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Abstract

Diffusion kurtosis imaging (DKI) is a promising extension of diffusion tensor imaging, giving new insights into the white
matter microstructure and providing new biomarkers. Given the rapidly increasing number of studies, DKI has a potential to
establish itself as a valuable tool in brain diagnostics. However, to become a routine procedure, DKI still needs to be
improved in terms of robustness, reliability, and reproducibility. As it requires acquisitions at higher diffusion weightings,
results are more affected by noise than in diffusion tensor imaging. The lack of standard procedures for post-processing,
especially for noise correction, might become a significant obstacle for the use of DKI in clinical routine limiting its
application. We considered two noise correction schemes accounting for the noise properties of multichannel phased-array
coils, in order to improve the data quality at signal-to-noise ratio (SNR) typical for DKI. The SNR dependence of estimated
DKI metrics such as mean kurtosis (MK), mean diffusivity (MD) and fractional anisotropy (FA) is investigated for these noise
correction approaches in Monte Carlo simulations and in in vivo human studies. The intra-subject reproducibility is
investigated in a single subject study by varying the SNR level and SNR spatial distribution. Then the impact of the noise
correction on inter-subject variability is evaluated in a homogeneous sample of 25 healthy volunteers. Results show a strong
impact of noise correction on the MK estimate, while the estimation of FA and MD was affected to a lesser extent. Both
intra- and inter-subject SNR-related variability of the MK estimate is considerably reduced after correction for the noise bias,
providing more accurate and reproducible measures. In this work, we have proposed a straightforward method that
improves accuracy of DKI metrics. This should contribute to standardization of DKI applications in clinical studies making
valuable inferences in group analysis and longitudinal studies.
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Introduction

Diffusion weighted (DW) magnetic resonance imaging (MRI)

[1] and diffusion tensor imaging (DTI) [2] are nowadays widely

applied imaging modalities allowing one to study the complexity of

neuronal networks of axons and to characterize the microstruc-

tural properties of brain tissues on the length scale of cellular size

[3]. DTI focuses on the study of white matter (WM) structure and

provides important information about the tissue anisotropy

characterizing neuronal fiber tracks. In this approach, the

attenuation of the DW signal is approximated by a mono-

exponential function valid for rather low diffusion weightings (b-

values), typically not exceeding 1000 s/mm2) [4–6]. At higher b-

values, the deviations from the mono-exponential decay occur,

related to the complexity of the brain tissue microstructure

hindering and restricting the diffusion of water molecules at

different length scales [7] (e.g. cell membranes of varying

permeability, organelles with a wide range of sizes, shapes and

packing densities). In turn, the level of complexity may shed light

on microstructural changes or damages in both the healthy and

pathological brain. Recently, diffusion kurtosis imaging (DKI) has

been proposed by [8,9] to capture changes related to patterns of

non-Gaussian diffusion within clinically reasonable acquisition

time. It is an extension to DTI, making use of the second term in

the Taylor series expansion of the logarithm of the DW signal

according to:

ln(S(b)=S(0))~{bDappz
1

6
b2D2

appKappzO(b3) ð1Þ

where b denotes the strength of the diffusion weighting and Dapp

and Kapp are the apparent diffusion coefficient and excess diffusion
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kurtosis, respectively. The conventional DTI parameters such as

fractional anisotropy (FA) and mean diffusivity (MD) are estimated

as well as the mean kurtosis (MK). Kurtosis allows one to quantify

the degree of diffusion non-Gaussianity and provides an empirical

measure of the level of heterogeneity of WM tissues [10]. Within

the frame of WM model, kurtosis metrics were related to the

axonal water fraction [11,12] and to the restricted volume fraction

using the CHARMED model [13]. Furthermore, as mean kurtosis

(MK) does not require anisotropic tissue organization, gray matter

(GM) microstructure can also be investigated [10,14]. In recent

years, the interest for DKI has been continuously growing and

MK has shown great potential as a biomarker to detect tissue

abnormalities, being more sensitive to changes than classical DTI

metrics. Promising results have been reported in the study of

ischemic stroke in both human [15] and animal models [16], brain

gliomas [17] and epilepsy [18]. DKI might thus become a useful

clinical tool in the coming years.

However, the processing part is still not well established and

there is no standard methodology, which makes it more difficult to

use clinically. The direct impact of acquisition parameters or data

processing has not been sufficiently studied, especially related to

intra- and inter-subject variability. However this information is

very valuable for clinical studies, in particular, for quantifying the

changes on the individual and group levels, and assessing their

significance in longitudinal studies. Therefore, the study of inter-

subject variability of diffusion metrics in general has recently

gained momentum [19–21]. To our knowledge, only two studies

have investigated inter-subject variability in DKI: one for

improving the study design in terms of statistical power [22] and

the second to provide some reference values [23]. None of them

included noise bias corrections. It is thus important to identify

changes in kurtosis parameter variability in relation to the

acquisition setup and data processing. In particular, one of the

difficulties of DKI in comparison to DTI is the need of DW signal

at higher diffusion weighting coefficients (b-values #2500–3000 s/

mm2). For conventional DTI (b-values #1000 s/mm2), SNR is still

relatively high and the impact of noise on the estimation of

parameters such as fractional anisotropy (FA) or mean diffusivity

(MD) is relatively small [24]. However, as diffusion weightings

becomes larger the signal drops rapidly, so is the SNR and the

signal can easily reach the noise floor [25]. This is particularly true

in regions experiencing fast signal decay because of the free

diffusion of the molecules (cerebrospinal fluid (CSF)) or because of

the high degree of directionality along a specific direction (e.g.

along the fibers in the WM). When the signal is about or below the

noise floor, the noise introduces a significant bias artificially

enhancing the measured signal intensity [26]. The noise is then

interpreted as true signal and, if not corrected, leads to an

overestimation of kurtosis [27–29]. Thus in clinical applications,

where the number of repetitions is limited by acquisition time, the

low SNR and resulting noise bias can strongly affect the reliability

and sensitivity of the diffusion experiment. For diagnosis purposes,

as well as to derive medical inferences on the pathological

alterations of the brain tissue, the accuracy and reproducibility of

the estimated diffusion metrics are essential, which require to

account or correct for noise bias.

