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Abstract

If two species exhibit different nonlinear responses to a single shared resource, and if each species modifies the resource
dynamics such that this favors its competitor, they may stably coexist. This coexistence mechanism, known as relative
nonlinearity of competition, is well understood theoretically, but less is known about its evolutionary properties and its
prevalence in real communities. We address this challenge by using adaptive dynamics theory and individual-based
simulations to compare community stabilization and evolutionary stability of species that coexist by relative nonlinearity. In
our analysis, evolution operates on the species’ density-compensation strategies, and we consider a trade-off between
population growth rates at high and low resource availability. We confirm previous findings that, irrespective of the
particular model of density dependence, there are many combinations of overcompensating and undercompensating
density-compensation strategies that allow stable coexistence by relative nonlinearity. However, our analysis also shows
that most of these strategy combinations are not evolutionarily stable and will be outcompeted by an intermediate density-
compensation strategy. Only very specific trade-offs lead to evolutionarily stable coexistence by relative nonlinearity. As we
find no reason why these particular trade-offs should be common in nature, we conclude that the sympatric evolution and
evolutionary stability of relative nonlinearity, while possible in principle, seems rather unlikely. We speculate that this may,
at least in part, explain why empirical demonstrations of this coexistence mechanism are rare, noting, however, that the
difficulty to detect relative nonlinearity in the field is an equally likely explanation for the current lack of empirical
observations, and that our results are limited to communities with non-overlapping generations and constant resource
supply. Our study highlights the need for combining ecological and evolutionary perspectives for gaining a better
understanding of community assembly and biogeographic patterns.
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Introduction

Understanding the evolution and maintenance of ecological

diversity is a fundamental objective of ecological research. While

the basic mechanisms of evolution have largely remained

unchallenged since Darwin’s foundational work, assessing the

relative importance of different mechanisms known or conjectured

to drive patterns of diversity and speciation remains among the

most controversial questions in the field [1–4].

Classically, the maintenance of diversity was thought to be

determined by niches and the associated principle of competitive

exclusion. Niche differentiation was accordingly seen as the

dominant process explaining the evolution of species and

functional diversity [5]. Yet, this claim has early been challenged

by the fact that a large number of species seem to be supported by

the same environmental niche (e.g. in ‘‘the paradox of the

plankton’’; see [6]). In response to this challenge, a growing list of

more complex coexistence mechanisms has been proposed,

including biotic interactions such as conspecific negative density

dependence [7–10]; dispersal-mediated mechanisms [11–14];

dynamic and spatial extensions of the classical resource niche,

such as the spatial and temporal storage effect [15,16]; the

interplay of assortative mating and environmental heterogeneity

[17]; as well as combinations of the former [18–20]. It has even

been proposed that stabilizing effects are altogether negligible for

the maintenance of highly-diverse communities [21].

All these mechanisms are plausible, and it is therefore an open

empirical and theoretical question to assess to what extent and at

which scales they contribute to the observed spatial and temporal

patterns of local species occurrences. To shed light on this

question, many studies have concentrated on ecological processes

at the community scale, either by analyzing empirical patterns of

species, traits, and phylogenies in space and time [23], or by means

of theoretical models that explore the consequences of potential

coexistence mechanisms. However, it has proven surprisingly

difficult to arrive at an agreement even about fundamental issues

with this approach, such as the extent to which non-neutral
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processes are responsible for the local structure of tropical plant

communities (e.g. [22]).

Evolutionary analyses might allow us to look at these questions

from a new angle. Speciation and the functional divergence of

species may occur due to random processes alone, but selection on

ecological traits and functions in most cases seems to be a

dominant driver [24]. This suggests that looking at the plausibility

of coexistence mechanisms from an evolutionary perspective might

complement existing attempts to infer their importance from

empirical data [25]. For example, Purves and Turnbull argue that

it is highly unlikely that evolution would give rise to a large

number of functional differences that are nevertheless perfectly

fitness-equalizing [26], a mechanism that has been suggested as an

explanation for the neutral appearance of tropical plant commu-

nities ([21], see also the discussion in [27]). Other recent studies

have examined the conditions under which the storage effect is

likely to evolve [28,29]. In general, however, there are still very

few studies that connect evolutionary analyses with community-

ecological questions, such as the relative importance of different

assembly and coexistence mechanisms.

In this study, we apply an evolutionary rationale to relative

nonlinearity of competition (RNC), a well-known dynamic

coexistence mechanism [30,31]. RNC arises when species show

different nonlinear responses to one or several common limiting

factors, and each species affects the availability or fluctuations of

those factors in a way that it decreases its own fitness when it

becomes abundant [32]. This endogenous control of the resource

dynamics is the main difference to the storage effect, the other

commonly discussed coexistence mechanism in fluctuating envi-

ronments. The theoretical properties of RNC are relatively well

understood [33–35], but robust tests for RNC in empirical studies

are still scarce [36]. This may be because RNC is indeed rare in

real communities, but equally plausible explanations are that RNC

is comparatively difficult to detect [36], or that empirical tests have

concentrated on systems in which RNC is unlikely to occur [37].

