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Abstract

One of the hallmarks of an eye movement that follows Listing’s law is the half-angle rule that says that the angular velocity
of the eye tilts by half the angle of eccentricity of the line of sight relative to primary eye position. Since all visually-guided
eye movements in the regime of far viewing follow Listing’s law (with the head still and upright), the question about its
origin is of considerable importance. Here, we provide theoretical and experimental evidence that Listing’s law results from
a unique motor strategy that allows minimizing ocular torsion while smoothly tracking objects of interest along any path in
visual space. The strategy consists in compounding conventional ocular rotations in meridian planes, that is in horizontal,
vertical and oblique directions (which are all torsion-free) with small linear displacements of the eye in the frontal plane.
Such compound rotation-displacements of the eye can explain the kinematic paradox that the fixation point may rotate in
one plane while the eye rotates in other planes. Its unique signature is the half-angle law in the position domain, which
means that the rotation plane of the eye tilts by half-the angle of gaze eccentricity. We show that this law does not readily
generalize to the velocity domain of visually-guided eye movements because the angular eye velocity is the sum of two
terms, one associated with rotations in meridian planes and one associated with displacements of the eye in the frontal
plane. While the first term does not depend on eye position the second term does depend on eye position. We show that
compounded rotation - displacements perfectly predict the average smooth kinematics of the eye during steady- state
pursuit in both the position and velocity domain.
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Introduction

Tracking the motion of a small object across a structured visual

world challenges the constancy of spatial orientation due to the

visual consequences induced by the eye movements. Since visually-

guided eye movements have an intricate eye-position dependent

kinematics the optic flow induced by tracking eye movements

depends in a complex way on the location and geometry of the

target trajectory in the visual field. In the simplest case a distant

object may move in a plane, which happens to include the

observer’s line of sight to the fixated target. The brain may then

compensate for the movement-induced optic flow by simple image

translation [1]. However, in many other situations the movement-

induced optic flow is likely to be highly nonlinear, making a simple

image translation impractical. According to H. v. Helmholtz

perceptual stability is achieved by an estimation process of the

visual consequences based on efference copy signals that are

derived from the motor commands to the eye muscles [2]. This

suggestion presupposes that the brain can efficiently estimate the

three-dimensional kinematic consequences of the motor com-

mands that generate the desired tracking motion of the eye.

Although far vision is two-dimensional it matters for keeping visuo-

spatial orientation stable to be informed not only about the current

gaze displacement but also about how much the peripheral retina

rotates about the line of sight. Since up to date there is not enough

information about the geometric relationship between motor

commands and three-dimensional ocular kinematics during

smooth tracking of an object of interest, our understanding of

the interactions between retinal and extra retinal signals remains

necessarily limited. A major goal of this study is to bridge this gap

starting from basic motor principles.

There are two basic low level mechanisms that do constrain the

kinematics of all visually-guided eye movements. One mechanism

is Donders’ law, which asserts that the eye, while holding the head

still, assumes always the same orientation for every fixation

direction, independent of the preceding eye movement [3]. The

other mechanism is Listing’s law, which implies that the eye can

only assume certain specific orientations relative to the head [2,4–

6]. To reach those orientations the eye must rotate in planes that

define, by way of intersection, a particular single direction in visual

space, which has been called primary direction. This direction is

distinguished by the unique property that any other direction in

the visual field of fixations can be reached by a single rotation of

the eye in the plane spanned by primary direction and the new

desired direction. Despite its theoretical importance the notion of

primary eye position and direction defies any more operational

definition. Although there exist recursive procedures based on

evaluating eye positions relative to a fixed reference position in far

vision, while keeping the head upright and still [2,4,7], its

neurophysiological significance in basic oculomotor research

remains elusive. Since we rarely move the eyes with the head

and body still the issue of how these basic mechanisms are

imbedded in the larger context of head-free motor behavior has

been intensively studied. While the head contributes to gaze

movements, a major factor complicating the analysis of the basic

role of Donders’ and Listing’s law in eye position control is the

intricate interaction of visual and vestibular signals [8,9]. Since the
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general relationship between eye position and position-dependent

angular eye velocity signals related to Donders’ and Listing’s law is

poorly understood, interactions with vestibular and other signals in

the nested eye-head motor control system are difficult to discern. It

appears therefore indispensable to more closely analyze this

relationship in order to be able to segregate visual from vestibular

and other effects in terms of the overall angular eye velocity in

neurophysiological studies. In the current oculomotor literature it

is often tacitly assumed that the angular velocity of a Listing-

motion of the eye tilts by half the angle of gaze eccentricity with

respect to straight ahead, although this is guaranteed only for

fixed-axis rotations of the eye. The following analysis focuses on

smooth tracking eye movements, which stand out as one of the

prime examples of a Listing-motion [10–14]. Since visual targets

can rarely be tracked by a single-axis rotation, it is still a mystery

how such eye movements are generated within the constraints of

Listing’s law. Here we propose a generic rotation algorithm based

on the principle of minimizing ocular torsion. It generates smooth

Listing-motions of the eye by operating linearly on the orientation

of the line of sight for small rotation angles. Based on this

algorithm we analyze the relationship between angular eye

position and velocity of a general Listing-motion. Since such

generic algorithm has not been known up to date, a Listing-motion

of the eye has traditionally be conceived as a series of compounded

rotations, also called virtual rotations to and from primary position

between each fixation [2,15] (Fig. 1). Taken as motor control

strategy during smooth tracking movements such an algorithm not

only implies a considerable amount of computation for every

single instant of ocular motion but also lacks plausibility in terms of

a time-critical strategy for target tracking. Besides combined eye-

head gaze shifts smooth tracking movements with the head still or

moving are typically non-fixed-axis rotations because the interest-

ing target can rarely be smoothly tracked otherwise [16–18]. For

testing the predictions of our mathematical analysis of the

characteristics of a general Listing-motion, therefore we used

three-dimensional eye movements that had been earlier recorded

in non-human primates during linear and curvilinear smooth

pursuit [11,18].

Results

A Rotation Operator that Generates Listing-motions of
the Eye
We show that it is possible to replace the virtual rotations

illustrated in Fig. 1 by two explicitly defined single rotation

operators. First we define a compound rotation operator

RCF r,jð Þ : ~RC rð ÞRF jð Þ consisting of a first rotation of the

eye through j in the head’s frontal plane followed by a rotation

through r in the eye’s coronal plane and the requirement that the

rotation angles fulfill the relation r~{j (Fig. 2). In contrast to

compound rotations obtained by composing rotations in mutually

orthogonal planes according to Euler, the rotation planes used to

construct the compound rotation RCF are not orthogonal to each

other. In the following we show that this operator generates a

Listing-motion by acting linearly on the line of sight for small

rotation angles.

We define the direction of the line of sight by the unit gaze

vector ĝg~
P3

i~1 giêei with coefficients g1~ cos e,
g2~{ sin e siny and g3~ sin e cosy using the spherical polar

coordinates e and y (Figs. 1 and 2). The unit vectors êei (i = 1, 2 and

3) represent a right-handed, head-fixed Cartesian coordinate

system illustrated in Figs. 2 and 3 with êe1~EO
�!

= EO
�!��� ��� pointing

in direction straight ahead, êe2~EL
�!

= EL
�!��� ��� pointing left and

êe3~EN
�!

= EN
�!��� ��� pointing upward. We call the eye’s plane

orthogonal to the line of sight the coronal plane in contrast to

the frontal plane of the head, which is orthogonal to straight ahead

(orthogonal to FO
�!

in Figs. 1, 2 and 3). To take advantage of the

Clifford algebra of rotations, we introduce the basis vectors ĉci
(i = 1, 2 and 3), which are defined by the properties ĉcið Þ2~I
(identity) and ĉcj ĉckzĉck ĉcj~2djkI with djk~1 for j = k and djk~0 if

j ?k (for more details, see Text S1). In this basis, the unit gaze

vector ĝg is represented by the 1-vector ĝg~
P3

i~1 gi ĉci, using the

same coefficients gi (i = 1, 2 and 3) as in Euclidean space.