The characterization of noise in MRI is challenging, especially

with the introduction of multiple receiver coils and parallel

imaging techniques. In order to avoid phase artefacts, magnitude

images are generally preferred to complex images [30]. Both real

and imaginary parts of the complex signal recorded by each

channel are assumed to be Gaussian-distributed. For a single-

channel acquisition, the magnitude reconstruction provides an

image whose signal is Rician-distributed while the background

noise is Rayleigh-distributed [31]. Nowadays, multichannel

receiver coils are routinely used and preferred to quadrature

receiver coils, providing higher SNR and reducing the acquisition

time and geometric distortions thanks to parallel imaging

techniques [32]. The noise properties are influenced by the

parallel imaging technique used as well as by the reconstruction

filters applied. A review of the noise characteristics under these

different configurations can be found in [33]. Data acquired with

multichannel phased-array coils and images reconstructed as the

root of the sum of squares (SoS) of the complex images of each

channel exhibit a signal following a noncentral chi distribution

[34]. The background noise, on the other hand, is central chi

distributed and can generally be assumed spatially invariant [34].

With advanced parallel imaging methods, the noise distribution

becomes spatially dependent, and the signal properties require

more complex modelling [27,35–37].

Two main approaches to correct for the noise bias have been

described previously. The first approach is based on the correction

of the magnitude images prior to model fitting [31,38–42] while

the second approach is accounting for the noise bias in the model

estimation procedure itself [29,43]. Both approaches require the

estimation of the underlying Gaussian noise standard deviation.

For that purpose, different methods using either image back-

ground areas or the image object itself have been reviewed in [44].

In the case of DKI, only the second approach has been

investigated [26,29]. The impact of noise, both thermal and

physiological, on diffusion metrics has been studied previously for

different non-Gaussian models [26], in the case of Rician noise

distribution only. The error in estimating DKI derived metrics has

been shown to increase as SNR decreases [45], and estimators

accounting for the noise bias have been shown to provide more

accurate results [27,28]. Despite noise has been clearly shown to

influence the results in DKI, noise correction is not systematically

applied. Recently, a number of DKI studies have investigated

different aspects such as reproducibility [23], sample size and

statistical power [22], the choice of gradient directions and b-

values [46] or fast acquisition method [47]. However, the impact

of noise was not investigated and no correction was applied in

these studies.

In this work, we investigate the influence of noise correction on

the estimation of DTI and DKI metrics, such as MD, FA or MK,

in human data in vivo and their dependence on SNR. Two noise

correction methods based on the first and second moments of the

noncentral chi distribution [34] have been applied and compared

with non-corrected data. Noise level was estimated prior model

fitting, in order to fit the data to an estimated noise-free signal, and

improve accuracy and precision of the diffusion model estimators.

The performance of these methods was compared to the

maximum likelihood (ML) estimator [27] using simulations and

one real data set. The intra-subject reproducibility of the DTI and

DKI parameters estimation as a function of SNR is investigated in

a single subject experiment. SNR was manipulated by reposition-

ing the head of the subject within the multichannel head coil,

taking advantage of the spatially varying sensitivity of each coil in

the array, and by varying the spatial resolution. In a second

experiment, inter-subject variability of DTI and DKI parameters

was investigated in a group of 25 healthy volunteers to provide

insight on the suitability and reliability of DTI and DKI metrics

for group comparison in clinical studies. Both intra- and inter-

subject variability of these metrics were compared in relation to

SNR level and correction schemes. We hypothesize that noise

correction reduces spurious intra- and inter-subject variability of

the estimated parameters, providing more accurate and repro-
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ducible biomarkers. We also provide a list of parameter values and

variability in typical regions of the brain.

Methods

Theory of signal distribution
In most diffusion MRI experiments, the image is reconstructed

as the magnitude of the complex image in order to avoid phase

shifts artifacts [30,48]. With multichannel receive coils and SoS

combination of the complex images from each of the coils, the

measured signal follows a noncentral chi distribution [34] which is

expressed as follows:

p MLjgLð Þ~ gL

s2

ML

gL

� �L

exp {
M2

Lzg2
L

2s2

� �
IL{1

MLgL

s2

� �
ð2Þ

where L is the number of coils, ML is the measured signal, gL is the

signal in the absence of noise (the ‘‘true’’ signal), s is the standard

deviation of the noise and IL-1 is the modified (L-1)th order Bessel

function of the first kind. The analytical expressions of the first and

second moments of the noncentral chi distribution are given by

[34]:

ML~

ffiffiffi
p

2

r
2L{1ð Þ!!

2L{1 L{1ð Þ! 1F1 {
1

2
,L,{

g2
L

2s2

� �
s ð3Þ

and

SM2
LT~2Ls2zg2

L ð4Þ

respectively, where 1F1 is the confluent hypergeometric function

and (2L-1)!! = 1*3*5*…*(2L-1). In the absence of signal (gL = 0),

the background noise follows a central chi distribution [34]:

p MLð Þ~ 21{L

C(L)

M2L{1
L

s2L
exp {

M2
L

2s2

� �
ð5Þ

The first moment of the central chi distribution is non-zero and

proportional to s. As a result, in low SNR voxels, the measured

signal ML is overestimated, affecting the estimation of the DTI and

DKI parameters. In order to avoid this noise bias, gL should be

estimated based on accurate estimates of s and ML and the

analytical expressions given in Eq. (3) and Eq. (4).

Data acquisition
DW experiments were performed on a head only 3T MRI

system (Allegra, Siemens) using an 8-channel receive head coil.

DW images were acquired with a twice-refocused spin-echo

diffusion sequence. Gradients were allowed their maximum value

(40 mT/m) and slew rate (400 T/m/s). Data were reconstructed

using SoS reconstruction with equal weights. Two experiments

were carried out. For both of them, DW images were acquired

along 60 non-coplanar directions at each b?0. For motion

correction purpose (see section 2.4 on data processing), twelve

non-DW images interleaved with the DW images were acquired.

The acquisition time was about 16 minutes for one session.

