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Abstract

Little is known about the genetic diversity of Sarcoptes scabiei mites in farm animals in Egypt. In this study, we characterized
S. scabiei in 25 skin scrapes from water buffalo, cattle, sheep, and rabbits at the nuclear marker ITS2 and mitochondrial
markers COX1 and 16S rRNA. Sequences of the ITS2 showed no host segregation or geographical isolation, whereas those of
the mitochondrial COX1 and 16S rRNA genes indicated the presence of both host-adapted and geographically segregated
populations of S. scabiei. Host adaptation may limit inter-species transmission of. S. scabiei, thus restrict gene flow among S.
scabiei from different hosts. This is the first report on the molecular characterization of sarcoptic mites in Egypt. Further
genetic studies involving larger numbers of specimens, especially those from humans and companion animals, are needed
to understand the molecular epidemiology of sarcoptic mange in Egypt.
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Introduction

The cosmopolitan mite Sarcoptes scabiei (Acari: Sarcoptidae) is an

obligatory ectoparasite that infects the skin of a wide range of

mammalian hosts, resulting in sarcoptic mange in companion

animals, livestock, and wildlife, as well as scabies in humans [1–3].

The disease is highly contagious, characterized by pruritic

dermatitis, alopecia, hyperkeratosis, and crust formation [4–6],

and if left untreated, can lead to death due to dehydration,

pneumonia, or bacterial septicemia [7–9]. In addition to its

potential to cause huge economic losses due to weight loss and

mortality in animals [10,11], scabies imposes a global public health

concerns as an emerging/re-emerging infectious disease [9,12,13].

Scabies outbreaks have been reported in industrialized countries

[14–16], and the burden of the disease in developing countries is

increasing [1,17–19]. Drug residuals and toxicity due to extensive

use of acaricides, especially in developing countries, and emer-

gence of drug resistance are some other growing problems

associated with sarcoptic mange and scabies [20–23].

Current knowledge suggests that humans and protohumans

were most likely the initial source of animal scabies, first of dogs,

and later of other species with further spread to wildlife [16].

Sarcoptes scabiei is taxonomically divided into different varieties

based on host origin [24]. However, speciation in S. scabiei is a

controversial issue due to the indistinguishable morphology of

host-associated populations, evidence of apparent cross-species

transmission during epizootics in sympatric wild animals [12,25],

limited or no cross-infestations between hosts in experimental

studies [26], and presence of immunologically host-specific and

cross-reactive epitopes [27,28]. Characterizations of mitochondrial

DNA (mtDNA) haplotypes and microsatellite allele frequencies

have demonstrated significant associations between S. scabiei and

host species or geographical locations [29,30].

In Egypt, scabies has been reported in farm animals [31–33],

wild games [34], and human [35–38]. However, there are no data

on genetic diversity of S. scabiei. This preliminary study was

conducted to examine the genetic characteristics of S. scabiei

derived from different hosts in Egypt, including water buffalo,

sheep, rabbits, and one cattle. Results of sequence characterization

of the nuclear internal transcribed spacer 2 (ITS2) and mitochon-

drial cytochrome oxidase 1 (COX1) and 16S rRNA genes

demonstrated the presence of host-adapted and geographically

segregated S. scabiei populations in Egypt.

Materials and Methods

Ethics Statement
This study was carried out in strict compliance with the

Guidelines of Animals Health Research Institute, Egypt. The

study protocol was approved by the Committee on the Ethics of

Animals Health Research Institute, Egypt (Permit Number 362

approved on August 31, 2010). All scrapings were collected by well

trained and licensed veterinarians. This study was done on

specimens from animals on private farms as part of the routine
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clinical examinations and care, with written consents from the

owners. One of the co-investigator of the project, Dr. Abd El Naby

Metwaly (Animal Health Research Institute, Kafr El Sheikh

Provincial Lab, Kafr El Sheikh 33516, Egypt; e-mail: tahoon63@

yahoo.com), should be contacted for permissions for future work

on these farms. Efforts were made to minimize discomfort and

stress to animals while performing skin scraping.

