drawn using Pymol (DeLano Scientific).

Transcription Binding Factor Site Analysis
The long terminal repeat polymorphic sequences for each koala

were analyzed for putative transcription binding domains using

MatInspectror software (Genomatix, Munich). The default core

similarity and matrix similarity greater than 0.8 were employed as

the selection criteria.

Results

Hybridization Capture and Sequencing of KoRV
DNA was extracted in an ancient DNA dedicated facility from

10 museum skins from southern (n = 2) or northern (n = 8)

Australian koalas, which had been collected as long as 130 years

Figure 1. Alignment of modern and museum koala retrovirus sequences, showing positions of proviral genes and proteins. Upper
Panel: Character states matching the reference sequence (AF151794) are indicated in light grey, while mismatches (position 312) or polymorphisms
(all other positions) are shown as black hatch marks. The infectious clone KV522 (AB721500) is the first sequence below the reference. The aligned
sequences all display open reading frames for viral gag, pol, and env regions, except that polymorphisms at three positions in the museum samples
code for a stop codon that would disrupt an open reading frame; these are indicated by red hatch marks. Green lines represent polymorphisms that
could be placed in phase in overlapping sequence reads. Lower Panel: The coded proteins are indicated, following the divisions proposed by Hanger
et al. (2000) relative to the polymorphism alignment. The positions of the SRLPIY domain potentially involved in viral infectivity of the GAG protein
and p10 domain (Gag assembly and nuclear export signal, respectively) are indicated. Likewise, the Env motif CETTG, and p15E transmembrane
envelope protein are indicated. Regions known to be divergent in Japanese isolates, KoRV-B and KoRV- C, and KoRV-D [12,40], are indicated by
orange, purple, and green arrows, respectively.
doi:10.1371/journal.pone.0095633.g001
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ago (Table 1). In separate facilities, modern DNA was extracted

from blood samples of zoo and free-ranging wild koalas (Table 1).

Illumina libraries were prepared from all museum koala DNA

extracts (in an ancient DNA facility), and from one sample of

modern DNA from an adult northern koala 14 years old, Pci-

SN265 (‘‘Mirra-Li’’, studbook number 265 from the Zoo Vienna,

Austria). In order to process all samples in a single next-generation

sequencing run, each library was tagged with a distinct index

sequence. Baits for hybridization were generated covering the

entire KoRV genome, which was amplified in thirty-eight

fragments, each ca. 500 bp, from four koalas representing

northern (Pci-SN404) and southern (Pci-SN106, 142, 157) koala

KoRV diversity (Table 1). Equimolar amounts of index samples

were pooled and applied to KoRV baits bound to streptavidin

beads for in-solution hybridization capture. The enriched koala

libraries were then sequenced using an Illumina MiSeq. After

sequencing, a bioinformatics routine used the distinct index

sequence tags to separate sequences by individual. Sequences were

screened for quality and reliability before being aligned to KoRV

reference genomes (GenBank accession number AF151794,

AB721500).

Full coverage of the KoRV genome was obtained from six of the

northern Australian museum specimens and for Pci-SN265

(Figure 1); museum specimens of two additional northern and

two southern koalas were not successful. Among the six successful

historical samples, KoRV-specific sequences represented 2.5% to

41% of the total number of reads, comparable to enrichment rates

previously reported for ancient DNA. Negative controls demon-

strated only sporadic matches to KoRV (Figure 2). Such sporadic

reads are observed in hybridization capture experiments [33] and

may reflect index sequence errors (misassignment) or PCR

jumping causing exchange between sample index and control

[34]. However, the profile of coverage was randomly dispersed

and the number of reads marginal in the negative control.

Coverage was consistently far higher at every position for the

modern koala (Pci-SN265) than for any of the museum specimens

(Figure 2). The historical samples yielded only 20–80% of the

coverage of the KoRV genome obtained for the modern sample.

Among the museum koalas, the earliest collected sample (Pci-

maex1738) had the poorest coverage whereas the most recently

collected sample (Pci-QMJ6480) had the highest relative coverage.