In particular, although a number of studies have linked resource

fluctuations to coexistence, it requires fairly specific investigations

to determine whether this link is mediated by relative nonlinearity,

the temporal storage effect, or a simple niche-based mechanism in

a stochastic environment [36,38].

To examine the evolutionary properties and plausibility of

RNC, we consider an evolutionary trade-off through which species

have the option to invest into higher growth rates at high resource

availability, at the expense of lower growth rates (and thus

potentially even population crashes) at low resource availability.

We describe this trade-off in terms of a density-compensation

parameter in time-discrete population models with non-overlap-

ping generations and several alternative density-dependence terms

that follow classical population models (the Maynard Smith and

Slatkin (MSS) model [39], the generalized Ricker model [40], and

the Hassell model [41]). Ecologically, this trade-off may be

interpreted as representing how individuals use and monopolize

available resources: resource monopolization strategies, such as

scramble competition versus contest competition, or spatial

resource distribution and searching behavior, for example, affect

whether a population’s growth reacts rather ‘‘weakly’’ (under-

compensation), ‘‘normally’’ (compensation), or ‘‘strongly’’ (over-

compensation) when its current size deviates from its carrying

capacity [41–43].

A previous study has shown that these model structures allow

stable coexistence by RNC [35]. This earlier study, however,

focused on community dynamics and did not provide an

evolutionary analysis. Other studies did examine the evolutionary

dynamics of parameters in the MSS model or similar models

[18,44–46]. However, even though some of these studies also

reported the existence of the aforementioned protected polymor-

phisms, none of them examined their evolutionary stability in

detail (an exception is [47], to which we relate our results in the

Discussion). Moreover, some previous evolutionary studies exclu-

sively relied on analytical investigations using adaptive dynamics

theory and did not account for phenomena such as complex

polymorphisms or demographic stochasticity, which are more

easily captured through individual-based simulations.

In this study, we address all these challenges together, to gain a

more comprehensive appreciation of the role of relative nonlin-

earity for the evolution and maintenance of ecological diversity.

We use adaptive dynamics theory and individual-based simula-

tions to examine a number of variants of the assumed trade-off

between a species’ population growth rates at high and low

resource availability. Our results allow us to draw conclusions

about the ecological and evolutionary robustness of RNC as a

coexistence mechanism, and highlight the need for combining

ecological and evolutionary perspectives for understanding the

process of community assembly and the emergence of biogeo-

graphic patterns.

Material and Methods

Dynamic vs. evolutionary stability of a coexistence
mechanism

To explain the methods of this paper, it will be useful to begin

with some definitions and discuss how relative nonlinearity of

competition maintains coexistence. In [34], Chesson suggested to

divide coexistence mechanisms into two classes: equalizing and

stabilizing. Equalizing coexistence mechanisms reduce the fitness

difference between species, and thus the speed of competitive

exclusion. Stabilizing mechanisms, on the other hand, increase a

species’ fitness when its relative abundance (density) decreases,

which actively stabilizes coexistence because it aids species when

they become rare within a community. We refer to this type of

stability as ‘‘dynamic stability’’, because stabilization acts on

population dynamics on ecological time scales, as opposed to

evolutionary stability, which refers to a stabilization of evolving

genes or traits on evolutionary time scales. Since equalizing

mechanisms make species effectively more ‘‘neutral’’, they must be

expected to lead to evolutionary patterns and diversification

processes similar to those predicted by neutral theories [22].

Stabilizing mechanisms, on the other hand, may be seen as

generalizing the concept of the classical niche, because they

increase the fitness of species at low densities. One might naively

expect that stabilizing mechanisms will therefore also actively

promote evolution towards species with such different, coexisting

strategies. However, as confirmed by this study, the fact that a

mechanism can dynamically stabilize coexistence is by no means a

guarantee that selection will favor traits that create this stabilizing

effect.

The most straightforward mechanism to create dynamically

stable coexistence in a non-spatial setting is based on the

assumption that species use different resources. This leads to

increasing fitness with decreasing frequency in a community,

because species compete more strongly with their conspecifics.

