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Abstract

The chicken has long served as an important model organism in many fields, and continues to aid our understanding of
animal development. Functional genomics studies aimed at probing the mechanisms that regulate development require
high-quality genomes and transcript annotations. The quality of these resources has improved dramatically over the last
several years, but many isoforms and genes have yet to be identified. We hope to contribute to the process of improving
these resources with the data presented here: a set of long cDNA sequencing reads, and a curated set of new genes and
transcript isoforms not currently represented in the most up-to-date genome annotation currently available to the
community of researchers who rely on the chicken genome.
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Introduction

Research into the development, structure and function of

different aspects of metazoan biology has been greatly assisted by

the genomics tools that have become available over the last several

years. In addition to the sequence of bases that constitute a

genome, the locations and boundaries of genes and their exons

must also be identified. Furthermore, many genes exhibit alternate

splicing such that a few exons may exhibit a large degree of

combinatorial possibilities. These transcript isoforms must also be

detected in order to have a thorough set of genome resources. This

annotation process typically requires a combination of computa-

tional and experimental approaches. All of the important work

being done now to uncover the regulatory mechanisms that

control when and how genes are active rely heavily on a

foundation built with solid genome assemblies and annotations.

Humans and several key model organisms have quite good

genome assemblies [1–5] with other associated resources including

high quality annotations for transcript isoforms and even the

locations of functional regulatory elements in various cell and

tissue types [6–9].

Resources for other model organisms are also being developed.

The UCSC genome browser [10] currently contains assemblies

and annotations for dozens of eukaryotic organisms. These

resources are in various states of accuracy and completeness. In

the case of the genome for Gallus gallus, the common chicken, the

genome was initially published in 2004 [11] and has been

periodically updated since, with the latest being the ‘galGal4’

assembly published in late 2011. The most up-to-date transcript

annotations for these assemblies come from RefSeq [12] and

Ensembl [13,14]. The RefSeq annotations are well-founded but

only contain a fraction of the total number of genes and isoforms.

The Ensembl annotation is much more thorough but is not yet

complete as it does not contain annotations for regions seen to be

transcribed in previously-published data [15]. The current

annotations also contain fewer genes and isoforms than those of

the more complete human and mouse genomes [1,2,16], though it

is possible that there are systematic differences in the number of

alternate isoforms seen in avian and mammalian genomes.

The chicken has been used as a model for embryogenesis for

thousands of years [17], and notable scientists such as Aristotle,

Harvey, Pasteur and Darwin used chickens as models for

embryology, circulation, infection and evolution. The chicken

continues to be an extremely useful model organism in many areas

including aiding our understand of the molecular mechanisms

behind heart development [18].

For these reasons a collaboration was created between the

Cardiovascular Development Consortium of the Bench to Bassinet

Program and Pacific Biosciences to help improve the chicken

genome annotation. By generating new long-read sequences and

incorporating existing short-read and EST sequences, we identi-

fied thousands of transcript isoforms as well as hundreds of genes

not currently included in the Ensembl annotations. It is our

expectation that the results presented here will serve as a resource

for the community of researchers who rely on the chicken genome,

and that our methodology will help others whose goal it is to

improve the annotations of other model organism genomes.
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Materials and Methods

Illumina data
The following Gallus gallus RNAseq datasets made from the

respective brains, cerebellums, hearts, livers, kidneys and testes

of adult chickens, were retrieved from the NCBI Sequence

Read Archive [15]: SRX081869, SRX081870, SRX081871,

SRX081872, SRX081873, SRX081874, SRX081875,

SRX081876, SRX081877, SRX081878, SRX081879,

SRX081880. TopHat2 [19] (v2.0.9, default settings) was used to

align these 75 bp sequences to the galGal4 genome assembly and to

identify exon junctions. Trinity [20] (2011-11-26 release, default

settings) was used to assemble short-read sequences into transcripts.

Collecting embryonic chicken heart RNA
Chicken eggs representing a cross between a White Leghorn

rooster and a Rhode Island Red hen were stored at 4uC after

laying and then incubated in Genesis Hova-Bators until tissue was

harvested. Hearts were dissected from embryos at HH stages 18–

20, 25, and 32 and immediately flash frozen in N2. The hearts

were homogenized and suspended in TriZol (Life Technologies)

by repipetting, and then total RNA was extracted into the aqueous

phase, precipitated with isopropanol, washed with 75% ethanol

and then resuspended into nuclease free water.