Experiment 1: Intra-subject inter-session

variability. The first experiment investigates the intra-subject

variability of the DKI parameters as a function of SNR and relies

on the assumption that for a single subject, the estimation of the

DKI parameters should be reproducible over multiple sessions and

be SNR independent. The SNR was manipulated either by

repositioning the head of the subject within the head coil, over

several repetitions of the same measurement, taking advantage of

the spatially varying sensitivity of each coil in the array (Protocol

1a), or varying the spatial resolution (Protocol 1b), see Table 1 for

the acquisition parameters of Protocols 1a and 1b. Protocol 1a was

repeated five times on the same volunteer (27 years old female) for

different head positions. Due to the spatially varying sensitivity of

the coil array and the different positions of the head relatively to

each coil element, the SNR was spatially dependent, and its spatial

distribution varied from one session to the next. As a result, the

SNR in a given brain area varied from one session to the next. In

the following, the experiments related to Protocol 1a for different

head positions will be referred to as P1 (center of the coil), P2 (shift

up), P3 (shift down), P4 (shift to the right) and P5 (shift to the left).

In Protocol 1b, data were acquired on the same volunteer with

centered head position and larger voxel size (36363 mm3 instead

of 2.462.462.4 mm3) in order to reach a global 2-fold increase in

SNR. This higher SNR protocol is expected to show moderate

noise correction effects as compared to lower SNR situations. In

the following, this protocol will be referred to as P6. The variations

in the acquisition parameters including TE, TR, matrix and voxel

sizes between protocols affect the SNR but should not affect the

reproducibility of diffusion parameter estimation after noise

correction is applied, which is at the heart of our study.

Experiment 2: Inter-subject variability. Protocol 2 (see

Table 1 for the acquisition parameters) was acquired on 25 healthy

male volunteers. In order to reduce the genuine inter-subject

variability in the population, data sets were selected from a

homogeneous population consisting of male volunteers recruited

Table 1. Summary of the acquisition parameters for each protocol.

Parameters Protocol 1a Protocol 1b Protocol 2

Number of repetitions 1 1 3

b-value (s/mm2) 0/1000/2500 0/1000/2500 0/1000/2800

TR (ms) 7400 6800 7400

TE (ms) 91 88 89

FoV (mm) 211 192 192

Number of slices 54 44 58

Matrix size 88688 64664 96696

Voxel size (mm3) 2.462.462.4 36363 2.262.262.2

doi:10.1371/journal.pone.0094531.t001
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for an ongoing study with the following criteria: age range, 18–30

years old (mean 2363); non smokers with no history of

neurological or psychological diseases and no medication or drug

abuse. The amplitude and spatial distribution of the inter-subject

variability was studied as a function of the noise correction

procedure and SNR spatial distribution.

Ethics Statement. The experimental procedures received

approval from the Ethics Committee of the University of Liege

and signed informed consent was obtained from all participants

prior the beginning of the experiment.

Noise estimation and magnitude image correction
Noise estimation. The methods developed here to correct

DW images for noise bias require an estimation of the noise

standard deviation, s. The estimation was performed either from

a noise image (acquired with the radio-frequency (RF) transmit

amplitude set to zero for all RF pulses) when available (Experiment

1) or from voxels extracted from the background of the DW

images (Experiment 2). In the latter case, a mask was created by

automatically thresholding the mean non-DW image, excluding

both signal and Nyquist ghost voxels. The standard deviation was

estimated on the images (noise images or DW images) prior to any

processing using the following expression [34]:

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i[background

S2
i

2LN

vuut
ð6Þ

where Si is the measured signal for each voxel in the background

area, N is the total number of voxels and L is the number of coils.

The validity of Eq. (6) was confirmed in our experimental setup by

inspecting the noise distribution in the acquired noise images. The

expression given in Eq. (5) (with L = 8) closely fitted the histogram

of measured noise voxel intensities, with a standard deviation

Figure 1. Monte-Carlo simulations. Averaged values of (a) FA, (b) MD, (c) MK over 2500 trials and their corresponding mean square errors (d–f) for
different estimators. The results are shown for the uncorrected noisy signal (red), and for the signal corrected by M1 (green), M2 (blue) and ML
(magenta). The black line indicates the reference value.
doi:10.1371/journal.pone.0094531.g001

Figure 2. Normalized signal attenuation fits before and after noise corrections for the different correction schemes. The data
correspond to a single diffusion direction in WM areas, for two different voxels with apparent SNR values equal to 26.3 (a) and 16.7 (b) respectively.
doi:10.1371/journal.pone.0094531.g002
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closely matching the value calculated from Eq. (6) (data not

shown). Moreover, the difference observed between the standard

deviation estimated on the noise images and the standard

deviation estimated on the background of the images in

Experiment 1 did not exceed 3% when using DW images for

background estimation and 6% when using non-DW images. This

range of error has no significant impact on the noise correction

procedure and the background noise estimation can therefore be

used reliably when no noise image is available.

In addition, the noise standard deviation is used to estimate the

apparent local SNR in the images, calculated voxel-by-voxel as the

mean signal of the non-DW images (prior noise correction) divided

by the standard deviation of the noise.

Non local mean filtering. Prior to noise correction, a

nonlocal mean filter (BM4D) [49] was optionally applied to the

data. This filter provides a better estimation of the first and second

moments of the measured magnitude, while preserving fine

structures and details of the images. Its effect on the estimation

of diffusion and kurtosis parameters was investigated at the

individual and group level.

First moment correction. This method, in the following

referred to as M1, is based on the first moment �MML of the

noncentral chi distributed signal (Eq. (3)). As this equation has no

analytical solution, a look-up table was used to retrieve gL using

linear interpolation. After realignment of the DW images (see

Section 2.4), the look-up table of �MML versus gL was built for each

individual image, using the estimated standard deviation ŝs and

values of �MML between the noise floor and the maximum measured

intensity in the image: small steps were used to guarantee a good

Table 2. Kapp and Dapp (1023 mm2/s) values for two voxels with different SNR, corresponding to Figure 1, with their standard
errors.

