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Abstract

Biomass conversion factors (BCFs, defined as the ratios of tree components (i.e. stem, branch, foliage and root), as well as
aboveground and whole biomass of trees to growing stock volume, Mg m23) are considered as important parameters in
large-scale forest biomass carbon estimation. To date, knowledge of possible sources of the variation in BCFs is still limited
at large scales. Using our compiled forest biomass dataset of China, we presented forest type-specific values of BCFs, and
examined the variation in BCFs in relation to forest type, stand development and environmental factors (climate and soil
fertility). BCFs exhibited remarkable variation across forest types, and also were significantly related to stand development
(especially growing stock volume). BCFs (except Stem BCF) had significant relationships with mean annual temperature
(MAT) and mean annual precipitation (MAP) (P,0.001). Climatic data (MAT and MAP) collectively explained 10.0–25.0% of
the variation in BCFs (except Stem BCFs). Moreover, stronger climatic effects were found on BCFs for functional components
(i.e. branch, foliage and root) than BCFs for combined components (i.e. aboveground section and whole trees). A general
trend for BCFs was observed to decrease and then increase from low to high soil fertility. When qualitative soil fertility and
climatic data (MAT and MAP) were combined, they explained 14.1–29.7% of the variation in in BCFs (except Stem BCFs),
adding only 4.1–4.9% than climatic data used. Therefore, to reduce the uncertainty induced by BCFs in forest carbon
estimates, we should apply values of BCFs for a specified forest type, and also consider climatic and edaphic effects,
especially climatic effect, in developing predictive models of BCFs (except Stem BCF).
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Introduction

Reducing uncertainties in estimates of forest biomass carbon

storage and their changes is a prerequisite not only for resolving a

long-standing controversy about the role of forests in the global

carbon cycle [1], but also for improving the accuracy of forest

carbon accounting [2,3]. With a large number of statistically valid

plots covering nearly all forest types with different site conditions,

widely available forest inventory data (FID) are recognized as the

best ground-based observations for identifying the magnitude and

spatiotemporal patterns of forest biomass carbon storage and its

changes at large scales (e.g. landscape, regional and global) [4,5].

Moreover, FID-based estimates are usually used to calibrate ones

obtained by remote sensing, modeling or their combinations [6,7].

Unfortunately, traditional FID generally provides information on

tree volume (e.g. merchantable volume or growing stock volume)

but no available biomass data. Therefore, the requirement to

accurately obtain FID-based biomass carbon storage and its

changes draws attention in order to assess forest carbon stocks and

their dynamics.

Generally, FID-based biomass carbon storages are estimated

using a volume-to-biomass conversion method and carbon

concentration (CC) [8,9]. The method has gained prominence in

biomass estimation [2,8]. A convenient descriptor of the volume-

to-biomass conversions is biomass conversion (or expansion)

factors (BCFs) (i.e. the ratios of biomass to volume) [10–16].

BCFs are increasingly used in favor of volume-to-biomass

conversion models (i.e. the biomass as a function of the volume)

and the product of wood density times biomass expansion factors

(i.e. ratios of some or all of tree biomass to stem biomass) [2]. BCFs

have been identified as a large source of uncertainty in FID-based

carbon estimates [8], because inventories of stem volumes tend to

be precise [4,17], and CC is a relatively constant variable (e.g. 0.45

and 0.50) [18].

Knowledge of sources of the variation in BCFs is crucial to

reduce uncertainty in BCFs, thus FID-based carbon estimates.

Furthermore, this has important implications for how resources
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should be invested to determine BCFs. Indeed many early studies

used static values of BCFs [19–21]. Recent studies have resulted in

significant advances in reducing the uncertainty of BCFs. They

focused on tree age- and size-related variation in BCFs for specific

forest types [11–16,22,23]. Now local-level evidences indicate that

BCFs vary with site conditions (e.g. temperature, water and

nutrients) [24]. However, the effects and relative importance of

environmental factors on BCFs remains unclear at large scales (e.g.

landscape and national).

China has diverse range of forest types, ranging from tropical

rainforest to boreal forest [25]. It has a good representation of

global biome heterogeneity and environmental gradients, and thus

provides an excellent opportunity to explore possible sources of

variation in BCFs. During recent years, a comprehensive forest

biomass dataset of China has been compiled based on a literature

survey. Our objective was to use the dataset to determine values of

various BCFs specific to forest types, and then to explore the

variation in BCFs in relation to forest type, stand development and

environmental factors (climate and soil fertility). Our results will

contribute to accurately determining the values and predictive

models of BCFs, thereby improving the reliability of the estimates

of forest biomass and carbon stocks.