RNA purification and cDNA synthesis
mRNA were purified using the Strategene Absolutely mRNA

purification kit: Briefly, the RNA were hybridized to oligo-dT

magnetic beads, separated from solution on a magnetic stand,

washed, and then resuspended into the kit’s elution buffer.

First strand cDNA synthesis was performed using the SMART

cDNA kit (Clontech): The first cDNA strand was synthesized from

purified poly-A RNA using the SMARTScribe MMLV Reverse

Transcriptase (Clontech), the CDS III oligo-dT primer and the

Figure 1. Long-read sequences map accurately to the chicken genome. Shown in this UCSC genome browser image is one example of a
long-read alignment shown alongside the corresponding short-read data for this region as well as existing RefSeq and Ensembl annotations.
doi:10.1371/journal.pone.0094650.g001

Figure 2. Broad coverage of existing chicken genes using long-read sequencing. Along the x-axis representing transcript length is a
histogram of the number of RefSeq transcripts within a given range of lengths (grey). A similar histogram is shown for those transcripts that overlap
each RefSeq annotation by any amount (red), or by more than 90% of the gene length (dark red).
doi:10.1371/journal.pone.0094650.g002
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SMART IV primer for template switching in order to add a

consistent 59 site for LD-PCR amplification using the CDS III

primer and the 59 PCR Primer. CDSIII primer: 59-ATTCTA-

GAGGCCGAGGCGGCCGACATG-d(T)30N–1N-39 (N = A, G,

C, or T; N–1 = A, G, or C)

SMART IV oligonucleotide: 59-AAGCAGTGGTATCAACG-

CAGAGTGGCCATTACGGCCGGG-39

59 PCR Primer: 59-AAGCAGTGGTATCAACGCAGAGT-39

Library preparation and sequencing
The cDNA was run on an agarose gel and four separate size

ranges were fractionated: 0–1 kb, 1–2 kb, 2–3 kb, and over 3 kb.

Each size fraction was extracted from the gel and SMRTbell

libraries were created using the DNA Template Library Prepa-

ration kit (Pacific Biosciences): The cDNA was cleaned using

Ampure beads and the ends were repaired. Blunt hairpin adapters

were then ligated to the insert cDNA, exonucleases were added to

remove failed ligation products, and SMRTbell templates with

cDNA inserts were purified. The sequencing primer and then the

polymerase were then sequentially annealed to the SMRTbell

templates using the DNA Polymerase Binding kit (Pacific

Biosciences). The MagBead loading kit was used to load annealed

templates onto a Pacific Biosciences RS II sequencer, and

sequencing was performed for each template library using the

DNA Sequencing kit (Pacific Biosciences). Sequences containing

both 59 and 39 adapters were identified, and the adapters and poly-

A/T sequences were trimmed. The resulting sub-reads were then

mapped using GMAP [21] (2012-07-20 release, default settings) to

the galGal4 genome assembly [11]. Files containing the full length

reads used in this study are available through the sequence read

archive (SRA accession: SRP038897).

Transcript isoform validation
To identify sequences most likely to represent actual transcripts

that are not currently represented in the most recent Ensembl 74

galgal4 annotation, the long-read sequences were subjected to

validation steps after mapping. First, each exon junction was

checked for proper splice acceptor (AG|N) and splice donor sites

(N|GT). Second, each junction was checked against the database

of exon junctions derived from Illumina short-read sequencing

(described above). Multi-exon sequences that contained only

validated junctions were retained. A junction code was created

for each transcript isoform representing the string of junctions that

Table 1. Bulk gene level analysis.

total # RefSeq Ensembl PacBio Trinity EST

RefSeq 5117 x 99% 81% 82% 55%

Ensembl 14282 46% x 75% 76% 53%

PacBio 40327 29% 55% x 52% 25%

Trinity 32331 32% 61% 64% x 37%

EST 11906 38% 76% 75% 84% x

Each cell along a row represents the percentage of elements (whose number is
listed in the first column) that is overlapped (by any amount) of an element
from the set of data represented in the column header. For example, 99% of
RefSeq annotations were overlapped by Ensembl annotations.
doi:10.1371/journal.pone.0094650.t001