SNR = 26.3 SNR = 16.7

Kapp Dapp Kapp Dapp

NC 0.9760.03 0.8460.02 1.2960.01 0.9360.01

BM4D+NC 0.9960.02 0.8560.01 1.2760.01 0.8460.01

M1 0.7460.03 0.8560.01 0.8960.01 1.0060.01

BM4D+M1 0.7660.02 0.8760.01 0.8460.01 0.9060.01

M2 0.6760.04 0.8360.01 0.8960.01 1.0060.01

BM4D+M2 0.7560.01 0.8760.01 0.7960.02 0.9060.01

doi:10.1371/journal.pone.0094531.t002

Figure 3. Histograms of diffusion parameters for one slice. (a) MK map for one single subject (position P1) and one selected slice corrected
with method M1. (b) MK, (c) MD and (d) FA histograms of the same slice for uncorrected signal (NC and BM4D+NC) and using various correction
schemes (M1, BM4D+M1, M2, BM4D+M2 and ML estimator).
doi:10.1371/journal.pone.0094531.g003
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accuracy. The noise floor is the minimum value taken by �MML,

corresponding to gL = 0. For example with N = 8, the noise floor is

equal to 3.94*s. For each pixel, the magnitude of the measured

signal (after non local mean filtering if applied) was used as an

estimate of the first moment M̂ML while the true signal estimate ĝgL

was calculated by interpolation of the look-up table. The corrected

signal intensity ĝgL was set to zero whenever the measured intensity

M̂ML was below the noise floor.

Power image correction. The second method, M2, is based

on the expression of the second moment (Eq. (4)). This method was

first introduced for single channel acquisitions and Gaussian signal

distribution [38]. The same approach is used here in the case of

multichannel receiver coil and noncentral chi distribution. The

second raw moment of the signal distribution E M2
L

� �
is

approximated with the square of the measured signal M̂M2
L (power

image) after non-local mean filtering (if applied), as described in

[38]. Then, the correction is applied to the power image:

ĝg2
L~M̂M2

L{2Lŝs2 where ĝgLis the true signal amplitude estimate,

M̂MLis the estimate of the first moment of the measured signal, L is

the number of coils, and ŝs is the estimate of the noise standard

deviation. When the measured signal intensity is below the noise

floor, the squared true signal amplitude estimate is negative,

leading to imaginary numbers in the corrected magnitude image.

In such cases the corrected signal intensity ĝgL was set to zero.

Data processing
In all protocols, non-DW images were first realigned with rigid

body transformation using SPM8 (Wellcome Trust Centre for

Neuroimaging, UCL, UK) to correct for motion, for each

individual session. Movements between two non-DW images were

interpolated and transformations were applied to the correspond-

ing DW images. The diffusion directions were rotated accordingly

[50]. The non-local mean filter was optionally applied and images

were optionally corrected for noise with the two correction

schemes described above. In total, six different procedures are

compared: (a) no correction (NC), (b) non-local mean filtering only

(BM4D+NC), (c) first moment method (M1), (d) non-local mean

filtering and M1 (BM4D+M1), (e) second moment method (M2),

(f) non-local mean filtering and M2 (BM4D+M2).

The logarithm of the normalized signal intensities were fitted to

its cumulant expansion truncated at its second order in b, as

described in the introduction (Eq. (1)), for each diffusion direction,

on a voxel-by-voxel basis, using a nonlinear least square algorithm.

Then, the diffusion tensors are estimated by solving a linear system

for the tensor components [2] and diagonalized. In a similar

fashion, kurtosis tensors were estimated voxel-by-voxel [8]. The

kurtosis tensors were transformed from the laboratory coordinate

system to a coordinate system defined by the three eigenvectors of

the diffusion tensor [51]. Conventional DTI (FA and MD) as well

as DKI metrics [10] were evaluated. Among three conventional

kurtosis metrics (axial, radial, and mean), we focused our

presentation on MK as the most representative and frequently

used one. MK was calculated as the averaged apparent kurtosis

(evaluated from the kurtosis tensor) over the unit sphere, as

described by equation (55) in [10]. In addition, one data set

(protocol 1a, P1) was analysed using ML estimator [27]. The

original script of this estimator was provided to us by J. Veraart

[27].

Experiment 1. In order to compare the different sessions,

non-DW images were realigned in the image space of the first

session and the same spatial transformations were applied to the

parameter maps. Few outlier voxels with extremely high fitted

values of MK were reassigned with the averaged neighbouring

values. Region of interest (ROI) analysis was performed on eight

independent regions. These regions were delineated in six different

WM and two GM areas using the Harvard-Oxford subcortical

structural atlas and the JHU white-matter tractography atlas

available in FSL (Analysis Group, FMRIB, Oxford, UK [52]):

Temporal Lobe (TL), Internal Capsule (IC), Anterior Corona

Radiata (ACR) and the Globus Pallidus (GP), both left and right.

MK values from these ROIs were extracted and compared.

Pearson’s linear correlation tests were performed to determine if

the mean MK was significantly correlated or not to SNR for each

ROI and each correction separately. SNR maps were derived for

each session as described in section 2.3.1. For protocol 1a, z-score

analysis was also performed voxel-by-voxel for each correction

scheme to evaluate the deviation of each individual MK measure

from the average MK map for the six correction procedures.

Experiment 2. For group analysis, data from the 25 subjects

were normalized to MNI spaces. The mean non-DW images were

individually segmented and warped into MNI space using the new

segment tool in SPM8 (Wellcome Trust Centre for Neuroimaging,

UCL, UK). The same non-linear transformations were applied to

the scalar parameter maps. For MD, FA and MK maps

Figure 4. Map and histograms of MK for high SNR acquisition (P6). (a) MK map of the selected slice for high SNR acquisition (P6) corrected with
M1 and (b) the MK histograms of the same slice for three correction schemes (dashed lines). The corresponding histograms for P1 (low SNR acquisition)
are also shown (solid curves). The histograms are practically overlapping after the noise correction (blue and green curves). The non-corrected histograms
are shifted with respect to each other. However, the difference between corrected and non-corrected values is smaller for higher SNR.
doi:10.1371/journal.pone.0094531.g004
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respectively, standard deviation maps across the group were

calculated for each noise correction scheme and histograms of the

MD, FA and MK maps averaged over the 25 subjects were also

calculated. GM and WM histograms of MK maps were calculated

using corresponding masks. These masks were created using FA

maps thresholded at ,0.25 for GM and .0.25 for WM. ROI

analysis using the ROIs described above (Experiment 1) was also

performed on each of the 25 subjects, and the ROI mean and

standard deviation of MK over the 25 subjects were calculated for

each noise correction scheme and compared.