There was otherwise no obvious correlation between the number

of reads obtained and the year the sample was collected.

KoRV Polymorphisms
For the museum samples, the average read length was ca.

90 bp. This is similar to read lengths reported previously for DNA

from archival specimens, which may be degraded as a result of

environmental, bacterial, and enzymatic damage [35–37], and was

shorter than the ca. 135 bp read length for modern sample Pci-

SN265. Although similar analyses were conducted on the

historical and on the modern koala sequences, prior to assembly

the museum specimen datasets were processed using the map-

Damage Perl script [25], to account for DNA damage present in

ancient DNA. The mapDamage results identified the expected

nucleotide misincorporation patterns of cytosine to thymine and

guanine to adenine on the 59 and 39 end termini, respectively (not

shown). However, damage occurred only at a very low frequency

of 0.02 to 0.08%, indicating that the damage present would have

negligible effects on polymorphism scoring or other analyses. After

assembling the reads to the KoRV reference sequence AF151794,

polymorphisms were scored if they occurred at a position in 8% or

more of the reads for an individual koala [38]. For the env gene,

four of 20 env polymorphisms that had been previously detected by

PCR from museum samples were also found in the current dataset

[6]. Of the remaining 16, seven could be identified but were not

present above the cutoff employed when identifying polymor-

phisms by the current study. The other nine could not be

identified from the data, likely due to insufficient coverage in some

koalas for those regions of env (Figure 2). Fourteen novel

polymorphic sites in the env region were identified by hybridization

capture that had not been identified in the same museum koalas

when previously examined by PCR.

At position 312 a fixed difference as opposed to a polymorphism

was present in all koalas relative to the reference AF151794

(Figure 1). Across the modern and archival koalas, a total of 138

KoRV polymorphisms were detected. At each of these polymor-

phisms, one of the character states matched that of the KoRV

reference sequence AF151794. Considering only the character

states that differed from the reference, seventy-one of the

polymorphic sites were detected in two or more koalas (shared

alleles) and sixty-seven were detected only in one koala (private

alleles) (Table 2, Table S2). Of 92 polymorphisms in the coding

regions, 3 would result in stop codons, of which one was shared

across individuals (Figure 1, Table 2 KoRV). Of the remaining

coding region polymorphisms, 35 were synonymous and 54 were

non-synonymous (Table 2, Table S2).

Functional regions in the viral sequence reported to reduce the

infectivity of KoRV when compared to that of GALV were also

examined [3]. The CETAG motif in KoRV (CETTG in other

gammaretroviruses) is believed to be responsible for viral fusion

activity while the gag L-domain is believed to affect the release of

mature virus. Across KoRVs in the newly sequenced koalas, there

were no polymorphic sites in either of these regions (Figure 1). The

immunosuppressive domain of the p15E transmembrane protein

of retroviral Env exhibited only a single polymorphism, present in

Pci-SN265 and Pci-MCZ12454 (Table S2). In the museum

specimens, multiple non-synonymous polymorphisms were detect-

ed in the nucleocapsid protein region (p10) of the gag gene. Using

the Conserved Features/Sites function of the CDD database we

also determined that none of the amino acid residues of known or

inferred function, e.g., DNA binding site of the reverse transcrip-

tase domain in POL or the homotrimer interface in ENV, are

polymorphic (data not shown).

Amino acid substitution matrices have been generated by

comparing large numbers of proteins to identify non-synonymous

mutations that are only rarely observed empirically. These rare

amino acid substitutions, termed ‘‘radical’’, typically involve major

physiochemical differences between the two amino acids. We

defined a radical change as a mutation that produces a negative

score in both BLOSUM62 and BLOSUM90 substitution matrices.