Specimens
Specimens of this study were collected during August 2010-

April 2011 from buffalo, sheep, rabbits, and one cattle (Table 1) in

Sheikh Province (130 km north of Cairo). Buffalo specimens were

collected from animals on three farms at kafr El Sheikh District;

specimens that had mixed infection with Psoroptes spp at the same

infection site were excluded. Rabbit specimens were collected from

three small rabbitries; rabbits were raised in wired cages. Sheep

specimens were collected from two farms, with goats raised in the

same herd on the second farm. The cattle specimen was from a

sporadic case for veterinary consultation. Skin scrapings were

collected in situ directly from infected animals into tightly closed

plastic cups, transferred to the laboratory, and examined by

microscopy. Positive samples were fixed in 75% ethyl alcohol and

stored at 4uC for molecular biologic analyses.

DNA extraction and PCR analysis
Ethyl alcohol was removed from microscopy-positive specimens

by centrifugation and washing with distilled water. DNA was

extracted from the specimens using the FastDNA SPIN Kit for

Soil (MP Biomedicals, Colon, OH). PCR amplification of the ITS-

2 was done using primers RIB-18 and RIB-3 as described by

Zahler et al. [39]. PCR analyses of the mitochondrial COX1 and

16S rRNA genes were conducted as described by Walton et al.

[30].

DNA sequence analyses
PCR products were sequenced directly using Big Dye Termi-

nator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City,

CA) and an ABI 3130 Genetic Analyzer (Applied Biosystems).

Sequences were assembled using the ChromasPro (version 1.5)

software (http://www.technelysium.com.au/ChromasPro.html).

The accuracy of data was confirmed by bi-directional sequencing.

The obtained sequences were aligned with each other and

reference sequences of each gene using ClustalX (ftp://ftp-

igbmc.u-trasbg.fr/pub/ClustalX/) to confirm the identification

of S. scabiei. A neighbor-joining (NJ) analysis implemented in the

MEGA5 (http://www.megasoftware.net) was used to assess the

phylogenetic relationship among different populations of S. scabiei.

Unique nucleotide sequences generated in this study were

deposited in GenBank under accession numbers AB778895 to

AB778919 for ITS2, AB779564 to AB779587 for mitochondrial

16S rRNA, and AB779588 to AB779611 for mitochondrial

COX1 genes.

Results

ITS2 sequence analysis of the Sarcoptes mites derived from

different hosts from Egypt generated 7 sequence types. Despite the

low number of polymorphic sites (5 sites), these sequences formed

three groups on the NJ tree. All sequences derived from mites in

rabbits, several sequences from mites in buffalo, and one sequence

each from mites in cattle and sheep formed a cluster on the tree

together with reference sequences from GenBank (Fig. 1),

reflecting the broad host and geographical distribution of this S.

scabiei population. In contrast, the other two groups were formed

by sequences from this study, including one group containing the

majority of sequences from mites of sheep (37077, 37078, 37080

and 37081), and one containing 3 sequences (37025–37027) from

mites of buffalo.

Sequence variability was greater at the mitochondrial COX1

and 16S rRNA genes. Altogether, 10 types of COX1 sequences

and 5 types of 16S rRNA sequences were obtained, which differed

from each other in the form of nucleotide substitutions and

insertions or deletions. NJ analysis based on COX1 clearly showed

the presence of 2 major clusters of S. scabiei in Egypt by host (Fig. 2).

One cluster included all sequences from mites in rabbits, one cattle

(37073), and one buffalo (37025). The other cluster had two

branches, one of S. scabiei in sheep and one of S. scabiei in buffalo

(Fig. 2). Comparing to S. scabiei isolates from other areas, the

Egypt-derived sequences occupied unique positions in the NJ tree

(Fig. 2). Phylogenetically, COX1 sequences from human isolates in

Panama and some human isolates in Australia formed the two

basal branches diverged from others containing sequences mostly

from animal isolates. In the latter branches, sequences from

different animals in different geographical locations showed host

and geographical clustering, with sequences from Egyptian isolates

separated from others. Sequences from several other human

isolates in Australia formed a subgroup within the major cluster of

largely animal isolates (Fig 2).