Furthermore, the frontal, sagittal, and horizontal planes are

represented by the three 2-vectors ĉc23 : ~ĉc2ĉc3, ĉc31 : ~ĉc3ĉc1 and

ĉc12 : ~ĉc1ĉc2, respectively. In the following we abbreviate linear

combinations of these three basic 2-vectors byP
i ai ĉcjk : ~a1ĉc23za2ĉc31za3ĉc12. The coronal plane of the eye

is represented by the 2-vector ĉcey : ~ĉceĉcy where

ĉce~Lĝg=Le ~
P3

i~1 Lgi=Le ĉci and

ĉcy~Lĝg=Ly ~
P3

i~1 Lgi=Ly ĉci. We now explicitly define the

rotation operator RDL : ~RCF r,jð ÞDr~{j (Fig. 2):

RDL~ I cos j=2z sin j=2ĉcey
� �

I cos j=2{ sin j=2ĉc23ð Þ

ĉcey~
X

i
gi ĉcjk~ĉc23 cos e{ sin e ĉc31siny{ĉc12 cosyð Þ

where r is the rotation angle in the eye’s coronal plane (given by

ĉcey), j is the rotation angle in the frontal plane (given by ĉc23) and e

is the eccentricity of the line of sight. In the direction straight

ahead, we have ĉceyDe~0~ĉc23 and thus RDL~I . Note that the

condition r~{j implies Donders’ law because it reduces the

dimension of the manifold of ocular rotations from three to two.

Since the torsion of visually-controlled eye movements is typically

small we can expand the operator RDL up to terms linear in j
using the approximations cos j&1 and sin j&j. The resulting

simplification renders the following calculations feasible and a

posteriori proof to be sufficient for characterizing smooth visually-

guided the eye movements. We will refer to the infinitesimal form

of RDL specifically as Donders-Listing operator dRDL:

dRDL&Iz j=2ð Þ ĉcey{ĉc23
� �

~Izj sin (e=2)ĉcDL

ĉcDL~1=Ne g1{1ð Þĉc23zg2ĉc31zg3ĉc12f g,

Ne~Dĉcey{ĉc23D~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1{ cos eð Þ

p

This linear operator functions as a generator of torsion-free

rotations, i.e. motions that preserve Listing’s law in the oculomotor

range up to second order corrections in e and j (for a proof, see

Text S2). In fact dRDL mediates a rotation of the line of sight in

the head’s frontal plane ĉc23 by rotating the eye in the tilted plane

ĉcDL. Indeed under the action of dRDL the gaze vector ĝg rotates

from its current position through the angle j to the new position ĝg’

Visually-Guided Eye Movements
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(see motion of unit gaze vector from ĝg*OA
�!

to ĝg’*OB
�!

in Fig. 3A):

ĝg’~dRDLĝgdR
{1
DL

~ Izj sin e=2ĉcDLð Þĝg I{j sin e=2ĉcDLð Þ&ĝgzjLĝg=Ly

The approximation on the right side follows from the relation

sin e=2 ĉcDLĝg{ĝgĉcDLð Þ~Lĝg=Ly and by observing that

j2 sin2 e=2 ĉcDLĝgĉcDL represents only a small contribution of second

order. In contrast, the rotation plane of the eye ball tilts by half the

line of sight’s eccentricity, namely through the angle

t0~ cos{1 SĉcDL,ĉc23Tð Þ~ cos{1 ĉcDLĉc23ð Þ0~p=2 {e=2 . Indeed,

the plane ĉcDL is approximately an eigenplane of the operator

dRDL: We have dRDLĉcDLdR
{1
DL~lĉcDL with eigenvalue

l~1zj2 sin2 e=2 &1 because ĉcDLĉcDL{ĉcDLĉcDL~0 and

ĉcDLĉcDLĉcDL~{ĉcDL in the expansion of dRDLĉcDLdR
{1
DL . Thus

the eigenvalue of dRDL approximates the eigenvalue of a proper

rotation up to corrections quadratic in j and e/2, noting that j,1

and e/2,1. Also note that at each gaze position the angle

subtended by the rotation planes ĉcey and ĉcDL is

te~ cos{1 SĉcDL,ĉceyT
� �

~p=2 {e=2 , independent of the actual

orientation of the eye.

Figure 1. Virtual rotations required to approximate a smooth Listing-motion. To track a target that happens to move along a direction-
circle (T: left panel), eye position signals holding the eye in the required plane of rotation could theoretically be derived by the following procedure
(Helmholtz 1867): To obtain a smooth motion from A to B along the associated direction-circle (white circle through pupil, T, and F), the following
four virtual rotations must be compounded: A first rotation in the sagittal plane NAO through an angle g subtending the arc AO, abbreviated by
ROA gð Þ, a second rotation in the frontal plane LNR through j subtending the arc NN9, abbreviated by RF jð Þ, a third rotation in the meridian plane
OBN9 through g9 subtending the arc OB, abbreviated by RBO g’ð Þ, and finally a forth rotation in the eye9s coronal plane through –j, abbreviated

RC {jð Þ to eliminate the acquired torsion. Denoting by ĝgA and ĝgB the unit gaze vectors parallel to EA
�!

and EB
�!

, respectively, we have altogether
ĝgB~RC {jð ÞRBO g’ð ÞRF jð ÞROA gð ÞĝgA. For small angles j, ĝgBA~ I{RCRBORFROAð ÞĝgA approximates a smooth Listing-motion from A to B along the
direction-circle arc. Left panel, sketch of the eye: O, primary position; F, occipital position, antipodal to O; N, R, L, defining north, right and left
directions in the eye’s coronal plane; direction- circle (white), circle passing through center of pupil and F. Right panel, front view onto the eye with
spherical coordinate grid: y, meridian angle; j, rotation angle; e, eccentricity relative to O along circles y= constant; g, rotation angle in planes
y= constant.
doi:10.1371/journal.pone.0095234.g001

Figure 2. Geometry underlying the action of the operator RCF. (A) Side view on the spherical field of fixations, represented by a sphere with
the eye (E) in the center, EO

�!
gaze direction straight ahead and F, occipital fixation point. The unit gaze vector ĝg represents the direction of the line of

sight, parallel to ET
�!

, to the fixation point T. Fixation points are parameterized by the spherical polar coordinates y, e. (B) Front view on the spherical
field of fixations, displaying j, angle of ocular rotation in the frontal plane LNR; r, angle of ocular rotation in the eye’s coronal plane LN9R. For further
details see text.
doi:10.1371/journal.pone.0095234.g002
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To generate a general Listing-motion, the Donders-Listing

operator must be combined with an operator mediating meridian

rotations, that is horizontal, vertical and oblique rotations,

whereby each of the two operators act in mutually orthogonal

planes. The rotation plane of the meridian operator is defined by

cM : ~ĉcrĉce with ĉcr~Lĝg=Lr :ĝg and ĉce~Lĝg=Le . Thus we have:

RM~I cos g=2{ sin g=2ĉcM ,

ĉcM~ĝgLĝg=Le~{ ĉc31 cosyzĉc12 sinyð Þ

It can be approximated by dRM~I{g=2 ĉcM for small rotation

angles gv1. It moves the unit gaze vector along the meridian

y= constant without changing the torsion of the eye. By

compounding the meridian and Donders-Listing operator, eye

positions can be generated that smoothly track arbitrary trajec-

tories of objects of interest in visual space. Between each pair of

transient fixation positions we have Dĝgi~ĝgi{ĝgi{1where.

ĝgi~RMdRDLĝgi{1dR
{1
DLR

{1
M ~ IzjL=Lyð ÞRMĝgi{1R

{1
M ð2Þ

moves the unit gaze vector from position ĝgi{1 to position ĝgi. If the
rotation in the meridian plane is small the rotation operator RM

can be approximated by its linear version dRM . So far equation 1

and 2 suggest that essentially only two displacement signals,

namely jBA~yB{yA and gBA~eB{eA are needed to command

a Listing-motion of the eye from position A~ yA,eAð Þ to

B~ yB,eBð Þ. The two signals can be expressed in a one-to-one

fashion in terms of azimuth and elevation of the eye as shown in

the paragraph ‘‘Parameterizing Listing-motions in visual space’’.

The Total Angular Velocity of the Eye
Although recursive application of the infinitesimal compound

rotation operator dRM gð ÞdRDL jð Þ does generate eye movements

in rotation planes that tilt by half the angle of gaze eccentricity, the

question remains whether the angular velocity also follows the

half-angle law of Helmholtz. To approach this question first we

expressed the total rotation of the eye as Reye r,j,gð Þ~RCFRM by

compounding RCF r,jð Þ (as earlier defined) and the meridian

rotation operator RM ĉcM ,gð Þ. Left-multiplying the velocity d/

dt(Reye) by the inverse R{1
eye , we obtained the angular velocity (see

e.g. [19]):

Veye~2R{1
eye dReye

�
dt~VDLzVM ð3Þ

with VDL~R{1
M VCFRM , VCF~2R{1

CF dRCF=dt and

VM~2R{1
M dRM=dt . The expression for VCF can be further

broken down to VCF~VFzR{1
F VCRF in terms of a roll angular

velocity VF~2R{1
F dRF=dt with RF : ~R ĉc23,jð Þ and a coronal

or counter-roll angular velocity VC~2R{1
C dRC=dt with

RC : ~R ĉcey,r
� �

. Clearly, the rotation plane of VM does not

depend on the eccentricity of the line of sight in contrast to the

term VDL. As a consequence, the total angular eye velocity does

not obey the half-angle law of eye position (which always holds)

because the rotation plane of VM does not tilt. Next we analyzed

the two terms on the right side of equation 3 in more detail.