Among the non-synonymous polymorphisms observed in the

koala, 48% (26/54) of substitutions were defined as radical. The

proportion of radical non-synonymous mutations appeared to be

higher in env than in gag or pol (Table 2), and this difference was

confirmed as significant using Fisher’s exact test (p = 0.0397)

comparing radical vs. non-radical non-synonymous substitutions

in env to those in gag-pol. This suggested that selective constraints

on env may differ from those affecting the other two KoRV coding

regions. Across the three coding regions, no other pattern

suggestive of an association across variables was evident in the

dataset for private vs. shared polymorphisms, non-synonymous vs.

synonymous polymorphisms, or radical vs. non-radical amino acid

changes (Table 2).

The selective pressure variation among all branches of the

KoRV tree estimated by the GA-Branch method suggested that

several branches in gag (more than 70%) and fewer in pol and env

(60 and 17%, respectively) are under purifying selection (not
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shown). FUBAR implemented in HyPhy also suggested that only a

few codons deviate neutrality (not shown). Similarly, the total

distance estimates of dN/dS using the Nei-Gojobori method

suggested stronger purifying selection in gag than in pol and env

(Table S3). The same trend was observed by the Z-tests for

selection and the Tajima’s test of neutrality, with gag showing

multiple significantly negative dN-dS values and the lowest

negative values, respectively (Table S4 and Table S5).

Comparisons of KoRV Consensus Sequences
The nucleotide consensus sequence (majority character state at

every position in an alignment of sequences) was generated for

each of the seven successful KoRV-positive koalas. These were

compared to the first reported KoRV sequence (AF151794) [7]

and to the infectious clone KV522 (AB721500) [39], which

themselves are 0.5% divergent, generating an alignment of 9

sequences. Each of the newly generated consensus sequences was

more similar to the infectious clone KV522 (99.2–99.5%

similarity) versus for AF151794 (99.0–99.2% similarity). All of

the koala retroviral consensus sequences from the current study

included a 6-bp insertion in the non-coding gag leader region,

position 651, which is also present in KV522 (Figure 1, Table S2).

The six archival sample consensus sequences also shared a 3-bp

insertion at position 905 in the gag leader region (Table S2) also

present in KV522 (AB721500) [39]. The 3 bp insertion could be

found in the modern koala (Pci-SN265) as a minority sequence,

thus the consensus for this animal lacked the 3 bp insertion

(Figure 1). Thus, in contrast to the museum samples, the modern

koala had an underrepresentation (16.8%) of the 3 bp insertion

variant. In addition, the deletion itself is polymorphic representing

1–3 bp deletions though the 3 bp deletion is the most common

and therefore represented in the consensus sequence generated.

The alignment of nine sequences was also examined for

signatures of selection (or neutrality), for gag, pol, and env, and for

all three codon sets concatenated. The Nei-Gojobori method was

used to estimate synonymous and non-synonymous mutation rates

for each pair of sequences. Codon-based Fisher’s exact tests of

selection found no evidence of positive selection in any of the

pairwise comparisons for any of the coding regions (not shown).

Codon based Z-tests of selection (Table 3) suggested that among

the coding regions purifying selection may be more pronounced in

gag, with significant purifying selection detected in eight of the

pairwise comparisons (although these would not be significant after

Bonferroni correction). The pol coding region appeared to be

under weaker purifying selection, with negative values significant

(before Bonferroni correction) for only 2 comparisons, while env

comparisons yielded both positive and negative estimates consis-

tent with neutrality (none significant). Tajima’s D was calculated

using the same nine KoRV sequences (Table 4), for each coding

region separately or all three combined. A negative value would be

consistent with purifying selection. However, although gag had the

most negative value, none of the values for Tajima’s D were

extreme, thus there were no significant deviations from neutrality.

The consensus sequence and total polymorphism data yielded

consistent results with respect to selective pressures on KoRV.