However, there are a number of further mechanisms that allow

stable coexistence, even if those species use exactly the same

resources. Those mechanisms include positive and negative

interactions, such as facilitation or density-dependent mortality,

the temporal storage effect, and relative nonlinearity of compe-

tition (RNC). Both RNC and the temporal storage effect are

fluctuation-dependent mechanisms, meaning that they require
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non-constant resource availability over time. The difference

between the two is the way coexistence is stabilized. The temporal

storage effect is essentially caused by temporal niche partitioning,

meaning that species have specialized on particular resource

conditions that appear and disappear over time due to

exogenously created resource dynamics. In RNC, on the other

hand, species create or control resource fluctuations endogenously,

and stabilization is being achieved because species affect fluctu-

ations in a way that they limit their own fitness more than the

fitness of their competitors.

RNC in models with nonlinear density dependence
Relative nonlinearity has frequently been studied using models

that explicitly describe resource and consumer dynamics [30], but

stabilization by RNC is also possible in simple time-discrete

models of density-dependent population growth, in which resource

availability is implicitly described by a shared carrying capacity

[35]. This corresponds to resources, such as light or space, for

which the overall resource availability is constant, but it should

also be a good approximation for situations where resource

dynamics are fast compared to population dynamics.

We describe the reproduction of a population with non-

overlapping generations from population size N at time t to size

Nt+1 at time t+1 by density-dependent growth rates derived from

three widely used models (the Maynard Smith and Slatkin (MSS)

model [39], the generalized Ricker model [40], and the Hassell

model [41]). In each model, the reproduction ratio f(Nt) = Nt+1/Nt

depends on the population size (i.e. the population density) N, on

the intrinsic growth rate r, on the carrying capacity K, and on a

parameter b that controls the shape of the density compensation

(Fig. 1). In all three models, we included an additional parameter d
that was not present in the original model equations. This

parameter describes a density-independent mortality risk of

individuals, which may originate, for example, from external

disturbances. The motivation for including such a term will be

discussed later. To distinguish the population-level models from

the individual-based models described later, we refer to the

following eq. 1 as the analytical MSS model, and to the other

models accordingly.

The analytical MSS model is given by

fMSS(N)~
(1{d):r

1z(r{1):(N=K)b
: ð1Þ

The functional form of fMSS(N) for different values of b is

displayed in Fig. 1. The analytical generalized Ricker model is

given by

fRicker(N)~(1{d):er:½1{(N=K)b� : ð2Þ

Here, the term ‘‘generalized’’ refers to the exponent b in the

equation above, which, for b=1, provides an extension of the

classical Ricker model [40]. The analytical Hassell model is given

by

fHassell(N)~
(1{d):r

½1z(r1=b{1):N=K �b
: ð3Þ

The term (r1/b21) in the denominator is a common reformu-

lation of the Hassell model. It allows translating the parameter a
used in the original version of this model [41] into a carrying

capacity K, which makes the model parameters more comparable

to those of the Ricker model and the MSS model.

Overcompensation creates population fluctuations
It is well known that eqs. 1,2,3 may produce cyclic or chaotic

population dynamics, depending on the values of r, b and d. For

our further analysis, it will be useful to determine the critical value

bcri at which the population dynamics start to exhibit cycles.

Oscillations start when a deviation of the population size from its

equilibrium leads to a compensation that is stronger than the

original deviation (overcompensation). This motivates the defini-

tion of the complexity c as the derivative of the population-level

reproduction f(N)?N with respect to N, evaluated at the

equilibrium population size N?, which is defined by f (N?)~1:

c~d=dN(f (N):N)DN~N? : ð4Þ

If c,21, a deviation from the equilibrium is compensated by an

even larger deviation in the opposite direction. With c = 21,

solving eq. 4 for b yields the critical value bcri as a function of r and

d. For eq. 1, the result is

bcri(r,d)~2{
2

1z(d{1):r
: ð5Þ

The population dynamics for different values of b in eq. 1 are

illustrated in Fig. 1. The critical values for the Ricker and the

Hassell model are determined analogously.

Adaptive dynamics for analyzing evolutionary and
dynamic stability

To examine coexistence in the models defined above, we

consider two species reproducing according to eqs. 1,2,3 that share

the same resources, but differ in their b-strategy. For the MSS

model, this results in the following species-specific reproduction

ratios,

f1(N1,N2) ~
(1{d):r

1z(r{1):((N1zN2)=K)b1
,

f2(N1,N2) ~
(1{d):r

1z(r{1):((N1zN2)=K)b2
,

ð6Þ

where the fact that the species use the same resource is evident

because the reproduction ratios depend on the sum N = N1+N2 of

the population sizes of the individual species. We treat cases with

more species and other growth models accordingly.

To assess dynamic and evolutionary stability for the coupled

system given by eq. 6, we use pairwise invasibility plots. These

plots show the fitness f of a rare mutant that attempts to invade a

resident community at equilibrium population size

(NI%K,NR&K ). We follow the standard definition of invasion

fitness f as the invader’s average (natural) logarithmic growth rate

during a large number of T generations

On the Sympatric Evolution of Relative Nonlinearity
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f ~
1

T

XT

t~1

log
NI,t

NI,t{1

: ð7Þ

Averaging over T is necessary to account for resident

populations with cyclic or chaotic population dynamics. We chose

T = 500 throughout this study to obtain a representative sample of

resident population sizes even in the chaotic regime.