Materials and Methods

The dataset and data categorization
To date, we have compiled a comprehensive forest biomass

dataset of China from available published studies and previous

datasets [26–28]. For details, see File S1. For calculating BCFs and

exploring their possible sources of the variation, only paired data

with both growing stock volume and biomass measurements (for at

least tree components, i.e. stem, branch and foliage) were selected

from our dataset. As a result, a total of 1,099 paired data from 252

sites were available for subsequent analyses. These sites showed a

sound spatial distribution across China (Fig. S1 in File S2), ranging

from 25.1 to 23.5uC in mean annual temperature (MAT) and

from 223 to 2300 mm in mean annual precipitation (MAP).

According to dominant tree species and ecogeographical zones

given by a Chinese Vegetation Classification System [25], we

categorized these stands into 15 forest types with a sample size of

at least 10 (Table 1). For details, see Table S1 in File S2. We also

categorized these stands by leaf form into coniferous forest and

broadleaved forest, by leaf lifespan into deciduous forest and

evergreen forest, and by stand origin into natural forest and

planted forest.

Calculation of BCFs
Here we defined BCFs (in Mg m23) as stand-level ratios for

estimating stand-level living biomass (the oven-dried mass per unit

area):

BCFi~Bi=V ð1Þ

where Bi is living biomass (in Mg ha21) of the ith tree component

(i.e. stem, branch, foliage, and root), aboveground (the sum of all

living aboveground tree components) and whole tree (the sum of

all living tree components), and V is growing stock volume (in m3

ha21). BCFs were developed for tree components (i.e. stem,

branch, foliage, and root), as well as aboveground and whole tree

biomass. Biomass of dead organic matter (i.e. dead wood and dead

branch) and understory vegetation was not included in the

calculation of BCFs.

Statistical analysis
Stands less than 20 years old were only used in analyses for the

effects of stand development (expressed by stand age and tree size),

but not for other effects (e.g. climatic and edaphic) to minimize the

influences of stand age and other unidentifiable factors (e.g.

previous management practices and local soil conditions at early

growth stages). Differences in BCFs between groups were

examined using t-test for two groups, or using one-way analysis

of variance (ANOVA) followed by Duncan post hoc test for more

than two groups. Correlation analyses and linear regression were

performed to identify the relationships of BCFs with stand

development and climatic variables (MAT and MAP). Nonlinear

relationships of BCFs with climatic variables were also explored.

Using data of older stands ($20 years), furthermore, multiple

regression analyses with backward stepwise procedure were

performed to explore the influences of environmental variables

(i.e. MAT, MAP and soil fertility) on BCFs. The explanatory

variables were selected from MAT, MAP, soil fertility class and

interactions between these variables, as well as the quadratic terms

of MAT and MAP if they had nonlinear relationships with BCFs.

The model selection was based on AIC (Akaike’s information

criterion) value. A substantial change is considered when a change

in AIC of .2 in the performance of the final model over the

alternatives [29]. Explanatory power of the model was assessed

using the coefficient of determination R2.

As ratio data are usually not normally distributed, data of BCFs

were log10-transformed to normalize the distribution prior to

statistical analyses. Statistical significance was determined at P#

0.05. Statistical analyses were performed using software SYSTAT

version 13.0 (Systat Software Inc., Chicago, Illinois).

Results

As expected, BCFs exhibited great variation in China’s forests

(Table 1). Values of BCFs were highest for whole tree and to a

lesser extent, above-ground biomass, averaging 0.890 and

0.740 Mg m23, respectively (Table 1). They were much smaller

for stems, roots, branches and foliage, averaging 0.505, 0.172,

0.137, and 0.096 Mg m23, respectively. The coefficients of

variation (i.e. the ratio of the standard deviation to the mean, in

percentage) in these estimates ranged between 49% (for Stem

BCF) and 146% (for Foliage BCF).

Biotic influences on BCFs
Large variations in BCFs existed across forest types (Table 1).