KoRV-B and J
A recent study of koalas from Los Angeles Zoos identified a

KoRV variant, designated KoRV-B, which has greater virulence

than previously characterized KoRV, and which was present in a

Figure 2. Hybridization capture sequence coverage across the KoRV genome for modern and museum koala samples. The sequence
coverage is shown for each nucleotide position numbered as in the KoRV reference genome (AB721500). Results are shown for 1 modern (Pci-SN265)
and 6 museum koala samples. Mapping of results for a negative control (NC) are also shown. Each sample is color-coded.
doi:10.1371/journal.pone.0095633.g002
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subset of zoo koalas [12]. Hybridization capture should enrich

sequences, such as those of KoRV-B, that are somewhat divergent

from the KoRV sequence used as bait. We therefore screened the

novel next generation sequencing data, searching for the sequence

of KoRV-B at the junction where KoRV-B diverges from the

KoRV reference sequences in the env region. The divergent region

of KoRV-B env was not detected in any of the ancient koalas,

suggesting that KoRV-B may have evolved recently as a variant of

KoRV. However in the modern koala Pci-SN265, sequences

matching KoRV-B were detected for some (but not all) of the

regions within the env gene that characterize KoRV-B (Figure S1).

Three other variants of KoRV have recently been described

among zoo koalas in Japan, tagged as clones 11-1, 11-2, and 11-4

[11,40]. Clone 11-1 has been designated KoRV-D, clone 11-2 has

been designated KoRV-C, and clone 11-4 has been designated

KoRV-J. The three recently identified KoRV clones differ mainly

in variable region A of the env gene that is involved in retroviral

receptor determination and recognition [11,41]. Our novel

sequences were screened for each of the KoRV variants reported

in the Japanese zoo koalas. Sequences similar to those of KoRV-C

and KoRV-D were identified in the modern koala Pci-SN265 but

not in any of the museum samples (Figure S2 A and B) [40].

Sequences related to KoRV-J were not identified in any of the

novel reads, whether from the modern or museum samples.

Potential Effects of KoRV Polymorphisms on Protein
Structure

Variants present below a cutoff of 8% of relevant Illumina reads

were not considered to represent confirmable polymorphisms.

Those that appeared at a higher frequency than this cutoff likely

represent common variants rather than mutations within a single

provirus. We examined the effects of the non-synonymous

polymorphisms on the protein structure of KoRV by generating

three-dimensional models for Gag, Pol, and Env protein

fragments. First, we sought to identify whether amino acid

differences present across modern sequences of KoRV led to

major structural differences. Sequences included in the compar-

isons of modern KoRV were the original KoRV isolate AF151794

and infectious clone KV522 (AB721500), which differ by 0.5% at

the nucleotide. In these comparisons, our consensus KoRV

sequence from the modern koala Pci-SN265 served as the

reference (the amino acid residue in Pci-SN265 is always the first

listed in each substitution). When superimposed on the structure of

Pci-SN265, the structures of AF151794 and KV522 showed minor

localized changes affecting the polarity, charge, or local protein

conformation (Figure 3). Specifically, in the Gag protein mutations

K47E and S464F alter the local charge and the local protein

conformation, respectively (Figure 3). In the Pol protein, mutations

P6S, A124V, K764R, R771G, and N924D between the Pci-

SN265 and AF151794 had only minor effects on the overall

topology of the structure. In Pol, mutations I19V, A822T, and

S829P altered the local conformation of the Pci-SN265 and

KV522 relative to the AF151794 structure by changing a surface

residue to a buried one (I19V) and changing two partially buried

residues to surface ones (A822T and S829P) (Figure 3). Only two

positions in the Env protein could be structurally modeled (P147S,

D187G). Both of these were radical substitutions that changed

buried amino acids to exposed ones (Figure 3). Both of these

changes were located away from the putative receptor-binding

region, as this has been defined in [6].