The shape of the pairwise invasibility plots allows a visual

assessment of dynamic stabilization and the probable evolutionary

dynamics of an evolving strategy. Mutual invasibility of two

strategies, for example, indicates dynamic stability, as there is a

fitness advantages for both species when they are at low relative

frequency. A discussion of how to interpret such plots with regard

to evolutionary dynamics and evolutionary stability can be found

in [48].

Trade-offs between growth rates at low and high
resource availability

For using the adaptive dynamics framework described above,

we have to decide which of the species traits that are coded as

parameters in eq. 6 are allowed to evolve. It is known that

coexistence by RNC can arise in population models such as eqs.

1,2,3; and if it does, it occurs between a species favored at high

resource availability, and a species favored at low resource

availability [35]. We thus consider a trade-off between growth

rates at high and low resource availability. This is ecologically

plausible, and can be mechanistically motivated by the various

ways in which species utilize and monopolize their available

resources (e.g. in the contexts of contest versus scramble

competition or of spatial distribution patterns; see also [41–43]).

A convenient way to create families of density-dependence

functions that respect this trade-off is to vary the parameter b in

eqs. 1,2,3. As can be seen in Fig. 1, increasing b leads to higher

growth at population sizes below the carrying capacity K, and to

lower growth otherwise. There would certainly also be other ways

to create families of density-dependence functions that respect

such a trade-off. For example, one could consider varying r as well.

However, varying r mostly affects growth at low population

densities, and varying both b and r without further constraints is

not possible, because the single best option for a species is then to

have a large r and a small b, which results in comparably favorable

growth rates both above and below the carrying capacity [46].

Thus, varying b in the three models is the most straightforward

option for creating ecologically reasonable and smoothly changing

families of density-dependence functions.

It is beyond the scope of this paper to analyze all possible further

families of curves that respect the trade-off described above, but

we will examine a particular modification of the Maynard Smith

and Slatkin (MSS) model later, to further explore the generality of

our conclusions. As the motivation for this modification originates

from our results, we provide the specification and further

explanation of this modification as part of the Results.

The aim of creating a trade-off between fitness at high and low

resource availability is also the motivation for introducing the

density-independent mortality d that was described earlier. This

mortality is not part of the original models, but without d, all

subcritical density-dependence functions (i.e. those leading to

Figure 1. Effect of the density-compensation strategy b on the population dynamics of a single species described by the Maynard
Smith and Slatkin model. (a) Reproduction ratio Nt+1/Nt as a function of the relative population size N/K for the analytical MSS model with intrinsic
growth rate r = 5, density-independent mortality d = 0.05, and four different values of b. Since d.0, the reproduction ratio at the carrying capacity
K is smaller than 1, which implies that the equilibrium population size remains slightly below the carrying capacity. (b) Bifurcation diagram
showing population sizes at equilibrium as a function of the density-compensation strategy b. Cyclic population dynamics, indicating
strong overcompensation, occur for b-values exceeding bcri<2.5 (vertical line), as predicted by eq. 5. The three insets depict the transition from
stable population dynamics below the critical value to cyclic dynamics shortly above the critical value and to chaotic dynamics at even larger
b-values.
doi:10.1371/journal.pone.0094454.g001
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stable population dynamics) would result in equilibrium popula-

tion sizes exactly matching the carrying capacity K, where all

growth rates are identical, regardless of the value of b. As a result,

all those strategies would be subject to neutral drift. By introducing

d, changes in b always lead to effective fitness differences and

therefore to a real trade-off, and not just equal fitness, in b.

Individual-based simulations of evolution and
coexistence

To test whether our results based on adaptive dynamics theory

are robust under demographic stochasticity and when allowing for

more complex polymorphic strategies, we repeat parts of the

analysis by explicitly simulating the evolutionary dynamics with an

individual-based model (IBM). To maintain comparability, the

IBM implements exactly the same ecological processes that we

considered in the analytical models, except that reproduction is

now stochastic and that it is possible to model as many strategies bi

as there are individuals i = 1,…N. Because the adaptive dynamics

analysis revealed the absence of qualitative differences between

eqs. 1,2,3 with respect to the key questions addressed in this paper,

we restrict the presentation of IBM results to the MSS model.