The largest variation in BCFs across forest types was in the branch

and foliage components, with these varying by 2.7–3.2 times

among forest types. The variation in BCFs for other components

was only 1.5–1.8 times (Table 1). Also, BCFs varied greatly

between functional groups, although not all BCFs differed

significantly (Table 2). Coniferous forest had larger Foliage BCFs

than broadleaved forest (P,0.001), while other BCFs were smaller

(P,0.001). Compared with evergreen forest, deciduous forest had

larger Stem BCFs, Aboveground BCFs, Root BCFs and Whole

BCFs (P#0.002), and smaller Foliage BCFs (P,0.001), but there

were no significant differences in Branch BCFs (P = 0.249).

Natural forest generally had larger Root BCFs (P = 0.030) than

planted forest, and smaller Foliage BCFs (P,0.001), while other

BCFs showed no significant differences (P.0.05). When major

genera were analyzed separately, Quercus, Castanopsis and Phoebe

forests had relatively larger BCFs (except Foliage BCF) than

Cunninghamia, Larix, Picea and Pinus forests, while Picea and Pinus

forests had larger Foliage BCFs than Cunninghamia, Larix,
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Castanopsis, Phoebe and Quercus forests. Among the seven genera,

Cunninghamia forest had the smallest BCFs.

All BCFs had significant relationships with stand development

(Table 3). They decreased significantly (P,0.001) with mean

DBH, mean tree height and growing stock volume. Moreover,

most BCFs decreased with stand age (P,0.01). However,

increasing trends with stand density were only for Foliage BCFs,

Root BCFs and Whole BCFs (P,0.001). Among these biometric

stand variables, growing stock volume was generally the most

powerful variable, which can explain 17.6–54.3% of total

variances of BCFs.

Environmental influences on BCFs
BCFs except Stem BCF had significant relationships with MAT

and MAP (P,0.001) (Fig. 1 and 2). Branch BCFs, Foliage BCFs

and Aboveground BCFs had humped-shaped relationships with

MAT (P,0.001) (i.e. they increased with increasing MAT and

then declined beyond ca. 7.5–8.2uC) (Fig. 1B, 1C and 1D), and

they had negatively linear relationship with MAP (P,0.001)

(Fig. 2B, 2C and 2D). Root BCFs and Whole BCFs were

negatively correlated with MAT (P,0.001) (Fig. 1E and 1F), but

they showed different changes with MAP (Fig. 2E and 2F). Root

BCFs showed a U-shaped relationships with MAP (P,0.001) (i.e.

it decreased and then increased above ca. 1400 mm) (Fig. 2E),

whereas Whole BCFs did a negatively linear relationship with

MAP (P,0.001) (Fig. 2F). MAT and MAP explained 5.6–22.9%

and 5.5–18.6% of variation in BCFs (except Stem BCFs),

respectively (Table 4). When climatic data (MAT and MAP) were

combined, they explained 10.0–25.0% of the variation in BCFs

(except Stem BCFs) (Table 4), and only MAP had significant

effects on both Root BCFs and Whole BCFs (Table S2 in File S2).

Furthermore, stronger climatic effects were found on BCFs for

functional components (i.e. branch, foliage and root) than BCFs

for combined components (i.e. aboveground section and whole

trees) (Table 4).

A general trend for BCFs was observed to decrease and then

increase from low to high soil fertility, though Stem BCFs did not

differ significantly among fertility classes (P = 0.253) (Fig. 3). BCFs

except Stem BCF were greater (P,0.001) for lower fertility (Class I

and II) than for intermediate fertility(Class III or IV), while

generally smaller (P,0.01) for intermediate fertility than higher

fertility (Class IV and V). Moreover, soil fertility class explained

only 3.5–12.1% of variation in BCFs (except Stem BCF) (Table 4).

When qualitative soil fertility and climatic data (MAT and MAP)

were combined, they explained 14.1–29.7% of the variation in in

BCFs (except Stem BCF), adding only 4.1–4.9% than climatic

data used (Table 4).

Discussion

Factors influencing BCFs
Using the statistics (mean, standard deviation and sample size)

in Table 1, coefficients of variation (expressed as a percentage) for

BCFs were calculated and were in an increasing order: Stem BCF

(49%), Whole BCF (55%), Aboveground BCF (56%), Root BCF

(73%), Branch BCF (81%) and Foliage BCF (146%). This suggests

that BCFs, especially Foliage BCF, Branch BCF and Root BCF,

could be sensitive to biotic and environmental variables, and also

might have inherent variation in growth rhythm and biomass

allocation strategy.

(1) Influence of stand development on BCFs. Our study

found that BCFs generally decreased with stand age and size (e.g.