Table 1. Sarcoptes scabiei isolates collected from four species
of farm animals at Kafr El Sheikh Province, Egypt.

Specimen ID Host Farm Infection Site

37025 Water buffalo Buffalo farm 1 Perineal region

37026 Water buffalo Buffalo farm 1 Perineal region

37027 Water buffalo Buffalo farm 1 Perineal region

37028 Water buffalo Buffalo farm 1 Perineal region

37031 Water buffalo Buffalo farm 2 Perineal region

37032 Water buffalo Buffalo farm 2 Perineal region

37033 Water buffalo Buffalo farm 2 Perineal region

37030 Water buffalo Buffalo farm 3 Perineal region

37073 Cattle Sporadic case Body

37061 Sheep Sheep farm 1 Body

37077 Sheep Sheep farm 1 Body

37078 Sheep Sheep farm 2 Body

37080 Sheep Sheep farm 2 Body

37081 Sheep Sheep farm 2 Body

37040 Rabbit Rabbitry 1 Body

37053 Rabbit Rabbitry 1 Ear

37054 Rabbit Rabbitry1 Ear

37056 Rabbit Rabbitry 1 Ear

37059 Rabbit Rabbitry1 Foot

37065 Rabbit Rabbitry 1 Body

37060 Rabbit Rabbitry 2 Foot

37063 Rabbit Rabbitry 2 Ear

37074 Rabbit Rabbitry 2 Ear

37064 Rabbit Rabbitry 3 Foot

37075 Rabbit Rabbitry 3 Ear

doi:10.1371/journal.pone.0094705.t001

Sarcoptes scaibiei in Egypt
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Sequences of the mitochondrial 16S rRNA gene divided the

Egyptian S. scabiei isolates into two major groups, one containing

most buffalo isolates and one containing all sheep and rabbit

isolates and one each of buffalo and cattle isolates. In concordance

with results of the COX1 sequence analysis, a NJ tree based on the

16S rRNA gene sequences placed sequences from all human

isolates in Panama and some human isolates in Australia in the

basal branches divergent from sequences from most animal isolates

in various areas and some human isolates in Australia. However,

there was less host and geographic segregation in the latter groups

than seen at the COX1 locus, although the sequences from buffalo

in Egypt clearly formed its own clade (Fig. 3). Sequences from

isolates in rabbits, sheep, and one buffalo and cattle each were

more related to each other and clustered together with sequences

AY493410 from a dog in Australia, AY493402 from a human in

Australia, AY493412 from a wallaby in Australia, and AY493411

from a chimpanzee in Tanzania. Thus, S. scabiei from sheep was

genetically related to S. scabiei from buffalo at the COX locus, but

was more related to S. scabiei from rabbits at the 16S rRNA locus,

even though both loci are in the small mitochondrial genome. The

relatively low bootstrap values of most branches in the phyloge-

netic trees were probably the result of limited sequence

polymorphism and random distribution of some nucleotide

substitutions at these loci.

Discussion

In this study, we sequence-characterized S. scabiei isolates from

buffalo, sheep, rabbits, and one cattle at three genetic loci. Results

obtained showed that ITS2 sequences from Sarcoptes mites from

these hosts are conserved with intra-sequence variability at only 5

positions. These results are in concordance with those of Zahler et

al. [39] and Gu and Yang [40]. Thus, based on ITS2 sequence

analysis, Zahler et al. [39] reported very little genetic variation in

sarcoptic mites collected from different hosts and geographic

locations, and, Gu and Yang [40] could not differentiate Sarcoptes

mites from different hosts in China. Although Berrilli et al. [41]

and Alasaad et al. [25] detected some gene variability between

individual mites, the sequence variations were randomly distrib-

uted in different hosts from several locations, thus resulting in no

distinct geographic or host-specific clustering.