The Donders-Listing Angular Velocity
The counter-roll angular velocity is explicitly VC~{dr=dt ĉcey.

Similarly, the roll angular velocity is VF~{dj=dt ĉc23. Substitut-
ed into VCF and evaluated at r~{j, one obtains

V’DL : ~VCF Dr~{j~dj=dt R{1
F ĉceyRF{ĉc23

� �
. Because

R{1
F ĉc23RF~ĉc23, we have

Ne~DR{1
F ĉcey{ĉc23

� �
RF D~Dĉcey{ĉc23D~2 sin e=2 , so finally we

obtained:

V’DL~2 sin e=2dj=dtĉc’DL

Figure 3. Approximation of a general Listing-motion in the spherical field of fixations. (A) Front view on the spherical field of fixations and
(B) side view on the meridian plane through OBC. Under the action of the Donders-Listing operator dRDL the fixation point A (gaze parallel to EA

�!
)

moves through a small angle j approximately along the arc AB from A to B. Similarly, under the action of the meridian operator dRM the new fixation

point B (gaze parallel to EB
�!

) moves through a small angle g along the arc BC from B to C. If both the Donders-Listing and meridian operator act
simultaneously the fixation point moves along the arc AC from A to C. Format similar as in Figures 1 and 2.
doi:10.1371/journal.pone.0095234.g003
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ĉc’DL~1=NeR
{1
F ĉcey{ĉc23

� �
RF~

X
i
v’i ĉcjk

v’1~{ sin e=2, v’2~ cos e=2 sin j{yð Þ,

v’3~ cos e=2 cos j{yð Þ

Thus, the plane of rotation of the angular velocity V’DL tilts in

accord with the half-angle rule [4], at least if there is no meridian

rotation involved. If there is such rotation, one has to go one step

further by evaluating

ĉc’’DL~R{1
M ĉc’DLRM~R{1

M R{1
F ĉcDLRFRM~

P
i vi ĉcjk, which

yields the following expression, referred to as Donders-Listing

angular velocity (for small rotation angles j):

VDL~2 sin e=2dj=dt
X

i
vi ĉcjk ð4Þ

v1~ sin g{e=2ð Þ

v2~{ cos g{e=2ð Þ sin yð Þzj cos e=2 cosy

&{ cos g{e=2ð Þ sin yð Þ

v3~ cos g{e=2ð Þ cos yð Þzj cos e=2siny& cos g{e=2ð Þ cos yð Þ

The angular velocity plane of the Donders-Listing angular

velocity tilts through an angle

t~ tan{1 v1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

2zv2
3

q� �
~g{e=2 j%1ð Þ, independent of the

meridian y. Thus we found that the rotation plane of the

Donders-Listing angular eye velocity must not coincide with the

rotation plane of eye position. The half-angle law of eye position

translates into a modified half-angle law of angular eye velocity.

However, note that often the rotation angle g will be much smaller

than e/2, which obscures small differences between these two

rotation planes.

Meridian Angular Velocity
The contribution of VMdepends on the time rate of change of

both the rotation angle g and the angular orientation y of the

meridian plane. With the meridian plane

ĉcM~{ ĉc31 cosyzĉc12 sinyð Þ we have for the meridian angular

velocity:

VM~{dg=dtĉcM{2 sin g=2R{1
M d ĉcM=dt

The second term in this relation implies a small change in

ocular torsion because R{1
M d ĉcM=dt ~{dy=dt ĉcLM with

ĉcLM : ~ sin g=2 ĉc23{ cos g=2 LĉcM=Lyð Þ. The two planes ĉcM
and ĉcLM are mutually orthogonal. Note that dy=dt and dj=dt
are equivalent. Thus we can write:

VM~dg=dt
X

i
vi ĉcjkz2 sin g=2dj=dt

X
i
si ĉcjk ð5Þ

v1~0, v2~ cosy, v3~ siny

s1~ sin g=2, s2~{ cos g=2 siny, s3~{ cos g=2 cosy

The dynamic interaction term on the right side of (5), which

depends on the rotation angle g and the rotation velocity dj=dt
can make a significant contribution to ocular torsion as shown

next.

Ratio of Counter-roll to Target-induced Roll Angular Eye
Velocity
To estimate the angular eye velocity induced by a visual target

one has to know the counter-roll angular velocity, which

contributes to the total angular velocity of the eye but not to the

target angular velocity that is encoded by the fovea. We define the

target-induced angular velocity as the difference

DV~Veye{V’’C~VMzV’F with the abbreviations

V’F : ~R{1
M VFRM and V’’C : ~R{1

M R{1
F VCRFRM . Dividing

both sides by the magnitude DDVD and rearranging the summands

we obtained the following equation:

ĉcDzlĉc’’ey~f

Here we have introduced the ratio l~DVC D=DVDD , noting that

DV’’C D~DVC D and the abbreviations f~Veye=DDVD , ĉcD~DV=DDVD
and ĉc’’ey~V’’C=DVC D . The l-ratio is a complicated function

describing the magnitude ratio of counter-roll to target-induced

angular velocity in dependence of eye position (coordinates e and

y) and rotation (rotation angles j and g). To minimize

accumulation of torsion, this ratio must be such that the

counter-roll angular velocity compensates the target-induced

angular velocity in the frontal plane (see Fig. 2B). Using this

condition we evaluated the equation by computing the scalar

product of f andĉc23, i.e. Sf ,ĉc23T~SĉcDzlĉc’’ey,ĉc23T, setting it equal
to zero and solving for l. We obtained for small rotation angles g
(for calculation details, see Text S3):

l^1

	
g1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z Lg=Ljð Þ2

q
ð6Þ

It describes the ratio of DVC D to DVDD~DVMzV’F D as a function

of gaze eccentricity e and the magnitude of the gradient Lg=Lj ,

which we will refer to as counter-roll to roll angular velocity ratio.

In case of a simple target-induced angular velocity in the frontal

Visually-Guided Eye Movements
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plane it reduces to l~1=g1 ~1= cos e , predicting that the

counter-roll angular velocity must increasingly outmatch the roll

angular velocity in magnitude as gaze eccentricity increases [18].

Conversely, it also predicts that the counter-roll angular velocity

will undershoot the roll angular velocity in magnitude if there is a

gradient Lg=Lj such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z Lg=Ljð Þ2

q
w1. In primary

direction, one has l~1, suggesting that fluctuations in roll

angular velocity are matched on average in magnitude by

counter-roll angular velocity signals.

Parameterizing Listing-motions in Visual Space
Target trajectories along straight lines in Euclidean space

correspond to either small or great circle arcs in the spherical field

of fixations. In contrast to great circles through the fixation point

straight ahead, small circle -trajectories cannot be tracked by a

torsion-free rotation of the eye in a single rotation plane. To

approximate such trajectories, the eye must perform compounded

rotations in meridian and frontal planes. The underlying

transformations involve trigonometric relations between the

azimuth and elevation of the desired fixation points and the

respective meridian and eccentricity angles. For example, tracking

of a target along an eccentric horizontal trajectory, corresponding

to a horizontal circular arc in the upper hemisphere of the visual

field, involves transformations of the unit gaze vector ĝg~ĝg e,yð Þ
according to the relations.

e~ cos{1 cos e0 cos qð Þ

y~{ sin{1 cos e0sin q=sin eð Þ

where e0 and q0~0 is the initial position of gaze after acquiring

the target at position T 0ð Þ~ e0,q0~0ð Þ (Fig. 4, inset). Torsion-free
tracking of this target can be achieved by repeatedly compounding

Donders-Listing and meridian rotations to move the tip of the unit

gaze vector first approximately along a small circular arc in the

frontal plane, say from target position T i{1ð Þ to S ið Þ and then

along the great circle arc through primary position and S ið Þ to the

subsequent position T ið Þ (as an example, see triangular path from

T 0ð Þ to S 1ð Þ and to T 1ð Þ in Fig. 4). Since the resulting rotation is

torsion-free up to second order corrections in j the overall torsion

generated by a series of such compound rotations depends only on

the chosen size of the Donders-Listing rotation steps. Simulations

showed that the accumulated torsion across a 640u horizontal

excursion was linearly dependent on the number of sampling

points (tested range 10# N#1000), reaching about 0.025u with an

average �jj=0.5u 60.2u for N= 100 sampling points (Fig. 4). The

angular ratio of the tilt of the rotation plane of the eye to the tilt of

the gaze line followed the half-angle law [2] whereas the tilt of the

rotation plane of the gaze line was virtually zero (Fig. 4A, B). Note

also that the eccentricity of the gaze line increases significantly

across the illustrated range of tracking compared to tracking onset

at azimuth q=0 (compare the change of e with q in Fig. 4A).