DBH, tree height and growing stock volume) (Table 3). Similar

results for one or more BCFs are observed in specific forest types,

e.g. Betula pubescens forest [12], Larix forest [23], Picea abies forest

[12,14], Pinus densiflora forest [13], Pinus sylvestris forest [12,15],

major forest types of China [11] and temperate broadleaved forest

of USA [16].

As trees become larger, stem volume and stem biomass

proportion in whole tree biomass increases, meanwhile biomass

proportions of other tree compartments decrease proportionally

(or remain keep more-or-less unchanged) [30]. In addition, wood

density slowly decreases as the trees grow older, although it

increases eventually again in older stands as the annual rate of

growth abates [14]. Therefore, the trend for BCFs to decrease with

stand development appears to be a joint result of changes in the

growth rhythm and biomass allocation as stands grow, as well as

the definition (i.e. the ratios of biomass to volume) of BCFs.

(2) Influence of forest traits on BCFs. Our study found

that all BCFs exhibited large variation across forest types (Table 1),

while not all of them varied significantly with functional groups

(leaf form, leaf lifespan, stand origin, and species genera) (Table 2).

Some factors are considered to regulate growth rhythm and

biomass allocation strategy of trees in order to accommodate the

changes in environments [30–33]: photosynthetic rate (PR),

relative growth rate (RGR), leaf traits (e.g. leaf form and lifespan),

inherent growth rhythm and soil characteristics (e.g. soil water and

nutrient availability).

Generally, plants with higher PRs and RGRs show larger stem

and root proportions and smaller foliage proportions to whole tree

biomass in order to acquire more water and nutrients for achieving

similar growth than plants with lower RGRs and PRs [31,32,34].

Studies have found that broadleaved trees and deciduous trees

generally have higher PRs and RGRs than coniferous and

evergreen counterparts [32,34]. These can explain why broad-

Table 3. Pearson correlations between biomass conversion factors (BCFs) and stand variables.

BCFs (Mg m23) Stand age (years) Mean DBH (cm) Mean tree height (m) Stand density (trees ha21)
Growing stock volume
(m3 ha21)

Stem BCF 20.043 ns 20.284 * 20.186 * 20.058 ns 20.420 *

Branch BCF 20.109 * 20.411 * 20.550 * 20.007 ns 20.629 *

Foliage BCF 20.404 * 20.656 * 20.789 * 0.311 * 20.734 *

Aboveground BCF 20.181 * 20.498 * 20.512 * 0.032 ns 20.682 *

Root BCF 20.238 * 20.566 * 20.588 * 0.140 * 20.697 *

Whole BCF 20.213 * 20.599 * 20.585 * 0.139 * 20.737 *

All data were log10-transformed to linearize relationships between variables and also to reduce the influence of outlying data. ns, not significant (P.0.05);
*, P,0.001.
doi:10.1371/journal.pone.0094777.t003
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leaved forest and deciduous forest have larger Stem BCFs and

Root BCFs and smaller Foliage BCFs than coniferous forest and

evergreen forest, and also why Quercus, Castanopsis and Phoebe forests

had relatively larger BCFs (except Foliage BCF).

In addition, plantations are usually established in more

productive environments (e.g. more fertile and moister soil) than

natural forests, indicating that they can achieve optimal growth

with larger foliage proportions and lower root proportions [33,35].

This could explain why planted forest has larger Foliage BCFs and

smaller Root BCFs than natural forest.

(3) Influence of environmental factors on BCFs. At broad

scales, temperature and precipitation are considered as very

important factors in shaping distribution, structure and ecological

process of terrestrial biomes, and also influence soil microbial

activity and nutrient availability [36]. Luo et al. [37] found that

higher temperature and precipitation favor higher tree growth and

more photosynthate allocated to tree stem, suggesting that the size

and biomass proportion of stems have positive relationships with

MAT and MAP. This promotes the defensive capacity of trees

against environmental perturbation, and might contribute to

ensure their better soil-to-leaf hydraulic conductance [38,39].