In the MSS IBM, we assume that the reproduction of

individuals shows the same density dependence as in the analytical

model introduced earlier. Thus, an individual i produces offspring

ni according to the MSS density dependence,

ni,tz1* P½f (Nt=K ; bi,r,d)�: ð8Þ

with the MSS reproduction ratio f (Nt=K ; bi,r,d) from eq. 1

depending on the total population size Nt (sum of all individuals)

divided by the population carrying capacity K. The two main

differences to the analytical model are that the IBM allows a

different density-compensation strategy bi for each individual, and

that the number of offspring is drawn from a Poisson distribution,

indicated by P. The latter ensures that each individual produces

an integer number of offspring, and that demographic stochasti-

city, which is present in all natural populations, is accounted for,

including the possible extinctions of strategies. For a large number

of individuals and all bi being equal, the IBM recovers the

analytical model eq. 1. Simulation code for the IBM and for the

analytical models is available at https://github.com/florianhartig/

EvolutionOfRelativeNonlinearity/.

Because strategies can go extinct in the IBM, especially during

invasion, we use a different measure of invasion fitness than for the

analytical models (eq. 7), namely the probability p that a strategy

invading with one individual survives for at least 500 generations

in a resident population at equilibrium. For computational

efficiency, we approximate this value by simulating invasions with

three individuals, resulting in estimates of the probability q(3) that a

mutant strategy invading with three initial individuals goes extinct

after 500 generations. This probability then yields the probability

q = 12p that one individual goes extinct according to q~
ffiffiffiffiffiffiffi
q(3)3

p
(assuming that most extinctions due to demographic stochasticity

occur soon after the invasion, so that the three individuals are

approximately independent). Additionally, we examine coexis-

tence times (defined as the expected times to competitive exclusion

starting from equal population sizes) for different pairs of density-

compensation strategies, which allows to determine which strategy

is outcompeted in the long run.

To include evolution in the IBM, we implement mutations of b-

values that occur, for each individual, with a probability m/K
before reproduction. The division by K is introduced to facilitate

the interpretation of m: for m = 1, there is on average one mutation

per generation when the population is at its carrying capacity. If a

mutation occurs, a normal random variable with zero mean and

standard deviation s is added to the parental strategy. Individuals

with different b-values produce different numbers of offspring at

different population sizes. This creates selection on the density-

compensation strategy b, and thereby drives evolution in response

to the experienced environmental conditions. Ecologically, it does

not make sense for the evolving strategy b to get too close to 0,

because this would make the reproduction independent of the

population size. Therefore, we introduce a cutoff parameter

bmin = 0.17. Mutations with b,bmin are set to bmin. This value of

bmin = 0.17 is considerably lower than any b-values that will be

important for the analysis. Hence, the introduction of bmin is only a

technical safeguard and has no influence on our results.

To examine the consequences of introducing evolution, we first

test how a community with previously fixed density-compensation

strategies is affected by the possibility of mutations in b. Then, we

calculate the b-strategy that is attained by evolution in the long

run. To record the evolutionary equilibrium, we allow 106

generations for convergence before data acquisition is started. As

we find no path dependence in the IBM, we eschew replicate

models runs for the same parameter values in favor of a finer

coverage of the parameter space: the local fluctuations in the

results then allow a visual impression of the variability among

model runs. Simulations were initialized with N = K individuals,

each of which is assigned a different density-compensation strategy

b drawn from a uniform distribution in the interval [bmin, 15].

Initialization with such a random ensemble enables faster

convergence to the evolutionarily equilibrium than starting from

a single strategy.

Unlike for the analytical models, where dynamics are not

dependent on the carrying capacity K apart from trivial rescaling,

changing K in the IBM may affect demographic stochasticity and

genetic drift. The smaller K, the larger the relative strength of

population fluctuations created by demographic stochasticity, thus

increasing the speed of genetic drift. Consequently, the outcomes

of evolution in the density-compensation strategy b differ most

between the analytical model and the IBM when the carrying

capacity K is small. As we aim to assess whether these differences

may affect the evolutionary dynamics, it is important that K is not

chosen too large (we use values of K = 200 and K = 1000). Apart

from that, however, there are no indications that the specific

choice of K qualitatively affects our conclusions regarding the

stability of coexistence. For these reasons, we do not systematically

examine the effect of varying K.

Results

Dynamics predicted from adaptive dynamics theory
The first part of our results uses the analytical population

models eqs. 1,2,3 to examine how the fitness of an invading

density-compensation strategy depends on the density-compensa-

tion strategy of the resident population. From the resulting

pairwise invasibility plots, one can deduce the strategy, or strategy

combinations, that are dynamically or evolutionarily stable [48].