Smooth Pursuit Angular Eye Position and Velocity
Predicted from Target Motion
To check the predictions of equations 1 and 2 that two-

dimensional position signals are sufficient to generate a Listing-

motion, which is characterized by equations 3 to 6, we studied

position and angular velocity of smooth pursuit eye movements

during tracking of linear- and curvilinear-moving targets. For

geometric reasons, such eye movements cannot be smooth and at

the same time perfectly obey Listing’s law except in case of target-

tracking along great circle arcs in visual space. Consider for

example smooth tracking of a circularly moving object in a frontal

plane, where the eye has to approximate the object’s path by a

multi-sided polygon curve consisting of a series of small arcs of

direction-circles. Indeed, such arcs only can approximate the

circular path because of different curvatures: The curvature of a

small circle arc with aperture 2e (e, gaze eccentricity) is always

larger than the curvature of a direction-circle tangent to that arc

(Fig. 1). Similar considerations hold for tracking objects along

small circle arcs associated to straight lines in visual space (Fig. 4).

Obviously, there must be a trade-off between smoothness of gaze

motion and accord with Listing’s law during steady-state target

tracking [18].

Before addressing the complex paradigms of circular and elliptic

tracking we present the results of linear smooth tracking, applying

equations 1–5 to eye movement records obtained during tracking

of targets that oscillated along horizontal or vertical small circles at

various eccentricities relative to straight ahead. To reconstruct the

ocular rotation, we used the initial orientation of the gaze line at

tracking onset and an internal model estimating the target’s

distance and orientation in the subject’s frontal plane (see

Methods). From these pieces of information the rotation of the

eye was reconstructed as a function of gaze orientation given by

the polar angles e and y (see Fig. 1 and 4). The reconstructed

rotations reflected the smooth motion of the eye (up to first order

in torsion, see equation 1), disregarding any step- like modulations

of eye position due to minute saccades. Accordingly no

modulation of torsional eye position was generated in contrast to

the experimentally observed torsion due to saccades and

subsequent drifts (Fig. 5A: compare sinusoidal fit in black with

reconstruction in gray). The reconstruction predicts zero torsion

offset relative to straight ahead, in agreement with the fact that the

experimentally observed average torsion offset in the example

illustrated in Fig. 5A added up to close to zero. Averaging across

the five different gaze eccentricities and the two animals, the

torsional modulation of eye position had an average amplitude

(6SD) of 0.6u (60.85u) and offset of 0.07u (60.8u) during

horizontal tracking (N= 44 cycles). Similarly, during vertical

tracking the average amplitude (6SD) was 0.8u (60.7u) with

offset of 0.004u (60.6u) (N= 47 cycles). Close inspection of vertical

and horizontal eye positions revealed that the torsional saccades

had also horizontal and vertical components during horizontal and

vertical tracking, respectively, that changed direction at the

turning points. The overall magnitude of these saccades was

about 1u to 1.5u.
Again, the reconstructed eye position reproduced the average

horizontal and vertical smooth modulation (Fig. 5C). Averaging

across the five different eccentricities and the two animals, we

found mean coefficients of determination (6SD) of vertical and

horizontal reconstructions of 0.5960.30 and 1.060.0002, respec-

tively, in the horizontal tracking paradigm. The associated mean

root-means-square (rms) errors (6SD) were 0.0360.05 and

0.00960.006 (N=44). And similarly in the vertical tracking

paradigm, the respective mean coefficients of determination were

1.060.0002 and 0.9660.03 and mean rms-errors were

0.00960.001 and 0.0460.05 (N= 47).

According to equation (3), the experimental (slow phase)

angular eye velocity should be the sum of Donders-Listing angular

velocity (equation 4), the meridian angular velocity (equation 5)

plus a significant contribution due to saccadic modulation of eye

Visually-Guided Eye Movements
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position and subsequent position drifts, which have been averaged

out by the reconstruction of eye position. Whereas Donders-

Listing angular velocity does tilt according to the half-angle law of

Helmholtz the meridian angular eye velocity does not tilt (equation

5), except in cases where the gradient DLg=Lj D is large enough

(equation 6). Averaging across the five different eccentricities and

the two animals, we found mean coefficients of determination of

the reconstruction-based torsional, vertical and horizontal angular

velocity of 0.1960.22, 0.1060.07, and 0.9660.01, respectively,

with rms-errors of 0.8860.12, 0.9560.03, and 0.1960.03 for

horizontal tracking (N= 44). And similarly for vertical tracking we

found mean coefficients of determination of 0.2560.27,

0.9060.04, and 0.2560.16, respectively, with rms-errors of

0.8160.15, 0.3160.06, and 0.8660.10 (N= 47).

We also compared the degree of accordance with Listing’s law

based on the experimental slow phase angular velocity and the

total angular velocity derived from the reconstructed eye position.

The conventional method compares the tilt of the angular eye

velocity plane, calculated by t~ tan{1 V½ �tor=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V½ �2verz V½ �2hor

q
 �
to the associated gaze eccentricity. HereV denotes the angular eye

velocity vector obtained by least-squares sinusoidal fitting of slow

phase angular velocity. The ‘‘associated gaze eccentricity’’ refers to

the eccentricity of the point in the spherical field of fixations where

the angular velocity rotation plane, the associated orthogonal

meridian plane and the spherical field intersect. This point was

estimated by averaging tilt angles and eye positions in the middle

of each cycle between time t = 4 s to t = 6 s. On the other hand, we

computed teye from the total eye angular velocity (equation 3) and

tDL from the Donders-Listing angular velocity (equation 4) across

each tracking cycle. Using the conventional approach we found tilt

angle ratios of 0.5160.03, 0.3760.4, 0.0960.06, 0.5460.05 and

0.5560.03 for the five fixation paradigms from gaze up to gaze

down during horizontal tracking (N= 24 cycles, 1 subject). Using

the reconstruction approach, the same animal showed a quite

different picture. As predicted by equation 3, the tilt profile of the

rotation plane of total angular velocity, teye, and that of Donders-

Listing angular velocity, tDL coincided only at the point in time

where the eye (and the tracked target) crossed the vertical meridian

during horizontal or the horizontal meridian during vertical

tracking (Fig. 6A, compare black and gray traces). At these times

during the tracking cycles, the instantaneous ocular rotation was

tangential to current eye position. As the eye rotated away from

these meridian crossing points during tracking, the tilt of the

rotation plane of the total angular velocity remained constant

(black traces in Fig. 6A), whereas that of Donders-Listing angular

velocity increased in absolute terms due to the increasing distance

relative to straight ahead (Fig. 6A, gray traces).

To further elaborate on this observation, we plotted the ratio of

tilt angles to estimated target distances against estimated target

distance. Target distance was defined by D~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
verzE2

hor

q
(expressed in degrees). Tilt angles and target distances were

determined at increments of one degree by averaging across

Figure 4. Minimizing ocular torsion during horizontal target tracking. A, top black curve: Angular tilt of the unit gaze vector ĝg ið Þ~ET (i)
���!

(i = 1,
2 …N) plotted against meridian angle y or azimuth angle q. Middle black curve: Reconstructed eccentricity of ocular rotation plane plotted against
meridian y or azimuth q. Note increasing tilt of these two curves with increasing absolute azimuth q. Bottom thick gray curve: Angular tilt of rotation
plane of gaze line, remaining perfectly invariant during tracking motion. B: Simulated vertical (gray line) and horizontal component (black line) of 3D
eye position plotted against azimuth (q); onset of tracking to the left and right at straight ahead. C: Simulated torsional component (black line: 10 Hz

sampling rate as in A and B; gray line: 5 Hz sampling rate). Inset: azimuth q (not displayed), angle subtended by small circle arc from T (0) to T (1) ;

Listing’s plane, plane through E, N and R; line segment EO
�!

, primary gaze direction; T(0), initial target position; S(1), intermediate position, virtually
traversed while tracking the target from T(0) to T(1) (for more details see Results).
doi:10.1371/journal.pone.0095234.g004
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60.25u throughout the tracking cycle. The tilt angles increased

virtually linearly with slopes close to 0.50 as a function of target

distance (Fig. 6B, example for horizontal pursuit at 15u gaze up).