Our study found that relationships of BCFs with MAT and

MAP varied with tree components (e.g. branch, foliage, and root)

(Figs. 1 and 2). Branch BCFs, Foliage BCFs and Aboveground

BCFs decreased with MAP (Fig. 2), which can also be explained by

higher tree growth and light use efficiency, and hence decreasing

biomass proportions of photosynthetic compartments (i.e. foliage

and branch) with increasing MAP. However, a humped-shaped

change of BCFs with increasing MAT was observed for three

BCFs (i.e. Branch BCFs, Foliage BCFs and Aboveground BCFs)

(Fig. 1), which can be explained by the following causes. At lower

temperatures, increasing temperature favors tree growth by better

growth conditions (e.g. higher soil microbial activity and nutrient

availability), and thus results in more branches and leaves for more

water and photosynthate at a tree size; at higher temperatures,

larger transpiration and respiration lead to a reduction in biomass

allocation to branches and leaves to minimize maintenance costs

at a tree size. The decreasing trend of Root BCFs with MAT

(Fig. 1) can be attributed to higher tree growth and lower root

biomass proportion with increasing MAT [37], and the effect of

MAT might be indirect because the effect disappeared when both

MAT and MAP were considered (Table S2 in File S2). Root BCFs

had a U-shaped pattern with increasing MAP across China’s

forests (Fig. 2). With increasing precipitation, water supply and soil

fertility becomes abundant (Fig. S2 in File S2), and thus tree

growth will be accelerated and trees can allocate less biomass to

roots to absorb soil water and nutrients. However, when

precipitation exceeds the demand of trees, tree growth will be

inhibited by soil nutrient availability rather than water (Fig. S2 in

File S2), resulting in more biomass would be allocated into roots to

absorb more nutrients from relatively infertile soil with high

precipitation [37].

Terrestrial plants take up most of their nutrients and water

directly from soils. Soil chemical attributes (e.g. pH and mineral

nutrient availability) are critical to plant growth and thus affect

biomass allocation patterns [33,40,41]. Moreover, climate influ-

Figure 1. Changes in biomass conversion factors with mean annual temperature (MAT). The regression equations are presented when
there are significant relationships between variables (P,0.05). Regression equations are given in Table S2 in File S2.
doi:10.1371/journal.pone.0094777.g001
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ences soil chemical attributes and thus shapes the vegetation

biogeography [36]. Across China’s forests, MAT and MAP

showed a humped-shaped change with increasing soil fertility

(Fig. S2 in File S2). As soil fertility increases, soil nutrients become

abundant and thus trees show rapider growth in the size and

broader tree rings. That might lead to smaller wood density and

less foliage and root proportions in tree biomass, which can

explain a decreasing trend in BCFs with increasing soil fertility at

lower soil fertility. However, when soil nutrients exceed the

demand of trees, tree growth will be inhibited by temperature and

precipitation, and trees show slower growth in the size and

narrower tree rings. That might lead to larger wood density and

more foliage and root proportions in tree biomass, which can

explain an increasing trend in BCFs with increasing soil fertility at

higher fertility. In addition, soil fertility showed only a weak effect

on BCFs, which add only 4.1–4.9% in explaining the variation of

BCFs meanwhile climatic data (MAT and MAP) were considered

(Table 4). And the effect of soil fertility was reflected by the

interactions between soil fertility and climate (MAT and MAP)

(Table S3 in File S2).

Figure 2. Changes in biomass conversion factors with mean annual precipitation (MAP). The regression equations are presented when
there are significant relationships between variables (P,0.05). Regression equations are given in Table S2 in File S2.
doi:10.1371/journal.pone.0094777.g002

Table 4. Explanatory powers (R2 values) of final models for the effects of climate and soil fertility on biomass conversion factors
(BCFs, Mg m23).

Model Stem BCF Branch BCF Foliage BCF Aboveground BCF Root BCF Whole BCF

MAT 0.000 ns 0.229 ** 0.186 ** 0.098 ** 0.108 ** 0.056 **

MAP 0.002 ns 0.115 ** 0.132 ** 0.055 ** 0.186 ** 0.100 **

Climate 0.009 ns 0.250 ** 0.210 ** 0.112 ** 0.186 ** 0.100 **

Soil fertility class 0.011 ns 0.104 ** 0.121 ** 0.077 ** 0.037 * 0.043 *

Climate+Soil 0.028 ns 0.297 ** 0.259 ** 0.159 ** 0.233 ** 0.141 **

Models ‘Climate’ denoted that the explanatory variables were selected by a backward stepwise procedure from mean annual temperature (MAT, uC), mean annual
precipitation (MAP, 100 mm) and interactions between these variables, as well as the quadratic terms of MAT and MAP, which had nonlinear relationships with several
BCFs (see Fig. 1 and 2). Similarly, models ‘Climate+Soil’ denoted that the explanatory variables were selected by a backward stepwise procedure from MAT, MAP, soil
fertility class, interactions between these variables and quadratic terms of continuous variables (MAT and MAP). Details of final models ‘Climate’ and ‘Climate+Soil’ were
given in Table S2 and S3 in File S2, respectively. Significance of a model: ns, not significant (P.0.05);
*, P,0.01;
**, P,0.001.
doi:10.1371/journal.pone.0094777.t004
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Apart from the above mentioned influencing factors, manage-

ment practices (e.g. thinning, pruning and fertilization) might lead

to changes in growth rhythm and biomass allocation of trees, and

thus affect BCFs. In this study, however, we did not analyze effects

of management practices, largely due to the lack of management

descriptions in original data sources.