Simulations
In addition to the real data acquisitions, an extra experiment

using a simulated phantom was performed. The goal is to validate

our noise correction methods with Monte-Carlo simulations and

to compare the results with those obtained with the ML estimator,

as it is an unbiased estimator [27]. A full diffusion kurtosis tensor

was simulated, using 60 directions and 3 b-values (0,1000,2500 s/

mm2). FA was set to 0.7606, MD to 0.948761023 mm2/s and

MK to 0.9662. These are typical white matter values. Zero-mean

Gaussian noise was added to both real and imaginary part of the

noise free signals for each coil to get noisy synthetic data signals.

The composite magnitude image was then obtained with the

online parallel MRI noisy phantom simulator available online

(http://www.lpi.tel.uva.es/,santi/) using the SoS method, as-

suming no noise correlations for 50650 voxels image, correspond-

ing to a total of 2500 trials. The mean and mean square error

(MSE) of FA, MD and MK were calculated for the three methods

(M1, M2 and ML) and compared in order to assess their

performances.

Results

Simulations
Simulation results are shown in Figure 1. The mean FA, MD

and MK values are plotted as a function of SNR. There is a clear

deviation from the reference when no noise correction is applied,

with an underestimation of FA and MD up to SNR,25 and an

overestimation of MK up to SNR = 50. However this bias is

considerably reduced when corrections are applied, even for

relatively low SNR. M1 and M2 corrections lead to similar results

as ML. For the intra- and inter-subject variability study, we thus

chose to skip ML estimator, as it is computationally consuming

and proceeded only with M1 and M2.

Effect of noise correction
Figure 2 shows the effect of the different correction schemes on

the signal decay for two voxels with significantly different SNR

(26.3 and 16.7) in WM. The fitted values of Dapp and Kapp (Eq. (1))

for the different correction schemes are reported in Table 2.

Correction has a stronger effect for higher b-values and/or for low

SNR data points. As a result, the estimation of the apparent

kurtosis Kapp appears strongly affected by the noise bias: the

difference between non-corrected and corrected values reaches

about 25–30%. In contrast, the estimation of Dapp is less strongly

affected in all correction schemes (up to 10%). This is primarily

due to significantly higher SNR and smaller noise bias observed

for data points acquired at low diffusion weightings (b = 0 or

1000 s/mm2), which predominantly determine the estimated Dapp

value. The influence of BM4D filtering on Kapp and Dapp estimates

appears negligible which is not surprising since the filtering

procedure only reduces the local variance but does not correct for

the noise bias.

A map of MK obtained using the noise correction method M1 is

shown in Fig. 3a, as an example. The corresponding histograms of

MK, MD, and FA are shown in Figs. 3b, 3c, and 3d, respectively.

In the absence of correction, MK values are strongly overestimat-

ed as demonstrated by the histograms in Fig. 3b. For both

correction schemes, M1 and M2, the histograms exhibit significant

shifts of both WM and GM peaks towards lower MK values as

compared to non-corrected data: from 1.4 to 1.05 for WM and

from 0.75 to 0.6 for GM. The two correction methods show

similar results whereas BM4D filtering produces no significant

effect. There are also no significant differences with the histograms

obtained using ML estimator. Figure 4 compares Protocol 1a (P1)

with low SNR acquisition and Protocol 1b (P6) with higher SNR

acquisition for the same slice as in Fig. 3. After correction (M1)

MK maps are similar for low and high SNR acquisition, as shown

in Figs. 3a and 4a. The corresponding MK histograms for three

corrections schemes (NC, M1 and M2) are shown in Fig. 4b.

Figure 5. SNR and corresponding MK maps for low (P1 to P5)
and high (P6) SNR acquisitions. The first column corresponds to
SNR maps calculated as the ratio of the signal in non-DW images and
the noise standard deviation. MK maps are shown in the other columns.
Each row represents one acquisition with a different SNR profile. Results
are shown for non-corrected (BM4D+NC) and corrected (BM4D+M1 and
BM4D+M2) data. Results without BM4D filter are similar. The region
delineated by a white rectangle is zoomed in Figure 6.
doi:10.1371/journal.pone.0094531.g005

Noise Correction for Diffusion Kurtosis Imaging

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e94531

http://www.lpi.tel.uva.es/~santi/


Similar histograms were obtained with corrections schemes using

BM4D filter (not shown). The histogram of non-corrected data at

high SNR (dashed red line) exhibits a clear shift compared to non-

corrected data at lower SNR (solid red line) towards lower MK

values. Moreover, the difference between non-corrected and

corrected data becomes smaller at high SNR. In accordance with

the analysis of the signal decay in Fig. 2, the impact of the noise

correction on the estimation of MD and FA derived from the

diffusion tensor is practically negligible, as demonstrated by their

histograms in Figs. 3c and 3d. A slight shift towards higher mean

diffusivity is observed in the MD histograms, since noise correction

generally tends to increase the slope of the DW signal decay. The

fractional anisotropy is almost unaffected, indicating a much

smaller bias in estimated FA maps when no noise correction is

applied.

Intra-subject variability
Results from the experiment 1 are shown in Figs. 5, 6, 7 and 8.

In this experiment, the same measurement protocol was repeated

5 times for various positions of the head of the subject in the coil.

As a result, the spatial distribution of SNR across the head was

different in each of these measurements (P1 to P5), as illustrated in

Fig. 5. The lower spatial resolution in P6 leads to a global 2-fold

increase of SNR. In Figures 5 and 6, we compared the MK maps

obtained after BM4D filtering and with and without noise

correction. MK maps obtained without BM4D filtering were

similar and therefore not shown. In the absence of noise

correction, the MK estimate is systematically higher and depends

significantly on the SNR. For example, the maps obtained at lower

SNR (P1 to P5) exhibit higher values than the one obtained at

higher SNR (P6). Besides, we observe that the regions with

enhanced MK values correlate with lower SNR regions depending

on the head position. This effect is further illustrated in Fig. 6, by a

closer view of the region delineated in Fig. 5, for experiments P1,

P4, P5 and P6. In that region, the SNR (and the MK estimates

accordingly) varies strongly from one acquisition to the next when

no correction is applied (Fig. 6, second column). The regions of

lower SNR exhibit higher MK values. This effect is particularly

marked in the region delineated by the white rectangle (Fig. 6). M1

and M2 corrections lead to very similar MK maps.