A first observation to highlight is that invasibility patterns

change at an intermediate b-value of the resident population

(Fig. 2). Numerical calculations (eq. 4) confirm that, for all models,

this b-value coincides with the critical value at which resident

population dynamics start to exhibit cycles and, for larger b-values,

chaotic dynamics. Resident populations below the critical b-value

(b,bcri), that is, residents with stable population dynamics, can

generally be invaded by strategies with stronger density compen-

sation (larger b). The reason is that the small value of d = 0.05
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chosen here is sufficient to ensure that subcritical b-values result in

equilibrium population sizes slightly below the carrying capacity,

which favors higher b-values. Resident populations with cyclic or

chaotic dynamics (b.bcri), on the other hand, can generally be

invaded by strategies with weaker density compensation (smaller b)

than the resident. There is a fairly broad range of b-values that are

mutually invasible, which indicates dynamically stable coexistence

of the corresponding strategy pairs. In Fig. 2, we highlight those

values in the insets at the top left corner of each panel.

A further analysis of the pairwise invasibility plots, however,

suggests that these pairs of mutually invasible strategies are not

evolutionarily stable. There exists one intermediate strategy,

slightly above bcri, that cannot be invaded by any other strategy.

The shape of the invasion fitness around this so-called evolution-

arily singular point suggests that it is the only evolutionarily stable

strategy [48]. Below, we will confirm this conclusion with the IBM.

Invasibility and coexistence in the IBM
The pairwise invasibility plots in Fig. 2 allow deducing the

probable evolutionary dynamics, but are limited in that they

consider only strategy pairs that reproduce deterministically.

Complex polymorphic strategies, demographic stochasticity and

effects of small population sizes, as well as strategy extinctions are

not considered in such an analysis. For this reason, we repeat the

analysis of evolutionary and dynamic stability of RNC using the

individual-based MSS model.

The resulting pairwise invasibility plot (Fig. 3a) shows a similar

pattern as Fig. 2a. However, in contrast to the analytical model,

strategies with large b-values can generally not invade. The reason

is not that they produce too little growth, but rather that these

strategies are generally not viable, because they imply population

fluctuations that are so strong that they quickly drive the

population to extinction (note that strategies cannot go extinct in

the analytical models). One can think of invasibility in the IBM as

resulting from two requirements: positive growth, and dynamic

persistence of the population. Still, there are relatively large ranges

of b-strategies that are mutually invasible (red shaded areas in

Fig. 3a), indicating dynamic stability. As for the analytical model,

we find that one particular intermediate density-compensation

strategy cannot be invaded by any other strategy. The shape of the

pairwise invasibility plot around this singular strategy again

suggests that it is evolutionarily stable [48]. The b-value of this

strategy approximately corresponds to bcri, meaning that the

evolutionarily stable strategy (ESS) is located where the population

dynamics start to exhibit cycles.

Examining the dynamic stability of strategy pairs in terms of

their average time to competitive exclusion (Fig. 3b) reveals the

strength of the stabilization inferred from the mutual invasibility in

the analytical models: in addition to the ‘‘neutral’’ pairs along the

diagonal, where both strategies are trivially of equal fitness, there is

a second curve of strategies that have equal fitness, but consist of

one species with a weak and one species with a strong density-

compensation strategy. This second curve overlaps with the

mutually invasible areas found in Fig. 3a. Within those areas, we

find strategy pairs with very different b-values that allow

coexistence times up to four orders of magnitude longer than

strategy pairs along the diagonal. This shows that the former

strategies are not simply coexisting neutrally, but that their

coexistence is actively stabilized, confirming what we conjectured

based on the mutual invasibility results discussed in the previous

paragraph. The underlying mechanism is that an overcompen-

sating (higher) b-strategy has an advantage within a predominantly

undercompensating population as long as the total population size

is below the carrying capacity. The larger the relative frequency of

the overcompensating strategy, however, the higher the probabil-

ity that the population is overshooting its carrying capacity. At

those times, the undercompensating strategy is advantageous.

Thus, neither species can outcompete the other, because each of

them creates an advantage for the other one as soon as it becomes

dominating (a detailed analysis of those dynamics is provided by

[35]).

Evolutionary dynamics in the IBM
Introducing evolution in the individual-based MSS model, by

incorporating mutations as described in the Methods, confirms the

results of the invasibility analysis: there is one evolutionary

attractor close to the critical b-value, and the strategy associated

with this attractor is attained irrespective of whether we start from

Figure 2. Pairwise invasibility plots for different density-compensation strategies b in eqs. 1,2,3. The plots show the fitness (eq. 7) of an
invading strategy with a density-compensation strategy along the vertical axis for residents with density-compensation strategies along the
horizontal axis. Plus and minus signs indicate strategy combinations resulting in positive and negative invasion fitness, respectively; in addition,
regions of negative invasion fitness are shaded. Vertical dashed lines show the critical b-values of the resident. Small insets in the top left of each plot
show areas of mutual invasibility. Parameters: r = 5 (MSS), r = 40 (Hassell), r = 0.5 (Ricker), and d = 0.05 Different intrinsic growth rates r were chosen to
obtain a similar growth response for similar b-values across the three models.
doi:10.1371/journal.pone.0094454.g002
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a single density-compensation strategy (Fig. 4b), or from a