Second, non-synonymous polymorphisms in the historical

KoRV sequences were examined for predicted changes to the

protein structure as compared to the modern consensus sequence

Pci-SN265, which again served as a reference sequence (the amino
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acid residue in Pci-SN265 is always the first listed in each

substitution). The effects on polypeptide structures of the non-

synonymous polymorphisms present in KoRV for each koala were

examined using a composite sequence that contained all of the

amino acid differences versus Pci-SN265. This composite

sequence would necessarily combine polymorphisms present on

different proviral loci. Nonetheless, this composite sequence would

be useful in identifying all of the potential disruptions to predicted

structure, when the effects of each mutation are considered

individually. Several ancient variants were predicted to cause small

local fluctuations of the KoRV structure. Specifically positions

G33E, K421E, Q429K, and S464Y are predicted to alter the local

charge at the Gag surface resulting in deviated conformations

(Figure 4A, Figure S3). In the Pol protein, positions S514R,

F396Y, A685S, and Y676N exchange a buried residue for a

surface one, resulting in topological differences (Figure 4B, Figure

S4). Additionally, in the Pol protein major conformational changes

were predicted to occur at ancient variants R853Q, P933T,

V939E, and T1014I. Lastly, two ancient variants S75F and

R214W found in the Env protein were predicted to have major

structural effects (Figure 4C, Figure S5). Both of these changes are

located away from the putative receptor binding region as this has

been defined in [6]. It is important to note that the other character

state found at each of the polymorphic sites in the ancient koalas

matched the character state present in the reference sequence.

Thus, despite the presence of these polymorphisms and their

modeled effects on proteins, KoRV overall has remained stable in

sequence and structure over time.

LTR and Integration Site Diversity
Multiple polymorphisms were observed in the long terminal

repeats (LTRs) that serve as promoter and terminator of the

retroviral transcription process (Figure 1). MatInspector (Geno-

matix) was used to examine U3, R, and U5 regions of the LTRs

for sequences matching transcription factor binding sites (TFBs)

and for disruptions of TFBs by polymorphisms. Polymorphic sites

from the next generation sequencing data were placed in phase

when possible (Figure 1). This analysis of the LTRs revealed the

presence of 82 putative TFBs (Table S3). Six of these had been

referred to by Hanger et al. (2000), including a TATA box,

CCAAT retroviral signal, and C-type poly-A signal (Table S6).

None of the polymorphisms detected would have disrupted the

previously predicted TFBs. However 20 additional predicted TFBs

would be generated by the various polymorphisms.

Sequences at the 59 and 39 end of the KoRV genome often

extended beyond the proviral integration sites into the host

genomic flank. Shared integration sites among koalas would be

strong evidence that a given locus represents an endogenized

retrovirus, since the chance that two proviruses would indepen-

dently integrate into the same locus is minuscule [42]. Four

hundred twenty nine 59 flanks and three hundred thirty one 39

flanks were identified across all the koalas tested (Table S7).

Thirty-two 59 and twenty-three 39 flanking sequences were shared

by two or more koalas, representing 7.5% and 7% of the total

respectively (Table S4).

The sequences flanking the integration sites were queried

against flanks found in six modern koalas, which had been

detected by other methods (Ishida et al., in preparation). Eight of

the integration sites found by hybridization capture were also

identified in one or more of six modern koalas tested (Table S7).

The sequences flanking KoRV were also queried against whole

genome sequences from a single koala, generated from one-

sixteenth plate GS-FLX shotgun sequence (Ishida et al., in

preparation). Two flanking sequences had matches among the
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GS-FLX results. One of the flanking sequences matched 45 of the

next-generation sequences, suggesting that this KoRV provirus

had integrated in a repetitive element of the koala genome. The

other matching flank sequence was detected only once. This

sequence was KoRV negative at the locus, with the host genomic

flank on the other side of the provirus evident in the sequence.

Discussion

Hybridization capture using archival samples has been used to

efficiently sequence mitogenomes [15], bacterial genes [43] and

low copy number genomically integrated viruses [44]. Here we use

hybridization capture to generate sequences at high coverage

across the full length of KoRV from both museum samples and

modern genomic DNA. Information on both the provirus and its

integration sites was obtained simultaneously, providing informa-

tion on ca. 130 years of KoRV evolution. Limited variation was

detected across the entire proviral genome including the LTRs. A

previous study had examined env from several of the same samples

used in this study. Using PCR and GS FLX sequencing, 20

polymorphisms and one fixed difference had been reported for env

between museum samples and reference sequence AF151794 [6].