Averaging across the two subjects and paradigms we found that

the ratio of tilt angle to target distance was 0.50 (6161025,

N= 290) in the position range of 5u to 10u around straight ahead

and decreased thereafter to 0.4975 (60.0006, N= 366) for

distances between 10u and 15u and further to 0.492 (60.001,

N= 309) for distances beyond 15u (Fig. 6C).

Smooth Tracking of Targets along Elliptic Trajectories
As model for the following analysis served eye movement

records of elliptic target trajectories with three different eccentric-

ities (semi-major axis 20u, semi-minor axis 15u, 10u or 5u), oriented
horizontally or vertically. Application of equations 1 and 2 based

on the recorded meridian eye positions (angle y) and an internal

model of elliptic motion (see Methods for details) perfectly

reproduced the average smooth eye movement, except for the

large saccadic modulation of torsional position (Fig. 7A). Averaged

across the three classes of elliptic paradigms, we found a mean

coefficient of determination of 1.060.001 for horizontal elliptic

tracking with rms-errors of vertical and horizontal eye positions of

0.0560.008 and 0.0460.004, respectively (N=155). Similar

values were obtained for vertical elliptic tracking, yielding a mean

coefficient of determination of 0.9960.005 and average rms-errors

of vertical and horizontal eye position of 0.0560.008 and

0.0460.004, respectively (N=173).

The reconstructed eye position represented an average across

the minute saccadic shifts in vertical and horizontal eye position.

These small saccades had direction-specific torsional components,

Figure 5. 3D angular eye position and velocity reconstruction of horizontal tracking. A to B, left two columns: Reconstructed eye position
(thick gray traces) during tracking at gaze 15u up and 15u down, superimposed on experimental 3D eye position in color (sinusoidal fits only shown
for torsion). Note average torsional offset of about +1u and 21u for gaze up and down, respectively. Transformation to primary position would
eliminate these offsets but not the saccadic modulation. A to B, right two columns: Reconstructed angular eye velocity (thick white traces) during
tracking at gaze 15u up and 15u down, superimposed on experimental 3D angular eye velocity in color (sinusoidal fits, black traces). Torsional, vertical
and horizontal experimental data in red, green and blue, respectively; for more details, see text.
doi:10.1371/journal.pone.0095234.g005
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which often gave rise to torsional drifts in the amplitude range of

1–2u as shown earlier [18]. Accordingly, the reconstructed angular

eye velocity did neither reproduce these experimentally observed

torsional oscillations nor did it perfectly match the magnitude of

the horizontal and vertical slow phase modulation. Averaged

across the three elliptic paradigms, we found mean coefficients of

determination for torsional, vertical and horizontal angular

velocity of 0.0760.03, 0.9060.01, and 0.9660.01, respectively,

with rms-errors of 0.4260.03, 0.1760.02, and 0.1060.01 for

horizontal elliptic tracking (N= 155). And similarly mean coeffi-

cients of determination for torsional, vertical and horizontal

angular velocity of 0.0760.02, 0.9160.02, and 0.9560.01

respectively, with rms-errors of 0.3560.02, 0.2460.03, and

0.1360.01 for vertical elliptic tracking (N= 173). According to

the small torsional modulation in the position domain, the

torsional angular eye velocity modulated in the range of about

61u/s. Both these violations of Donders’ and Listing’s law in the

position and velocity range averaged out across each response

cycle (compare reconstructed and sinusoidal- fitted torsional

angular velocity in Fig. 7A, B). To further corroborate this finding

we compared the rotation planes.

We computed both the modulation of the tilt angle of the

reconstructed angular eye velocity as well as that of the sinusoidal-

fitted slow phase angular eye velocity and compared both of these

to the tilt-modulation predicted by the Donders-Listing angular

velocity. We found that in absolute terms the modulation of the tilt

angle of the reconstructed angular eye velocity undershot the

contour predicted by the gaze modulation during tracking in

between the vertices of the elliptic track. This difference reflected

the contribution of meridian angular velocity to the total angular

velocity, which does not depend on eye position. In contrast, the

modulation of the tilt angle of Donders-Listing angular velocity

closely reproduced the expected contour: It modulated in

synchrony with gaze eccentricity across the whole target cycle,

as dictated by the elliptic trajectory (Fig. 8, compare black and

dark-gray traces). On the other hand, the tilt angle of the

sinusoidal fits of slow phase angular eye velocity (Fig. 8, light-gray

traces), which included torsional saccadic drift velocities modulat-

ed in approximately the same range but phase shifted and

distorted compared to both the Donders-Listing and the total

angular eye velocity. Although this modulation greatly overshot

the extreme vertices of the target trajectories, where the torsional

angular velocities was high ($50u/s) it conformed to the half-angle

rule on average fairly well as documented in Table 1.

Ratio of Counter-roll to Roll Angular Velocity
We estimated the ratio of counter-roll to roll angular velocity

using two independent procedures. First, we estimated this ratio

from angular eye position and velocity records and found that it

deviated from the expected 1= cos e curve. Specifically, for

tracking target trajectories with small and intermediate eccentric-

ities (semi-minor axes b = 15u, 10u versus semi-major axis a = 20u),
the ratio approximately stayed constant after the target crossed the

vertex e=b of the elliptic trajectory at values close to 1= cos b
before turning towards and reaching the predicted value 1=cosa
at the vertex e=a (Fig. 9, light-gray traces in upper panels). For

trajectories with large elliptic eccentricity (semi-minor axis 5u,
semi-major axis 20u), it markedly undershot the curve 1= cos e

Figure 6. Tilt of angular eye velocity rotation planes during straight-line tracking. (A) Rotation plane tilt angles of total (Veye) and
Donders-Listing (VDL) angular eye velocity during horizontal tracking in 15u gaze down, plotted across one oscillation cycle (5 response cycles
superimposed, Veye: black traces, VDL: gray traces). (B) Rotation plane tilt of Donders-Listing angular velocity as a function of estimated target
distance relative to straight ahead (data from 5 cycles). Note the small but steadily increasing deviation of tilt angles from the half-angle slope relation
(dashed line) with increasing estimated target distance (least-squares fitted line through target positions: slope= 0.49, offset = 0.2u). (C) Average ratios
of rotation plane tilt angles of Donders-Listing angular velocity to estimated target distance as a function of estimated target distance relative to
straight ahead. Each of the data points was obtained by least-squares fitting tilt angles versus estimated target distance, collected in 5u-wide intervals
across the range of 0u to 25u.
doi:10.1371/journal.pone.0095234.g006
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between the vertices at e=a and e=b. In each of these cases the

ratio accorded with the values of 1= cos e at the four vertices

where the gradient Lg=Lj vanished, as predicted by equation (6)

(Fig. 9, light-gray traces in upper panels). The same experimentally

estimated counter-roll-to-roll ratios are also illustrated as a

function of tracking phase (Fig. 9, light-gray traces in middle

panels).

Secondly, we reconstructed the ratio of counter-roll to roll

angular velocity based on equation 6 using the same set of polar

angles y and e as used for reconstructing eye position and angular

eye velocity. We found that across all horizontal and vertical

tracking paradigms the thus reconstructed ratio predicted the

experimental ratio with an average coefficient of determination of

0.8960.04 and average root-mean square error of 0.00360.002

(N= 328, Fig. 9, black traces superimposed on light-gray traces in

upper and middle panels).

Discussion

We have shown that the rotation of the eye during general

smooth tracking movements can be modeled by combining

conventional rotations in horizontal, vertical or oblique planes

with small displacements in the frontal plane. Further we have

found that this novel type of compounded rotation - displacements

can explain how the eye approximates rotations required to steer

the fixation point along any desired path in visual space without

accumulating torsion during smooth tracking. This rotation

strategy of the eye has three characteristic features: First, it is

the basis of Donders’ and Listing’s law. Second, it does not depend

on where exactly primary position is located. Third, it relies on

Figure 7. 3D angular eye position and velocity reconstruction of elliptic tracking. (A) Reconstructed eye position superimposed on
experimental 3D eye position in color (reconstructed torsion, thick gray trace; sinusoidal fit, black trace; reconstructed vertical and horizontal position,
white traces; sinusoidal fits not shown). (B) Reconstructed angular eye velocity superimposed on experimental 3D angular eye velocity in color
(reconstructed torsion, thick gray trace; sinusoidal fit, black trace; reconstructed vertical and horizontal angular velocity, white traces; sinusoidal fits
not shown). Torsional, vertical and horizontal experimental data shown in red, green and blue, respectively; the minimal least-squares sinusoidal fits
of vertical and horizontal eye position and angular eye velocity hardly differed from the reconstructed traces. For more details, see text.
doi:10.1371/journal.pone.0095234.g007

Table 1. Tilts of rotation planes of experimental and reconstructed angular eye velocity.