community that coexists by RNC (Fig. 4a). The b-value of this

strategy approximately coincides with the critical b-value derived

from eq. 5, and with the evolutionarily singular strategy discussed

in the previous section (Fig. 3a). This confirms that this singular

strategy is not only globally evolutionarily stable, but also globally

evolutionarily attainable. To test whether the same conclusion

holds also for other choices of r and d, we varied those parameters

systematically. We find that evolution always leads to a unique,

evolutionarily stable b-value, which generally seems to coincide

approximately with the critical b-value at which the population

dynamics start to exhibit cycles (Fig. 5). We conjecture that

differences to the analytically expected singular points result from

demographic stochasticity and different equilibrium population

sizes, which depend on r and d.

Creating evolutionarily stable RNC
For all models investigated so far, we can conclude that a large

number of b-strategy pairs can dynamically coexist, but none of

these strategy pairs is evolutionarily stable. This raises the question

whether the trade-off between growth at high resource availability

and persistence at low resource availability can result in

evolutionarily stable coexistence at all. To answer this questions,

we systematically modified the MSS equation to reduce fitness in

the neighborhood of the evolutionarily stable strategy. We

changed fMSS(N) (eq. 1) so that for all blow = 0.8,b,bup = 5, the

b-value used in eq. 1 is replaced by a value bm that depends on N
as follows,

bm~

blowz
bt

(bup{blow)t{1
if NvK ,

blowz
b1=t

(bup{blow)1=t{1
if NwK :

8>>><
>>>:

ð9Þ

After the modification, the density-dependence functions that

previously changed rather gradually with changes in b above and

below N now change nonlinearly and with different speeds

depending on whether N is below or above the carrying capacity

(Fig. 6). This nonlinear effect is controlled by a scaling parameter t
that we set to t~4. The interval in which this change happens,

between 0.8,b,5, is deliberately focused on the area between the

b-values that resulted in stable coexistence in our previous analysis.

As a result of this modification, the shape of the pairwise

invasibility plot is changed (Fig. 6c). There no longer exists a

strategy that is stable against invasion by any other strategy. Our

individual-based simulations show that this indeed creates

disruptive selection towards two distinct density-compensation

strategies (Fig. 7a). Looking at the time to competitive exclusion

for these strategy pairs confirms that they are stabilized by RNC

(Fig. 7b), although evolution does not quite converge on strategy

pairs that would create the strongest stabilizing effect.

Figure 3. Evolutionary and dynamic stability in the individual-based Maynard Smith and Slatkin model. (a) Invasion probability,
approximated by the probability that a strategy invading with one individual survives for at least 500 generations. Red shades depict areas that are
mutually invasible. Dashed lines indicate the critical density-compensation strategy at bcri<2.5 (eq. 5). (b) Time until competitive exclusion (plotted in
log10 units) for two species, starting with equal population sizes. The dashed curves (obtained using a kernel smoother) show combinations of b-
values for which the two strategies have equal chances to exclude each other. The diagonal line (identical b-values) may be regarded as providing a
reference: it shows the time until competitive exclusion under neutral drift. Moving away from the diagonal, one of the two strategies (marked by the
numbers 1 and 2) tends to exclude the other, with an average time until competitive exclusion smaller than under neutral drift. More interesting,
however, are the coexistence times along the other parts of the dashed curves, which are several orders of magnitude longer than along the
diagonal, evidencing a non-neutral, stabilizing mechanism of coexistence. Each cell shows the results from a single simulation; hence, the variance
among close-by cells provides a visual impression of the variance between simulation runs. Other parameters: K = 200, r = 5, and d = 0.05.
doi:10.1371/journal.pone.0094454.g003
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Figure 4. Evolutionary convergence to a single density-compensation strategy in the individual-based Maynard Smith and Slatkin
model. In both panels, evolution is absent for the first 3?105 generations (distinguished by a lighter background) and present thereafter. (a) Evolution
of the density-compensation strategies of two coexisting species, starting from initial values that are known from Fig. 3 to enable dynamically stable
coexistence (b1 = 0.9, b2 = 5.4). After evolution starts, the species rapidly evolve outside the coexistence region, which leads to the extinction of one
species and the evolution of the other to an intermediate density-compensation strategy. (b) Evolution of the density-compensation strategies of two
isolated (non-coexisting) species, starting from two different b-values (b1 = 0.5, b2 = 6). After evolution starts, the species rapidly evolve to the same b-
value as in (a). Other parameters: K = 1000, s~0:15, m = 0.3, r = 5, and d = 0.05.
doi:10.1371/journal.pone.0094454.g004