Figure 3. Validation of mapped long-read splice sites. TopHat2 was used to identify observed splice junctions from the short-read data. The
light red and light blue lines show the distribution of distances from Ensembl-annotated splice sites to the experimentally observed splice sites. Both
of these lines peak heavily at 0 indicating the degree of agreement between these orthogonal datasets. Splice sites annotated from long-read
sequencing (blue and red), also show overall agreement, with a small peak of misidentified splice donor sites within 10 bp of the accurate one, which
is possibly due to alignment errors near sites with multiple possible splice donor sites.
doi:10.1371/journal.pone.0094650.g003
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it contained. The isoform codes were merged together to remove

duplicate isoform fragments, and then the furthest transcription

start and stop sites were assigned to each isoform code in order to

handle the observed variability in exact transcription start and stop

sites between isoforms with the exact same exons. Those isoforms

with codes that were not present among the galGal4 Ensembl

annotations were retained. The codes representing new isoforms

were converted back into chromosomal locations, and those

isoforms were intersected with Ensembl genic regions to identify

those transcript isoforms that represented new gene regions.

Results, Discussion and Conclusions

Broad coverage of embryonic heart transcripts by new
long-read sequencing data

After extracting RNA from embryonic chicken hearts and

creating cDNA libraries, the libraries were sequenced yielding

1,849,786 cDNA sequencing reads. Of these, 1,566,465 (85%)

mapped to the galGal4 genome, showing accurate mapping of

these reads (e.g. Figure 1). The average mapped transcript length

was 1,076 bp, compared to an average of ,2,400 bp for all

Ensembl annotations, when corrected for estimated transcript

abundance. This reflects the reality that even with long-read

sequences, we were unable to fully sequence the entire lengths of

long transcripts. Truncation of transcripts could occur from RNA

degradation, mechanical shearing of the sample, incomplete PCR

amplification, or loading bias of the sequencer.

To estimate what percentage of the transcriptome these

sequences represented, we compared the coverage of these

sequences to the per-base coverage of the entire RefSeq

annotation (Figure 2). RefSeq was used for this analysis because

its annotations represented high-confidence genes conserved

across numerous animal species. Of all RefSeq genes, 81% had

some overlap with the new sequencing data (Table 1). That

number is on par with the fraction of genes that are expected to be

expressed in heart tissues, based on the relative coverage of heart

RNAseq datasets compared to all RNAseq datasets from chicken

(data not shown). This observation suggests that the long-read

sequences represent at least partial coverage of almost all chicken

genes that are expressed in embryonic chicken hearts. However,

only 42% the annotation set was covered to at least 90% of the

read length. An additional sequencing run that added over 100 k

sequences did little to improve the coverage, suggesting that we

were approaching the saturation point of the libraries’ complex-

ities. Future efforts to improve the chicken genome would provide

greater coverage and across a broader range of tissue types and

developmental stages.

Overall agreement between long and short-read
sequencing

Short-read chicken RNAseq datasets were aligned to the

galGal4 genome assembly, resulting in 206,564,870 tags, which

were then assembled into contiguous transcripts as described in

‘Materials and Methods’. The overlaps between the long and

short-read sequences along with existing isoform annotations from

Ensembl and RefSeq are presented in Table 1. More than 75% of

the Ensembl annotations were covered by either the long or short-

read datasets, while the RefSeq and Manchester EST data [22]

covered 46% and 53%, respectively. The similarities in the

percentages with which the long and short-read datasets overlap

existing annotations suggests good agreement, though they remain

incomplete due to lack of RNA sampling and saturation across the

many different tissue types. When the long and short-read

sequences were compared to each other, there was still quite

good agreement, with the long-read sequencing covering more

than 60% of the annotations based on short-read data. The short-

read data overlapped 52% of the long-read data. Interestingly, the

Ensembl annotations covered 99% of the RefSeq annotations,

Figure 4. Identification of new isoforms and genes. Shown in this image from the UCSC genome browser are examples of the new genes and
isoforms identified from among the short and long-read annotations: A. This region carries two distinct annotations, one for an alternate transcription
start site (TSS), and another for a completely new gene that is currently unannotated. B. A heart-specific isoform of the FKBP7 gene. C. Both long-read
and short-read data support the existence of transcripts going in opposite directions in this region of chromosome 9.
doi:10.1371/journal.pone.0094650.g004

Table 2. New Isoforms and genes.

Ensembl genes/transcripts 14,282/16,743

RefSeq genes/transcripts 6,193/5,117

all new annotations 9,221

genes with new annotations 5,930

new genes (not in Ensembl) 539

isoforms for new genes 656

exons in new genes 2,337

new exons in known genes 5,299

doi:10.1371/journal.pone.0094650.t002
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while both sequencing data annotations captured just over 80%,

which is possibly due to the relatively limited set of tissues from

which the samples were taken.