The influence of noise correction on the evaluated metrics was

quantitatively assessed by statistical analysis in 8 ROIs. Examples

are represented in Fig. 7 for the right Globus Pallidus and left

Temporal Lobe where the MK values averaged over the indicated

Figure 6. Zoom of SNR and MK maps for different SNR acquisitions. This figure corresponds to a zoomed area of Figure 5 for 4 selected
positions (P1, P4, P5 and P6) and the same correction schemes (shown in colour for better visualization).
doi:10.1371/journal.pone.0094531.g006
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ROIs are compared for all correction schemes (see different bar

groups) and positions (see bars within a given group). The

averaged SNR values of the non-DW images corresponding to

each session are indicated on the plots. In all sessions, non-

corrected MK values remain higher than corrected ones. One can

observe also that higher MK values correlate with low SNR values

when no correction is applied. For example, in the left Temporal

Lobe (Fig. 7b), lower SNR of 17.88 is associated with significantly

higher MK of 1.34 in comparison to the value of 1.19 evaluated at

higher SNR of 23.30, that is a significant increase of 13%. In

contrast, when noise correction is applied, the MK estimate is

globally lower and no longer dependent on SNR. For example,

practically the same MK values of 0.92 and 0.9 were obtained for

SNR values of 17.8 and 23.3, respectively. Moreover, Fig. 6 shows

that the influence of noise is reduced at high SNR (e.g. SNR

= 34.53 in P6) where the difference between MK values estimated

with and without noise correction exhibits an increase of about

16% while corresponding values obtained in sessions P1-P5

exhibits differences up to 50%.

The results obtained for different ROIs are summarized in

Table 3, where the stars indicate the results of the Pearson’s

correlation tests. Generally, kurtosis values depend on the tissue

(WM or GM) and can vary within an area consisting of a given

tissue type. The mean MK over the ROI for each position (P1 to

P5) is significantly correlated to SNR for non-corrected data (p,

0.01) for all investigated ROIs. On the contrary, no correlations

are reported for corrected data, except for two cases where a weak

correlation is observed (p,0.05). The z-score maps shown in Fig. 8

emphasize this effect at the voxel level. Z-score maps indicate the

positive or negative deviation of individual MK maps from the

average MK map over protocols P1 to P5 for a given noise

correction scheme, in units of the standard deviation. When no

correction is applied, the z-score maps exhibit strong spatial

heterogeneity (white arrows) in contrast to the homogeneous

appearance of the z-score maps after correction.

Inter-subject variability
In this section we examine the influence of noise correction on

inter-subject variability and on the contrast between WM and GM

in MK maps. As an example, Fig. 9 shows MK maps of one

selected slice (at the level of Corpus Callosum) averaged over 25

subjects (first and third rows) and the corresponding standard

deviations across all subjects (second and fourth rows). As shown in

the previous section on a single subject, the MK is globally lower

and the contrast-to-noise ratio (CNR) between WM and GM is

higher with noise bias corrected data (Figs. 9b, 9c, 9e and 9f) as

compared to non-corrected data (Figs. 9a and 9d). Quantitatively,

these results are illustrated by the histograms in Fig. 10. After noise

correction, the peaks of MK distribution are at 0.5 and 1.0, for

GM and WM respectively, whereas, without noise correction, they

are at 0.9 and 1.4 for GM and WM respectively. After correction,

the peaks are significantly sharper and better separated, providing

a better distinction between GM and WM. The effect of the

BM4D filter is very subtle, leading to a slight increase of MK (+
0.05).

Inter-subject variability is investigated through the standard

deviation maps of MK across the group in Figs. 9a–9f (second

rows) and the mean SNR map of the non-diffusion weighted

image over the 25 subjects (Fig. 9g). On the one hand, standard

deviation maps show that non-corrected maps are much more

heterogeneous than corrected ones. The standard deviations reach

a value of 0.4 in the frontal area that is twice as large as a value of

0.2 in the occipital area. On the other hand, on the mean SNR

map, we observe a spatial gradient of SNR from top to the bottom,

that is, SNR tends to increase towards the bottom of the image.

This effect is related to hardware properties, more precisely to the

spatially varying sensitivity of the coil array. When comparing

both standard deviation maps and SNR maps, one can infer that

the enhancement of standard deviation in the upper regions of the

non-corrected maps correlates with observed SNR gradient from

top to bottom. This result provides evidence that higher inter-

subject variability of non-corrected MK maps is, in part, due to

hardware-related SNR heterogeneity, and not only a genuine

inter-subject variability. These results are supported by the ROI

analysis averaged over 25 subjects. Numerical values of the MK

are summarized in Table 4. In all ROIs and in the absence of

noise correction, the MK averaged over all subjects is globally

higher (by as much as about 50%) in comparison to the corrected

value. The standard deviation of the MK is also systematically

higher if no correction is applied.

Discussion

DKI has become a popular model for DW MRI and is often

used as an advanced extension of DTI. However, this model

suffers from low SNR at high b-values. For clinical applications

where the acquisition time is a general issue and makes repeated

measures for an increased SNR impossible, it is crucial to

Figure 7. Averaged MK values for the different correction
schemes in two different ROIs. (a) Right Globus Pallidus and (b) Left
Temporal Lobe. Results are shown for the same subject with 6 different
levels of SNR corresponding to acquisitions P1 to P6.
doi:10.1371/journal.pone.0094531.g007
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guarantee a good reproducibility and accuracy of the results at

typically rather low SNR levels. In this paper, we considered two

noise correction approaches and compared their performance

under different SNR in terms of reproducibility of DTI and DKI

metrics, such as FA, MD and MK, at both individual and group

levels. We demonstrated the importance of these corrections for

the reproducibility of the MK estimation, which then becomes

independent of the SNR level. Classical DTI parameters were

much less influenced. This is explained by the fact that the

apparent diffusion coefficient estimation is mostly based on the

lowest b-value data points where the SNR is higher and the noise

correction has a smaller effect.