Of these 20, only 4 polymorphisms were also identified by the

current study. However, 7 of the remaining 16 polymorphisms

were also detectable in the current dataset, but at levels below the

8% threshold used to screen for polymorphisms. This may reflect

the bias introduced by PCR based approaches to ancient DNA,

where molecules amplified in the earlier cycles (of which there are

few to begin with) may come to dominate in the pool of sequences.

This is particularly true for historical DNA where 60 or more

cycles have been used to generate templates. In contrast,

hybridization capture does not initially rely on PCR in enriching

the target from the library. Library primers are used post

enrichment to generate sufficient template for sequencing.

However, all templates have the sequences targeted by the

primers, and a lower cycle number is used (7–30 cycles), which

should yield a less biased data set. The drawback, common to

PCR and hybridization capture, is that very low frequency

polymorphisms may not be scored above background error and

DNA damage levels, though this is anticipated to be a lesser

problem with modern DNA than ancient DNA (which has a lower

number of templates). Variation in coverage also influenced

polymorphism scoring in the hybridization capture data; this had a

larger impact on the historical samples that generally have lower

coverage (Fig. 2). For example 6 of the env polymorphisms not

identified were likely due to low coverage in env for the poorest

performing sample, Pci-maex1738. However, hybridization cap-

ture of all samples identified 14 novel polymorphisms not

previously detected by PCR, including two novel polymorphisms

in the poorest performing sample Pci-maex1738. Increasing the

depth of coverage is possible with hybridization capture, whereas

removing bias from PCR based approaches is not. Thus, the ease,

coverage and lower expense of hybridization capture provide

advantages over PCR based approaches.

The polymorphisms in the gag, pol and env coding regions did not

display any evident differences in the proportions of private versus

shared alleles and/or in terms of synonymous versus non-

synonymous mutations. However, the number of radical versus

non-radical amino acid was significantly different across the three

coding regions. The relative number of radical mutations, those

corresponding to large physiochemical differences between the

amino acids, was significantly elevated in the env coding region

when compared to gag-pol coding regions. The higher proportion

of radical changes in Env could potentially reflect either anti-viral

immune pressure on the exposed portions of the Env proteins or

avoidance of receptor interference [45–49].

However, none of the non-synonymous substitutions altered

functional regions of the respective proteins reported as being

critical for infection or replication previously reported [3] or

altered any of the residues that have been functionally character-

ized in other viruses based on the CDD database (NCBI). The

latter results imply that negative selection could be responsible for

the conservation of these sites although statistically, deviation from

neutral evolution was not observed.

Most tests of selection suggested that the evolution of KoRV

does not deviate greatly from neutrality. An alignment of two

KoRV sequences from GenBank with seven KoRV consensus

sequences derived from the novel data did suggest a trend for

purifying selection to have played a stronger role in gag and to have

a reduced role in env. A weak trend was evident in calculations of

Tajima’s D, and was also suggested by codon-based Z-tests,

although these were not significant after Bonferroni correction. An

elevated number of non-synonymous changes in the Gag protein

may potentially suggest that anti-viral proteins such as TRIM5al-

pha are acting on KoRV. Evidence for such selective pressure has

been studied for TRIM5alpha itself [50]. Although these analyses

indicate relaxation of constraints overall, purifying selection may

have shaped and conserved particular structural and functional

elements.