Implications for biomass and carbon accounting
Our study presented forest type-specific values of various BCFs

in Table 1. When comparing our values for BCFs with others

available [2], means of Aboveground BCFs for China’s forests and

for most forest types (Table 1) were smaller than IPCC default

values (mean = 1.405 Mg m23; range = 0.692–2.913 Mg m23) [2],

indicating that a large overestimation would result if IPCC default

values was used in the estimation of China’s forest carbon storage.

In addition, China conducted seven consecutive national forest

inventories between 1973 and 2008, which can provide statistical

data of forest area and growing stock volume by age class and

forest type [17]. To be compatible with these FIDs, forests were

categorized by tree species, growing region and stand origin into

five age classes (young, middle-aged, premature, mature and

overmature) (Table S4 in File S2), and then forest type-specific

BCFs by age class were given in Table S5–S10 in File S2.

However, the use of the values of BCFs for premature, mature and

overmature forests might induce somewhat uncertainty in forest

biomass and carbon estimates, due to limited data for the three

growth stages.

Considering large coefficients of variation for BCFs, the use of

constant values of BCFs, especially Foliage BCF, Branch BCF and

Root BCF, would lead to high uncertainties in the estimates of

forest biomass and carbon. Our results showed that high variation

in BCFs were related to forest types (Table 1), functional groups

(leaf form, leaf lifespan, stand origin and species genera) (Table 2),

stand development (Table 3), climate (MAT and MAP) (Fig. 1 and

2) and soil fertility (Fig. 3). In order to reduce uncertainties induced

by BCFs, we recommend that: (i) different values of BCFs should

be selected for forest types and functional groups, and (ii) climatic

and edaphic factors, especially climatic factors, should be

considered in developing predictive models of BCFs (except Stem

BCF). To further reduce uncertainty induced by BCFs in forest

carbon estimates, future emphases should be placed on obtaining

BCF estimates for region and forest types where there is currently

little data available, and also on developing the predictive models

of BCFs (except Stem BCF) for a specified forest type integrating

environmental factors, especially climatic factors (MAT and

MAP). Certainly, if the predictive model of a certain BCF

integrating stand (e.g. growing stock volume) and environmental

factors (e.g. MAT, MAP, and soil fertility) has poor performance

(e.g. low R2), it is unsuitable for the model to estimate values of the

BCF which are used to calculate forest biomass and carbon stock.

Conclusions

BCFs are considered as important parameters in quantifying

forest biomass carbon stock and dynamics. Knowledge of the

sources of variation in BCFs is prerequisite to accurately

Figure 3. Changes in biomass conversion factors with soil fertility. According to the background values of soil organic matter content, soil
fertility is divided into five classes: (I) #1.0 g (100 g)21, (II) 1.0–2.0 g (100 g)21, (III) 2.0–3.0 g (100 g)21, (IV) 3.0–4.0 g (100 g)21, and (V) $4.0 g
(100 g)21. Mean and standard error are shown for each class. Different small letters indicate significant (P,0.05) differences between fertility classes.
doi:10.1371/journal.pone.0094777.g003
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determining the values of BCFs, thereby reducing the uncertainties

in forest biomass carbon estimates. However, prior to this study

there has been little information on possible causes of the variation

in BCFs, especially environmental effects.

Our study was the first to give China’s forest type-specific values

of BCFs, and to examine the variation in BCFs in relation to forest

type, stand development, climate and soil fertility. Results showed

that BCFs generally varied significantly with forest types, stand

development (stand age and size), climate (MAT and MAP) and

soil fertility (fertility class). These results indicate that: (i) different

values of BCFs should be selected for forest types and functional

groups, and (ii) climatic and edaphic factors, especially climatic

factors, should be considered in developing predictive models of

BCFs (except Stem BCF).
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