Comparison of the different correction schemes
In a first experiment with simulated phantom data, two

approaches for noise correction have been tested, one based on

the analytical expression of the first moment of the noncentral chi

distribution (M1) and the other based on the second moment (M2).

These methods were compared with ML estimator, also account-

ing for the noncentral chi distributed noise, which have been

shown to be more accurate than non-linear approaches [27,29].

We showed that our methods and ML estimator gave similar

results. This was also confirmed in one real data set. For the other

experiments, we proceeded only with M1 and M2, in respect to

time issues.

In addition, these corrections have been implemented with or

without the non-local mean filter (BM4D). No significant

differences between these methods have been detected in terms

of parameters characterizing variability and reproducibility. This

was confirmed by the simulations. However, by considering the

number of brain voxels (including WM, GM and CSF) under the

noise floor and thus forced to zero during the noise correction

Figure 8. Z-score maps for each correction scheme (rows) and low SNR positions (P1 to P5). The reference is the average MK map over
the 5 positions for each correction schemes. Arrows indicate regions of positive bias of MK due to lower SNR.
doi:10.1371/journal.pone.0094531.g008
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Figure 9. Averaged MK maps over 25 subjects and their standard deviation for one selected slice. MK maps are shown on first and third
rows and the corresponding standard deviation maps on second and fourth rows for (a) NC, (b) M1, (c) M2, (d) BM4D+NC, (e) BM4D+M1, (f) BM4D+
M2. (g) Mean SNR maps of the averaged non-DW image.
doi:10.1371/journal.pone.0094531.g009

Table 3. Mean MK values and standard deviations for each correction scheme and each ROI. P-values for Pearson correlation with
SNR are indicated by: * p,0.05 and ** p,0.01.

NC BM4D+NC M1 BM4D+M1 M2 BM4D+M2

Right TL 1.2560.06** 1.2160.06** 0.9060.01 0.9060.01 0.9060.01 0.8760.01

Right GP 1.3660.06** 1.3760.06** 0.9260.02* 0.9260.02 0.8860.01* 0.9060.02

Right IC 1.2760.03* 1.2560.04* 0.9760.01 0.9360.01 0.9460.01 0.9160.01

Right ACR 1.3560.08** 1.3460.08** 0.9960.01 0.9960.01 0.9760.01 0.9660.01

Left TL 1.1860.08** 1.1560.07** 0.8960.02 0.8860.02 0.8760.02 0.8660.02

Left GP 1.3660.08** 1.3760.08** 0.9460.01 0.9760.01 0.9160.01 0.9560.01

Left IC 1.2760.05** 1.2560.05** 0.9760.01 0.9560.01 0.9660.01 0.9360.01

Left ACR 1.3160.06** 1.2960.06** 0.9760.01 0.9760.02 0.9560.02 0.9560.02

All correlations were negative.
doi:10.1371/journal.pone.0094531.t003
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procedure, small differences were observed that can indicate

variations in the robustness of the respective procedures. The non-

local mean filter was expected to provide a more robust estimate of

the first moment of the noncentral chi distribution. When applied,

especially to higher b-value images, the number of voxels forced to

zero during the M1 correction were reduced from 10% down to

2%, and from 11% to 3% during the M2 correction, indicating

that a number of voxels with intensity below the noise floor have

been correctly assigned to a value equal or slightly above the noise

floor after filtering, which was the expected effect of the BM4D

filter. This was confirmed by visual inspection of filtered versus

non-filtered images (not shown). This result is slightly improved

with M1 as compared to M2 (2% compared to 3%). M2 is a

straightforward and easy to implement method. However, the

squared data might amplify potential errors. M1 with BM4D

filtering is therefore a preferred and recommended option.

MK variability
Reported MK values in the literature are very inhomogeneous.

In WM, mean MK values ranging from 0.51 in children [18] to

1.08 [53], <1 [22], 1.15 [23], and 1.39 [54] in adults, have been

reported. In GM, the same studies reported MK values from 0.37

[18] to 0.73 [53] and 0.6 [23]. Correlation of MK with age for

both WM and GM have been showed by [55], reporting values

Figure 10. Histograms of the MK maps averaged over all subjects. The averaged histograms are shown for one selected slice (the same as in
Figure 9) for the different correction schemes: (a) M1, (b) M2, (c) NC, (d) BM4D+M1, (e) BM4D+M2, (f) BM4D+NC. Black curves represent the whole slice
histograms; red and blue curves refer to WM and GM parts, respectively.
doi:10.1371/journal.pone.0094531.g010

Table 4. Mean MK values and standard deviation over 25 subjects for each correction scheme.

NC BM4D+NC M1 BM4D+M1 M2 BM4D+M2

Right TL 1.3660.07 1.3460.07 0.8460.05 0.8560.03 0.8360.05 0.8160.04

Right GP 1.8560.17 1.8760.18 0.8160.04 0.9260.05 0.7860.03 0.8560.05

Right IC 1.4960.07 1.8760.18 0.9660.04 0.9460.02 0.9460.03 0.9060.02

Right ACR 1.4960.07 1.4860.06 0.9060.04 0.9560.04 0.8960.04 0.9160.04

Left TL 1.3060.08 1.2860.07 0.8660.04 0.8860.06 0.8660.05 0.8460.03

Left GP 1.7660.15 1.7960.17 0.8160.07 0.9260.04 0.7960.05 0.8660.04

Left IC 1.4560.06 1.4460.05 0.9660.03 0.9760.02 0.9660.02 0.9360.02

Left ACR 1.4160.07 1.4160.07 0.8960.04 0.9560.04 0.8960.04 0.9160.04

doi:10.1371/journal.pone.0094531.t004
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from 0.7 to 0.82 in GM and from 1.04 to 1.20 in WM. Noise bias

correction was only applied in one of these studies [53]. These

results are summarized in Table 5 for comparison. Our results

after correction fall into this range, as we found WM peak for

MK = 0.98 and GM peak for MK = 0.58 (M1+BM4D correction),

for averaged data over 25 subjects. The discrepancies reported in

the literature within the same age groups can be explained by the

use of different approaches for image acquisition and data

processing, and in particular by differences in SNR levels, which

usually are not explicitly indicated. In order to reduce these

differences and provide more robust and reproducible DKI

estimates, including noise correction as a standard processing step,

would certainly be beneficial. In particular, we have shown that

two different acquisitions, with different SNRs due to increased

voxel size (2.4 mm isotropic for the first one and 3 mm isotropic

for the second one) give significantly different MK estimates when

no correction is applied. However, this difference becomes non

significant after correction. Noise correction methods, thus, allow

the reproducibility and accuracy of the results at lower SNR.