The LTR region enrichment also resulted in retrieval of viral

integration sites. Only ca. 7% of the integration sites were found in

two or more koalas which suggests fixation of specific KoRV

integrations is not very advanced in koalas even where KoRV has

been present the longest such as Queensland. The large number of

unique integrations is consistent with previously reported results

for Southern blot hybridization based on pol and env genes, which

suggested that KoRV integration sites were quite variable across

individual koalas [51]. Although the hybridization capture method

would potentially capture both endogenous and exogenous

Table 4. Estimates of Tajima’s D*.

m S ps #- p D

gag 9 36 0.023003 0.008464 0.007419 20.623145

pol 9 37 0.010934 0.004023 0.004145 0.153741

env 9 22 0.011111 0.004088 0.004097 0.010077

all 9 95 0.01371 0.005045 0.004871 20.177721

*The analysis involved 9 KoRV sequences. Codon positions included were 1st+2nd+3rd. All positions containing gaps or missing data were eliminated. There were 1565
positions for gag, 3384 for pol, 1980 for env, and 6929 positions for all (concatenated coding sequences) in the final dataset. Abbreviations: m = number of sequences;
S = Number of segregating sites; ps = S/m; H= ps/a1; p= nucleotide diversity; D = Tajima test statistic.
doi:10.1371/journal.pone.0095633.t004
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proviruses, the presence of proviruses at the same locus in more

than one koala would indicate that at least some of the sequences

obtained are from endogenous retroviruses.

We found no evidence for KoRV-B in any of the historical

koalas, although partial KoRV-B receptor sequences were

identified in the modern koala Pci-SN265. The modern koala

was born in the Houston Zoo, Texas and had a complex pedigree

and transfer history including transfer among American and

European institutions. Thus, exposure to KoRV-B infected

individuals may have been possible although the exact source of

infection cannot be determined. Alternatively, KoRV-B may be

more widespread in captive koalas than previously estimated.

However, the absence of KoRV-B in the historical datasets would

be consistent with a recent emergence of this variant. By contrast,

two of three KoRV variants described from koalas in Japanese

zoos were also detected in the modern koala Pci-SN265. The

absence of KoRV-J sequences in the museum koalas is consistent

with a recent origin of these sequences.

Figure 3. Structural superimpositions of Pci-SN265 (green),
AF151794 (red), and KV522 (gold) KoRV Gag, Pol, and Env
protein structures, demonstrating the overall similarity of the
structures. Amino acid variations across these three sequences are
mapped on the protein models (arrows). The structural differences
predicted are attributed to changes in the polarity, charge, and atom
conformations. The models are shown in cartoon (left panels) and semi-
transparent surface (right panels) representations. The atoms of the
variable amino acid residues are shown in line representations to view
the side chains. In all comparisons the Pci-SN265 consensus sequence
was used as the reference.
doi:10.1371/journal.pone.0095633.g003

Figure 4. The effects of historical KoRV polymorphisms on
protein structure. Superimpositions are shown between the present
day consensus KoRV (Pci-SN265) protein structure and ancient KoRV
variants. Amino acid variations between these sequences mapped on
the protein models are shown in red and with arrows. The models are
shown in cartoon ribbon representations (left panels) and as semi-
transparent surfaces (right panels). The atoms of the variable amino
acid residues are in line representations to view the side chains. In all
comparisons the Pci-SN265 consensus was used as the reference
sequence. (A) The model of the Pci-SN265 Gag protein is superimposed
with the models of variants found in archival koalas um3435 and
maex1738. (B) The model of the Pci-SN265 Pol protein is superimposed
with variants found in QMJ6480, 582119, MCZ8574, Um3435, and
maex1738. (C) The model of the Pci-SN265 Env protein is superimposed
with the model of variants found in MCZ_12454 and um3435. For all
three polypeptides, the structural differences predicted are attributed
to changes in the polarity, charge, and atom conformations and are
largely localized onto flexible loop regions.
doi:10.1371/journal.pone.0095633.g004
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Overall, our results suggest that for ca. 130 years, the majority

of KoRV proviruses have remained conserved with one of the

character states at each ancient polymorphism matching that of

modern KoRV. Considering the potential pathological effects of

modern KoRV, its historical genomic and structural stability

suggests that koalas have suffered long term negative health

impacts in populations where KoRV has occurred. It also suggests

that fitness may eventually decrease in koala populations in

southern Australia where KoRV appears to be emerging.
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