Tracking horizontal (N=102) vertical (N=90)

Elliptic
eccentricity

Average gaze
eccentricity61/2 (u)

Average experimental
tilt angle (u)

Average reconstructed
tilt angle (u)

Average experimental
tilt angle (u)

Average reconstructed
tilt angle (u)

e = 0.66 8.6 10.861.0 8.860.07 10.661.0 8.760.04

e = 0.87 6.9 8.860.8 7.160.06 8.761.1 7.060.07

e = 0.97 4.5 5.961.2 4.660.07 5.861.5 4.660.06

Average tilts (6 SD) of rotation planes of experimental angular eye velocity, obtained from sinusoidal fits of slow phase angular eye velocity, follow approximately the
half-angle rule. In contrast, average tilts (6SD) of rotation planes of reconstructed angular eye velocity based on equation 3 accorded with the half-angle rule in terms of
estimated average gaze eccentricity. For a cycle per cycle comparison see Fig. 8.
doi:10.1371/journal.pone.0095234.t001
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meridian rotations combined with linear displacements in the

frontal plane, which explains the paradox of ocular kinematics that

the fixation point can rotate in one plane while the eye rotates in

other planes.

A Generic Mechanism Underlying Donders’ and Listing’s
Law
Since the early attempts of Helmholtz to derive Listing’s law

from a visuo-motor error functional, which he called the principle

of easiest orientation [2] (for a re-evaluation of Helmholtz’s

approach see [15]), a number of other studies have shown that

Listing’s law at least can be understood as a principle minimizing

certain motor parameters [6,15,20–23]. The more recent discov-

ery of fibro-muscular structures that alter the pulling directions of

the oculomotor muscles has revived this discussion about the

origin of Listing’s law by proposing that the so-called half-angle

rule of angular eye velocity [4] is implemented by an ingenious

neuro-mechanical mechanism located peripheral in the ocular

plant [24–27]. This hypothesis hinges on the issue of how the

rotational mechanics of the eye effectively works, particularly with

regard to the mechanisms that underlie the half-angle law of eye

positions in Listing’s law (for the half-angle law, see notion of

direction-circle in [2]). Despite great progress, some of the basic

visuo-motor mechanisms in oculo-motor control are still not well

understood. For example, how can we look around a circle

although Listing’s law forbids rotations of the eye in the frontal

plane? Or why should primary position play such a pivotal role in

Listing’s law when it is often found far from the center of the

oculomotor range [4,28]? The here proposed rotation-displace-

ment mechanism solves these problems.

As to primary direction, assume that it is somewhere down from

the center of the oculomotor range when looking straight ahead

(with the head upright). Nonetheless the proposed displacement

operator dRDL that controls rotations of the fixation point in

frontal planes would not change the torsion of the eye with respect

to straight ahead (up to corrections quadratic in the rotation

angle). Similarly, any rotation in planes whose mutual intersections

coincide with this direction would not change torsion either, even

not in combination with the displacement operator dRDL. Taking

primary position into account would thus not change the torsion of

the eye. We conclude from this that, for maintaining visuo-spatial

orientation constancy, it does not really matter where exactly

primary eye position is located. However, it does make a difference

in terms of computational load whether every single eye position

had to be computed relative to primary position (see example in

Fig. 1) or whether the proposed alternative rotation-displacement

strategy is used.

Our approach also explains the paradox of different rotation

planes of the line of sight and the eye ball. For example, under the

sole action of the displacement operator dRDL, the fixation point

can almost perfectly approximate a circular trajectory in a frontal

plane while the underlying rotation of the eye occurs at any point

in time in planes tilted by half the angle of gaze eccentricity

relative to straight ahead. Indeed, these tilted planes are

eigenplanes of torsion-free rotations of the eye up to quadratic

corrections in the rotation angle j. Under the action of dRDL, the

fixation point displaces tangential to both its direction-circle,

which is tilted by e/2 and a frontal circle with opening angle e
relative to straight ahead. By adding up such displacements, the

eye can generate an almost perfect circular trajectory of the

fixation point while tracking the target. Similarly, during tracking

of a target along a small circle arc, for example a horizontally

moving target in the upper visual hemisphere, the rotation plane of

the tracking fixation points remains almost perfectly parallel to the

horizontal plane (Fig. 4). However, the eye actually rotates in

planes that are tilted away from the horizontal plane by half the

angle of gaze eccentricity, by combining small displacements in

these tilted planes with rotations in meridian planes. Again the

overall rotation is approximately torsion-free because these small

displacements occur orthogonal to the meridian and tangential to

direction-circle of the current fixation point at any point of time.

The Half-angle Law of Eye Positions does not Readily
Generalize to Angular Eye Velocity
Our reconstructions of 3D eye position perfectly matched 3D

experimental eye positions except for the saccadic modulation of

torsional eye position. Similarly, the minute saccadic displace-

ments in both the vertical and horizontal eye position modulation

were averaged out by this approximation. As expected, the thus

reconstructed eye positions were in accord with the half-angle law

up to angular corrections of the order of j2, where j is the rotation

angle in the frontal plane (equations 1 and 2, Figs. 5A, 7A). The

experimentally observed modulation of torsional eye position is

due to the same saccades observed in horizontal and vertical eye

position and the ensuing drifts. During straight-line tracking, the

Figure 8. Tilting of angular eye velocity rotation planes during
elliptic tracking. (A) Tracking of targets in clockwise (cw) and
counterclockwise (ccw) direction along elliptic trajectories with major
axes aligned with the head-horizontal and (B) head-vertical plane
(ellipse major axis 20u, minor axis 10u). Traces illustrate tilt angles of
rotation planes of reconstructed angular velocity (in black), Donders-
Listing angular velocity (in dark gray) and sinusoidal-fitted angular
velocity (in light gray). The disparity between reconstructed and
Donders-Listing rotation planes is due to meridian rotations along the
elliptic trajectory. The rotation planes of the sinusoidal-fitted angular
velocities show large overshooting of the 5u and 10u levels predicted by
the half-angle rule, particularly during tracking along horizontal elliptic
trajectories; several single trials superimposed. Abscissa: phase 0u, up
gaze; phase +90u, rightward gaze position (rotation sense of targets as
seen from the subject).
doi:10.1371/journal.pone.0095234.g008
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amplitudes of this modulation increased or decreased in a mirror-

symmetric fashion relative to straight ahead, reaching about 1u at
the most eccentric gaze position (Fig. 5A). The direction changed

at the turning points during straight-line tracking and depended

on the rotation-direction during circular or elliptic tracking eye

movements [18]. The modulating saccades likely occur for

geometric reasons. One of these reasons is to keep the target

centered on the fovea. During straight-line tracking, a correction

of eye position by 1u tangential to a maintained eccentric position

of 15u generates an ocular torsion of about 0.13u. Repeated

corrections in alternating direction during the tracking cycle can

explain the observed modulation. Other reasons can be to correct

and avoid accumulation of torsion. Since the Donders-Listing

operator is a linear approximation it does not perfectly compen-

sate the torsion associated with the generated eye movement.

Without saccadic corrections, curvilinear smooth pursuit would

first of all violate Donders’ law, which is of primary importance for

visuo-spatial orientation constancy [18].

To provide a more formal argument, consider smooth tracking

of a target that moves in a frontal plane along a circular path with

radius 15u at 36u/s. With an assumed updating rate of eye position

every 500 ms without any correction of ocular torsion, the

proposed Donders-Listing mechanism would move the fixation

point along an icosagon that approximates the target’s circular

path. As a consequence, ocular torsion would accumulate by about

0.05u per smooth motion segment, increase to a maximum of

about 0.5u after 10 segments (at about 180u) and decrease

thereafter without hitting the initial zero position after 20 segments

(at 360u): There would be a violation of Donders’ law amounting

to about 0.5u at the end of one response cycle. This value would

multiply by the number of continuously tracked cycles. In practice,

however, subjects can easily track circular or even elliptic targets

through several cycles without problem, although elliptic tracking

is more challenging because of the potentially large torsional

angular velocities.