The above observations suggest quite good agreement on the

level of gene regions. To explore how well the splice donor and

acceptor sites agree between the short and long-read datasets and

the Ensembl annotations, we identified all splice donor sites

present in 1.) junctions identified among the short-read sequences,

2.) junctions identified from the Ensembl annotations and 3.)

junctions identified from the long-read sequences. Junctions

identified from the short-read data match the locations of

annotated splice acceptor and donor sites (Figure 3), and for the

most part, the long-read data agrees as well. However, approx-

imately 10% of the long sequence reads mapped beyond the

‘correct’ donor site to a downstream ‘GT’ sequence. The origin of

this error seemed to be in the process by which the GMAP aligner

identifies exon boundaries for sequences with a higher rate of

indels. The use of short-read data to validate the splice sites

eliminates any effects this mapping error might have on exon

boundary identification in the long-read sequences.

Identification and characterization of new transcript
isoforms and gene regions

The short-read and long-read datasets were integrated and used

to generate a list of validated transcript isoforms (see Materials and

Methods), which were then compared to the Ensembl annotations

in order to identify new transcript isoforms (e.g. Figure 4). In all,

9,221 new annotations were generated (Table 2), corresponding to

5,930 different genic regions and included 5,299 currently-

unannotated exons. 539 of these regions represent genes without

current Ensembl annotations. Searches against the entire RefSeq

database only revealed human homologs of three of these genes:

FOXE3 (chr6:32,765,038-32,766,317), RASA1 (chrW:242,630-

345,306) and FAM179b (chr5:58,707,815-58,739,103). FOXE3 is

an important developmental regulator that, in humans, is involved

with correct ocular lens formation [23]. RASA1 is a Ras inhibitor

linked in humans to angiogenesis through its interactions with the

miR-132 microRNA [24]. In chickens there appears to be two

paralogs, one of which is annotated on chrZ, while the other is on

chromosome W immediately upstream of SMAD2. The lack of

overlap with other annotation sets indicates that many genes

currently lack any annotations among all of the known datasets.

To determine in which tissues the new isoforms might be most

enriched, differential RNA analysis was performed using the short-

read sequences. 2,018 of the new isoforms were differentially

expressed between one or more of the following tissues: brain,

cerebellum, heart kidney, liver and testes. A cluster of these

differentially expressed isoforms showed enriched expression in

hearts (Figure 5a), as was expected given that 20% of the short-

read sequences came from adult heart tissue and that all of the

long-read sequences came from embryonic heart tissue. In

addition, there were three other major clusters of tissue-specific

expression. One cluster was enriched in the brain and cerebellum,

while the second was enriched in kidneys and liver. The last set of

Figure 5. New isoforms and genes with tissue-specific expression. The relative expression of (a) the 2,018 differentially expressed isoforms
and (b) the 120 new differentially expressed gene annotations are provided across chicken adult brain, cerebellum, heart, kidney, liver and testes
datasets, along the scale provided.
doi:10.1371/journal.pone.0094650.g005
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isoforms was enriched in testes. Almost identical clusters were

observed among the set of 181 completely new gene regions that

were differentially expressed (Figure 5b). Given that the samples

used were from a limited number of tissue types, it is likely that

more extensive exploration of transcript products will yield many

more genes and isoforms specific to those tissues.

Summary
Using long-read sequences generated from embryonic chicken

hearts in combination with short-read sequences from 5 different

adult chicken tissues, we were able to contribute over 9,000 new

transcript isoforms to the most complete chicken genome annota-

tion, including the identification of more than 500 genic regions

without current annotation in Ensembl. While searches against other

databases yielded homologs for three of the new gene regions,

FOXE3, RASA1, and FAM179B the remaining genes remain

uncharacterized, including the 121 gene regions that exhibited

tissue-specific expression and might play key roles in chicken biology.

Supporting Information

File S1 A bed formatted file containing the galGal4
locations of isoforms for gene regions not found in the
current Ensembl annotation.

(BED)

File S2 A bed formatted file containing the galGal4
locations of all isoforms not found in the current
Ensembl annotation.
(BED)

File S3 A bed formatted file containing the galGal4
locations of isoforms within new genic regions not seen
in the current Ensembl annotation that exhibited
differentially expression among the different tissues
examined in this study.
(BED)

File S4 A bed formatted file containing the galGal4
locations of the new isoforms not seen in the current
Ensembl annotation that exhibited differentially expres-
sion among the different tissues examined in this study.
(BED)
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