Acquisition at higher spatial resolution is thus clinically feasible

without increasing acquisition time: partial volume effects are

reduced and the chances to find small differences between two

groups will increase.

The effect of noise correction was also shown by the ROI

analysis in the selected regions, such as the Globus Pallidus. This

region in particular is considered to be a good indicator of the

SNR-related distortions in DKI analysis [10]. MK values in this

region should be close to MK values in GM. However at low

SNR, the combination of the noise bias effect and the

comparatively short transverse relaxation time might result in a

significantly elevated MK value. This ‘‘enhancement’’ effect was

clearly demonstrated in Experiment 2 involving 25 subjects. MK

values in the left and right GP are extremely high when data are

not corrected (respectively 1.85 and 1.76 for NC) with a high inter-

subject variability, and reach values close to GM areas for

corrected data (respectively 0.81 and 0.81 for M1).

We have shown that the noise contribution varies with the

acquisition protocol and can influence the total inter-subject

variability. We have also shown that this variability is spatially

variable and can be influenced by the position of the head in the

scanner for example. However, after correction, no regional

differences were found in terms of variability. The impact of

variability of DKI parameters on study design and statistical power

has been studied recently by [22]. In this work, they suggested that

increasing the number of subject(s) will reduce the variability and

is more beneficial than increasing scan time to gain SNR.

However, by doing so, the total variability might be reduced but

the noise bias is still remaining, leading to erroneous estimates.

Reducing variability due to noise is thus very important and noise

correction is highly recommended to get better estimates and

derive reliable inference in group analysis.

Applicability to clinical studies
In terms of group analysis, although only few clinical studies

have been done yet with DKI, promising results have been

showed. For example, DKI has proven to be a good marker for

Parkinson’s disease with an increase of 10 to 20% of MK values in

the patient group as compared to the control group in the

Caudate, the Globus Pallidus, the Putamen and the Substancia

Nigra [56]. MK has also been shown to increase with higher

tumor grades [57] with a minimum of 30% difference in MK

values of different grades. Recently, DKI has been shown to be a

good potential biomarker for Alzheimer’s disease [58,59]. In

animal studies, significant differences, however, no larger than
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10%, were reported, for example in the detection of Huntington

disease [60]. Again, few of these studies included noise correction

in their data processing and the SNR is not known. By decreasing

the spurious inter-subject variability due to the noise bias, noise

correction certainly will improve the statistical power of clinical

studies, by allowing higher spatial resolution acquisition and

smaller population samples.

Limitations
The estimation of the noise standard deviation has been shown

to be an important issue as it affects the subsequent noise

correction procedure. Noise in SoS reconstructed magnitude

images can be spatially varying as a result of the noise correlation

between the channels of the receiver system [61]. In our study, the

resulting spatial heterogeneity in the noise distribution had no

noticeable effect due to the relatively small spatial variation of the

noise standard deviation. The noise correlation was thus assumed

to be of negligible impact on our noise procedure and the noise

was considered spatially independent. As described in the methods

section, the background noise distribution closely matches a

noncentral chi distribution with a standard deviation that can be

reliably estimated from Eq. (6), confirming the reliability of this

assumption. In this work, spatially varying noise fields were thus

not considered. Several factors like the use of parallel imaging and

acceleration techniques [62] can increase the amplitude of noise

spatial variations which then require more sophisticated methods

of corrections [27,63], already applied to DTI [64]. Developing

similar methods for DKI will be the goal of future work.

Another potential source of bias in diffusion imaging is the

physiological noise. The main effect of this noise is the appearance

of artefacts close to the ventricles, which makes the estimation of

diffusion and kurtosis parameter less accurate in those areas [26].

As modeling this type of noise and thus correcting for it a

posteriori is very challenging, practical methods like cardiac gating

have been shown to give better results [65,66]. However, such

methods increase acquisition time which is not convenient for

clinical studies. Another solution is the application of robust

statistics technique adapted to the kurtosis model of diffusion to

detect and remove outliers due to physiological noise [35,64].

However the investigation of such noise sources was beyond the

scope of this research.

Conclusion

We have proposed two noise correction approaches for DW

images acquired with multichannel coils, with SoS reconstruction,

and studied their impact on intra- and inter-subject variability in

the context of DKI data analysis. Our results show that noise bias

correction has a strong impact on MK estimation and that noise

bias can lead to erroneous conclusions when conducting group

studies. We demonstrated that the procedures described herein

significantly reduce noise-related intra- and inter-subject variabil-

ity and should not be neglected in DKI studies. Moreover, we

provided a list of reference for kurtosis values in typical WM

regions. As these regions were delineated using standard and

available template, they can be easily reproduced by other groups

for comparison. Evaluation including noise correction provides

accurate and reproducible results independent of the SNR and the

head position. Otherwise, the final MK maps are subject to biased

errors depending on the spatial distribution of SNR caused both

by differences in tissue relaxation and diffusion properties and,

more crucially, by the spatially varying sensitivity characterizing

multi-channel coils. The simplicity of the method described here

allows a straightforward implementation and can be readily

included in the regular pipeline for DKI analysis and the

additional computational time is not much. Moreover, with such

methods, the gain in reproducibility and accuracy of the results

makes higher spatial resolution and lower SNR accessible,

reducing partial volume effects in clinically feasible acquisition

time. The statistical power is improved, increasing a confidence in

the output results, or allowing one to reach significant conclusions

with smaller population samples.
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