For simplicity, we reconstructed 3D eye position at the same

updating or sampling rate of 833.33 Hz as recording the

experimental data. To check the effect of a more plausible

physiological updating rate, we found that the reconstructed

positions still matched the data in excellent accord with the half-

angle law for rates as low as 5 to 10 Hz. If we take the standard

deviation of Listing’s plane, the expected deviations of the order j2

Figure 9. Ratio of counter-roll to roll angular velocity. Comparison of reconstructed versus experimentally estimated counter-roll to roll ratios
during horizontal (A) and vertical (B) elliptic target tracking. Upper panels: Counter-roll to roll ratios obtained from single trials for three different
elliptic eccentricities plotted against the angular eccentricity e of the gaze line by superimposing reconstructed (black lines) on experimentally
estimated data (gray lines). Dashed vertical lines indicate the extreme vertices of elliptic trajectories (e = 0.66, 0.87 and 0.97; a = 20u, semi-major axis,
b = 15u, 10u, and 5u, semi-minor axes). The single black curve displays the curve 1= cos e , extending from 1 at e= 0u to 1.15 at e= 30u. Middle panels:
Counter-roll to roll ratios as above plotted against tracking phase. Note increasing depth of modulation with increasing elliptic eccentricity,
particularly during horizontal elliptic tracking. Abscissa: phase 0u, up gaze; phase +90u, rightward gaze position. Bottom panels: Torsional target
velocity along the three elliptic trajectories with eccentricities 0.97, 0.87, and 0.66 plotted against phase angle. Dashed line indicates average torsional
angular velocity across the three trajectories (36u/s).
doi:10.1371/journal.pone.0095234.g009
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are well within the order of magnitude, which have been reported

for straight-line and curvilinear pursuit in the position domain

[18,10–12,29].

We have shown that in general the angular orientation of the

rotation plane of the total angular eye velocity (equation 3) does

not only depend on gaze eccentricity as suggested by the half-angle

rule but also on the rotation angle of simultaneous meridian

rotations, i.e. rotations in horizontal, vertical or oblique planes.

Such rotations affect the tilt of the angular eye velocity rotation

plane in two ways: First, it reduces the overall tilt angle compared

to that predicted by the half-angle rule (compare tilt profiles in

Fig. 6A and 8). The second more subtle effect is that it modulates

the tilt angle of the rotation plane of the Donders-Listing angular

velocity. During smooth tracking, meridian and Donders-Listing

rotations of the eye likely alternate in steps just small enough to

avoid catch-up saccades (see Fig. 3A). Since meridian rotations do

not affect the torsion of the eye, the underlying ocular rotation

remains perfectly in accord with the half-angle law of a Listing-

motion in the position domain. During saccades on the other hand

the meridian rotation of the eye can be large and thus also alter the

orientation of the overall angular velocity rotation plane. Three-

dimensional analyses of strongly curved saccades and even single-

axis rotation saccades support this prediction [29–31]. Vestibular

angular velocities may also contribute and change the rotation of

the eye in any plane. The particular decomposition of the visually

dependent total angular eye velocity shown in equation 3 suggests

that the Donders-Listing mechanism still remains in control of

fine-tuning eye position during visual-vestibular interactions.

Angular eye velocity tilts that do not follow the half-angle rule

have been reported during interactions of the translational

vestibulo-ocular reflex (known to obey Listing’s law) and the

rotational vestibulo-ocular reflexes [32,33].

Finally, the here presented angular velocity derivation also

predicts that the ratio of counter-roll to roll angular velocity should

be modulated by the magnitude of the gradient Lg=Lj (equation

6). We have earlier shown that during circular tracking this ratio

increases proportional to 1= cos e with target-eccentricity e [18].

During elliptic tracking we found that the angular eye velocity can

undershoot this ratio (Fig. 9), indicating that it effectively rolled in

the same direction as predicted by equation 6. The successful

reconstruction of this effect based on equation 6 corroborates the

theoretical assumptions leading to the notion of Donders-Listing

rotation operator. Whereas the experimental finding was derived

from standard evaluations of the eye position and velocity data,

equation 6 was independently derived from the Donders-Listing

rotation operator and the thereof derived angular eye velocity.

Neural Implementation
Our analyses and reconstructions are based on the single

assumption of an internal model of the desired motion trajectory

across the spherical field of fixations. The appropriate motor

commands can be envisaged as a series of position and

displacement signals guiding the line of sight along the desired

trajectory. Based on these requirements, the superior colliculus

appears to be the ideal candidate for this kind of neural processing,

given the retinal inputs to this structure and its retinotopic

topography [34–37] (for a review of the common functional

architecture of the pursuit and saccadic system, see [38,39]). As far

as saccades are concerned, neural activity correlated to gradients

orthogonal to the classic two-dimensional movement field of

collicular cells has not been found [40,41]. However, the novel

features proposed here predict only small displacements in the

order of about 5u, distributed along the desired trajectory in a

discrete and irregular manner. Theoretically, the coordinates and

amplitudes of these signals can be deduced from retinal signals.

Structures downstream from the superior colliculus, for example

the nucleus reticularis tegmenti pontis and subsequent structures in

the ponto-cerebellar pathway may be candidates for this kind of

processing [42,43]. Another interesting aspect concerns the

observed cooperation between piecewise smooth eye movements

and minute saccades. This cooperative interaction contributed to

the modulation of angular eye velocity, which is however hard to

separate in terms of position and velocity because of its non-linear

nature.

In conclusion, our analysis supports the notion of Helmholtz

that Listing’s law serves in a fundamental way to easy visuo-spatial

orientation by restricting the visually controlled rotation modes of

the eye to two planes at any point of time [2]. Both Donders’ and

Listing law follow directly from this restriction. The implementa-

tion of these laws does not need much computational power

beyond processing of retinal signals in the brainstem and low-level

visual centers as perhaps best demonstrated by the chameleon

[44].

Methods

Ethics Statement
The experimental data used in this study were obtained in the

context of a larger project requiring three-dimensional eye

movement records in subhuman primates. The animals had a

chronic acrylic head implant for restraining the head in the

experimental sessions. Three-dimensional eye movements were

recorded with the magnetic search coil technique using a dual

search coil that was implanted on one or both eyes under the

conjunctiva as previously described [18,45]. All surgery was

performed under aseptic conditions and general anesthesia, and

postoperative pain treatment was applied for at least three

consecutive days. The animals were housed in groups of three to

five individuals in a large room cage (18.5 m2) with access to day

light and under the daily supervision of a clinical veterinarian of

the Institute of Laboratory Animals of the University of Zurich.

The housing was equipped with climbing devices, shielding and

primate toys. Single cages for temporarily separating 1–2 animals

from the group were 1 m61.5 m61.8 m in width, depth and

height (internal dimension 1.5 m3). The animals received a rich

diet with daily seasonal fruits and fresh vegetables. These

behaviorally well trained animals were used over a number of

years for several studies. All experimental procedures were in

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the US National Institutes of

Health. The housing, husbandry and experimental protocols were

reviewed, approved and supervised by the Veterinary Office of the

Canton of Zurich.

Experimental Procedures
3D eye movement records were analyzed in a total of six female

rhesus monkeys (Macaca mulatta), which had been trained to track a

small target light moving along straight (two animals) or

curvilinear trajectories (four animals) in visual space (for details

see [11,18]). In brief, the animals were seated upright, with the

head restrained in a primate chair mounted within an opaque

sphere 1.6 m across. A small laser spot (0.35u) was projected onto

the inner wall of the surrounding sphere describing linear, circular

or elliptic paths on a structured background at a rotation

frequency of 0.1 Hz. Linear tracking was tested at eccentricities

of 0u, 610u, and 615u relative to straight ahead using oscillation

amplitudes of 15u. For elliptic tracking, see below. The quality of

smooth tracking was controlled with behavioral windows of 1–2u
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across. All experiments were performed in dimmed light, i.e. with

a background illumination inside the opaque sphere, which

completely surrounded the animal. Three-dimensional eye posi-

tions were measured using the magnetic search coil technique with

an Eye Position Meter 3000 (Skalar, Delft, The Netherlands).

Three-dimensional (3D) eye position was calibrated as described in

Hess et al. (1992) [28], digitized at a sampling rate of 833.33 Hz,

and stored on a computer for off-line analysis. To express eye

positions as rotation vectors [46], the zero or reference positions

were defined to be the eye’s orientations while the monkey fixated

a target 0.8 m straight ahead. In four animals, Listing’s plane

tilted, respectively, less than 4u vertically and 1u horizontally from

the frontal plane. In the other two animals, Listing’s plane tilted

vertically21.2u and25u and horizontally23.7u and23u. We did

not correct eye positions for these deviations from primary position

(see Discussion).

Vectors in 3D Euclidean space will be denoted by bold

characters. Often we refer to equivalent 1- or 2-vectors, which will

be denoted by regular characters. Unit vectors will generally be

denoted by regular fonts with caret. When referring explicitly to

the components, we write vectors for convenience as row vectors

within round parentheses, separating the components by commas.