Figure 1. Un-rooted NJ tree showing genetic relationship of Egyptian Sarcoptes mites to others in the GenBank database based on
ITS2 sequences. Evolutionary relationships of 31 taxa were inferred using the neighbor-joining method [46]. Numbers at the internodes correspond
to percent bootstrap values from 2,000 replicates. Branches corresponding to partitions produced in less than 50% bootstrap replicates are collapsed.
Sequences in bolded colors and with no GenBank accession numbers are generated from Egyptian specimens.
doi:10.1371/journal.pone.0094705.g001
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In contrast to the nuclear ITS2 marker, mitochondrial markers

analyzed in the present study showed clear sequence polymor-

phism related to the host species. COX1 sequence analysis showed

the presence of 3 distinct groups by host species with additional

geographic stratifications (Fig. 2). This was also supported by

results of sequence analysis of the mitochondrial 16S rRNA gene

(Fig 3). Using hypervariable microsatellite loci, Walton et al. [42]

reported that S. scabiei from dogs and humans clustered by host

species rather than by geographic location. In contrast, phyloge-

netic studies based on 16S rRNA and COX1 sequences

demonstrated that clustering patterns of S. scabiei mites were

under the impact of both host species and geographical locations

[30], whereas sequence analysis of the mitochondrial 12S rRNA

gene did not show any significant association between haplotypes

and host species [43]. Thus, multilocus characterization of diverse

Figure 2. Un-rooted NJ tree showing genetic relationship of Egyptian Sarcoptes mites to others in the GenBank database based on
COX1 sequences. Evolutionary relationships of 46 taxa were inferred using the neighbor-joining method [46]. Numbers at the internodes
correspond to percent bootstrap values from 2,000 replicates. Branches corresponding to partitions produced in less than 50% bootstrap replicates
are collapsed. Sequences in bolded colors and with no GenBank accession numbers are generated from Egyptian specimens.
doi:10.1371/journal.pone.0094705.g002
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isolates is needed to better understand host adaptation and

geographic segregation in S. scabiei.

Host adaptation in S. scabiei has important implications in

understanding the epidemiology and development of diagnostic

tests and vaccines [30]. Previously, it was thought there was

frequent inter-breeding among mites infecting distinct host species,

increasing their genetic variability and allowing Sarcoptes to infect

new species of animals [44]. In contrast, results of recent studies

have shown the occurrence of host adaptation in S. scabiei [30,42].

Data of the present study indicate that both host adaptation and

geographic segregation also occur in S. scabiei in Egypt. Both host

adaptation and geographic segregation would reduce the inter-

species transmission of S. scabiei [12,45], thus have important

implications in our understanding of the epidemiology of S. scabiei

and development of control strategies against mange in animals

and scabies in humans.

The small number of specimens characterized is a major

limitation of the current study. Thus, the conclusion on host-

adaptation and geographic segregation in S. scabiei in Egypt needs

support of multilocus genetic characterizations of parasites from a

range of hosts, especially those of humans and companion animals.

More advanced molecular biological tools, such as population

genetics and comparative genomics, are also be needed to

understanding the genetic mechanism responsible for host-

adaptation and geographic segregation in S. scabiei.

Figure 3. Un-rooted NJ tree of showing genetic relationship of Egyptian Sarcoptes mites to others in the GenBank database based
on mitochondrial 16S rRNA sequences. Evolutionary relationships of 38 taxa were inferred using the neighbor-joining [46]. Numbers at the
internodes correspond to percent bootstrap values from 2,000 replicates. Branches corresponding to partitions produced in less than 50% bootstrap
replicates are collapsed. Sequences in bolded colors and with no GenBank accession numbers are generated from Egyptian specimens.
doi:10.1371/journal.pone.0094705.g003
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