Encoding 3D Eye Position in Head-fixed Spherical
Coordinates
All responses were analyzed cycle per cycle. Saccades, quick

phases, and blink artifacts were detected and marked by applying

time and amplitude windows to the time derivative of eye

acceleration. Cycles with saccades or blink artifacts were

eliminated by visual inspection. To facilitate identification of

saccadic events in terms of magnitude, duration and peak velocity,

eye position traces were rectified by subtracting the sinusoidal

modulation determined by least-squares fitting.

Three-dimensional angular eye velocity (V) was computed with

the global formula V~2 dE=dt zE|dE=dtð Þ= 1z Ek k2
� �

[21].

Thereby, torsional, vertical and horizontal eye position, denoted

E~ Etor,Ever,Ehorð ÞT (T stands for transpose) was expressed as

rotation vector E~ tan r=2ð Þêe where êe is a unit vector parallel to

the axis of rotation, Ek k~ tan r=2ð Þ the magnitude and r the

angle of rotation. We fitted 3D eye position and angular velocity

by the method of minimal least squares with a sum of sinusoids up

to the 2nd second harmonic of the spatial stimulus frequency. We

used the scatter-free sinusoidal-fits to compare the predictions of

equation 3 and 6 with experimental data (see Figs. 8 and 9). Using

these best-fitting eye position functions, we computed the motion

of the unit gaze vector ĝg(t)~ g0,ghor,gverð ÞT parallel to the line of

sight. Note that g0~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{g2hor{g2ver

q
. We call the plane spanned

by the line of sight and the direction straight ahead meridian

plane. The angular orientation of the unit gaze vector was defined

by the angular eccentricity e relative to straight ahead, e= e(t) and
the signed meridian angle y=y(t), subtended by the meridian and

sagittal plane, spanned by the head vertical and straight-ahead

directions (Figs. 1 to 3). According to the right hand rule, the

meridian angle was taken positive in the direction of the curling

fingers with the thumb pointing forward, parallel to straight ahead.

Data Analysis
Reconstruction of the listing-motion of the eye based on

3D eye position records. The Listing-motion of the eye was

estimated by applying the compound meridian and DL- operator

(equation 2) to the unit gaze vector in the spherical field of

fixations.

For solving the equations of straight-line tracking in visual

space, we assumed the existence of an internal model estimating

the target distance and orientation relative to straight ahead in the

frontal plane by the two equations p~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2horzg2ver

q
and

y~ tan{1 ghor=gverð Þ at any instant of time. Thereby, ghor and

gver represented the horizontal and vertical component, respec-

tively, of the unit gaze vector in the spherical field of fixation. The

associated target eccentricity followed from the relation

e~ tan{1 p=
ffiffiffiffiffiffiffiffiffiffiffiffi
1{p2

p� �
. The further procedures were the same

as described for the elliptic tracking paradigm in the following

paragraphs.

In the elliptic paradigms we first determined the best fit ellipse

to the gaze trajectory using the parametric equation

p xð Þ~ d,r cos x,r sin xð ÞT , with d, distance between the observer’s

eye and the center of the ellipse projected straight-ahead, x, polar
angle measured from the major axis, and

r~ab=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 cos2 xza2 sin2 x

q
, and a, b the semi-major and

semi-minor axes. From these fits we obtained the coordinates of

the observer’s gaze line when fixating the target: then the eye’s

angular eccentricity e matches the target’s eccentricity relative to

the center straight ahead, thus tan e~r=d and the meridian angle

y~xzx0. We determined ei~e yið Þ for each sampling point,

starting with e0~e y0ð Þ, the initial fixation position at tracking

onset, and ending with eN~e yNð Þ at the end of the cycle. For

each gaze position we estimated the underlying incremental

rotation angles ji,gið Þ~ yi{yi{1,ei{ei{1ð Þ and the associated

gradients Lĝgi=Lyi and Lĝgi=Lei . The initial rotation relative to

primary position was obtained by applying

R0~I cos g0=2 { sin g0=2 ĉcM on the unit gaze vector ĝg in

primary position using y,eð Þ~ y0,e0ð Þ and j,gð Þ~ 0,g0ð Þ. For all
subsequent rotations we used dRi~I{gi=2 ĉc

ið Þ
Mzji sin ei=2 ĉc

ið Þ
DL

with ĉc
ið Þ
M : ~ĉcM yið Þ and ĉc

ið Þ
DL : ~ĉcDL yi,eið Þ. We recursively

conjugated the unit gaze vector ĝgi with Ri~dRiRi{1, starting

with R1~R0 (see equations 1 and 2). All tracking was recorded at

a frequency of 0.1 Hz. The total number of samples N of one

tracking cycle was N=8333 corresponding to the sampling rate of

833.33 Hz of the experimental data. Reducing the sampling rate

down to about 5 Hz had little effect on the quality of the

reconstructed ocular rotation (see example in Fig. 4). The angular

eye velocity was reconstructed on the basis of the same series of

positions and rotation angles that described the time evolution of

the unit gaze vector using equations 3 to 5. Thus, the resulting

angular eye velocity represented an average angular eye velocity

across all the slow phase segment of a given response cycle similar

as the reconstructed eye position.

We also computed the generalized R2 values based on the

residual sum of squares of the reconstructed and the reduced

model consisting of average eye position or angular velocity. Root-

mean square errors were computed by evaluating the expression

rmsXm~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k~1

~XX
kð Þ

m {X
kð Þ

m

� �2

=
PN

k~1 X
kð Þ

m

� �2
r

, where ~XX kð Þ
m

and X kð Þ
m are the kth sample of the mth component of the

experimental and reconstructed angular eye position or velocity,

respectively (m= ‘‘tor’’, ‘‘ver’’, or ‘‘hor’’, N= number of samples).

Estimation of the Average Gaze Eccentricity per Cycle of
Elliptic Tracking
We used elliptic target trajectories with three different

eccentricities e~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ b=að Þ2

q
=0.66, 0.87 and 0.97 (a = 20u,

semi-major axis; b = 15u, 10u, and 5u, semi-minor axes). To
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estimate the average gaze eccentricity we applied the parametric

equation of the elliptic track, centered straight ahead of the

subject, r~ab=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 cos2 xza2 sin2 x

q
to obtain the average gaze

eccentricity from the center per angle,

�rr~ 2=pð Þ
Ð p=2
0

rdx~ 2=pð ÞbF e,p=2ð Þ with the elliptic integrals

F e,p=2ð Þ~
Ð p=2
0

1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{e2 sin2 x

q
 �
dx as a function of the

elliptic eccentricity e.

Ratio of Counter-roll to Roll Angular Velocity
We estimated the ratio of counter-roll to roll angular velocity

from eye position and angular velocity records as follows: Because

the angular velocity in the coronal plane of the eye must be zero,

we estimated the angular velocity in eye-fixed coordinates from the

recorded angular velocity by setting the torsion component to

zero, i.e. we estimate ~VVe : ~~VVDtor~0~ 0,~VVver,~VVhor

� �T
. Secondly,

we estimated the target-induced angular velocity by

D~VVe~ ~vvtor,0,0ð ÞT with

~vvtor~ ~EEverd ~EEhor=dt {~EEhord ~EEver=dt
� �

= ~EE2
verz

~EE2
hor

� �
obtained

from the recorded eye position ~EE [47]. With these designations

the equation for l reads n̂nDz~llĝg~~ffe, where n̂nD represents the

direction of the target-induced angular velocity,
~ffe~

~VVe= D ~VVe

�� �� &1=~vvtor 0,~VVver,~VVhor

� �
T and ĝg is unit gaze vector

computed from ~EE. Finally, we chose the parameter l such that it

fulfilled the quadratic equation n̂nDk k~ ~ff e{
~llĝg

�� ��~1 with solu-

tions ~ll~~ffeĝg+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ff eĝg{

~ff e
2
z1

q
. The x-direction of n̂nD thus is

n̂nD½ �x~ ~ff e{
~llĝg

h i
x
~{~ll ĝg½ �x and ~ll~ n̂nD½ �x= ĝg½ �x , which cancels the

target-induced angular velocity: n̂nD{~llĝg
h i

x
~0 [18]. For statistical

comparison, we calculated the generalized R2 values by compar-

ing the residual sum of squares obtained from the parametric

equation 6 and the associated reduced equation by setting g~0 in

6. The normalized root mean square error between the

experimentally and parametrically estimated l was computed

based on the formula

rmsl~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k~1

~ll kð Þ{l kð Þ
� �2

=
PN

k~1 l kð Þ
� �2

r
(N= number of

samples).
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