Figure 5. Evolutionarily stable density-compensation strategies in the individual-based Maynard Smith and Slatkin model.
(a) Evolutionarily stable b-values as a function of the intrinsic growth rate r and density-independent mortality d. Black colors indicate extinction.
(b) Difference between the evolutionarily stable strategy and the critical b-value (eq. 5). Other parameters: K = 1000, s~0:05, m = 0.1, and
bmin = 0.17.
doi:10.1371/journal.pone.0094454.g005
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Discussion

Main results
Relative nonlinearity of competition (RNC), a classical dynamic

coexistence mechanism, requires that species show different

nonlinear responses to a shared resource, and that each species

affects resource dynamics in a way that limits its own growth more

than that of its competitors. We confirmed previous findings that

this stabilizing effect readily arises in several population models

with nonlinear density dependence, when an overcompensating

species inhabits an environment together with a species that reacts

significantly weaker to deviations of the total population size from

the community’s carrying capacity.

However, the main finding of the present study is that this

dynamically stable coexistence is evolutionarily stable only under

fairly restrictive conditions. To arrive at this conclusion, we

considered an evolutionary trade-off between growth at low

resource availability and growth at high resource availability.

Figure 6. Density-dependent reproduction ratio of the original Maynard Smith and Slatkin model (a), of the modified Maynard
Smith and Slatkin model (b), and resulting pairwise invasibility plot (c). The curves plotted in (a) and (b) result from equidistant b-values on
the logarithmic scale. The curves for blow = 0.8 (red) and bup = 5 (green) from eq. 9 are highlighted by dashed curves. Note that, while curves are
evenly distributed for the original model, the modification creates an asymmetry between the curves above and below N/K = 1 in the modified
model. The pairwise invasibility plot shows that this results in lower fitness for the intermediate strategies, as well as in the loss of evolutionary
stability of the evolutionarily singular strategy.
doi:10.1371/journal.pone.0094454.g006

Figure 7. Evolutionary branching (a) and time until competitive exclusion (b) for the modified Maynard Smith and Slatkin model
(eq. 9). After evolution is introduced (distinguished by a darker background), evolutionary branching results in two distinct strategies that are
evolutionarily stable. Analysis of the time until competitive exclusion (plotted in log10 units) indicates that these strategies are also dynamically
stabilized by RNC. Other parameters: K = 1000, s~0:3, m = 0.1, and bmin = 0.17.
doi:10.1371/journal.pone.0094454.g007
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In a first step, we used three classical population models (the

Ricker, the Hassel, and the Maynard Smith and Slatkin model) to

create families of density-dependence functions that follow this

trade-off. Our analysis using adaptive dynamics theory (Fig. 2), as

well as individual-based simulations (Figs. 3,4,5), show that

evolution generally tends towards a single evolutionary attractor,

approximately located at the density-compensation strategy bcri at

which population dynamics switch from compensating (stable) to

overcompensating (fluctuating) behavior. This is in line with

previous findings that evolution tends towards the edge of stability

[46,49], and interestingly, in this case even slightly beyond that

edge. We speculated that the latter is a result of the introduction of

density-independent mortality in our models, which may promote

slight overcompensation to adjust for the additional mortality.

Strongly overcompensating strategies that are required for the

stabilizing feedback of RNC, however, were not favored in our

initial analysis.

In a second step, we systematically modified the evolutionary

trade-off in such a way that the formerly stable intermediate

density-compensation strategy was strongly reduced in fitness (eq.

9). These changes created disruptive selection and therefore

evolutionary branching towards a pair of density-compensation

strategies stabilized by RNC (Figs. 6,7). This demonstrates the

possibility that RNC can evolve under an evolutionary trade-off

between growth rates at low and high resource availability.

However, achieving this outcome required considerable fine-

tuning. We not only had to decrease the fitness of the previously

favored compensating strategy, but at the same time had to ensure

that evolutionary branching leads to a pair of density-compensa-

tion strategies that is dynamically stable. The density-compensa-

tion functions resulting from this fine-tuned trade-off look highly

irregular compared to the unmodified MSS model (Fig. 6).

Moreover, the location of the formerly stable intermediate

density-compensation strategy, and therefore, the necessary

modification of the density-compensation functions, crucially

depends on r and d (Fig. 5). We cannot imagine a feedback in

nature that would lead to such a fine-tuned trade-off across a wide

range of environments. Thus, based on our analysis, it seems

rather unlikely that real trade-offs will meet the conditions

required for the sympatric evolution or evolutionary stability of

RNC.

Relation to character displacement
It is interesting to consider the relation of our results to

character displacement, the process through which species reduce

competition by diverging in their traits [50,51]. The reason why

we do not observe character displacement in this study is that

species cannot escape competition by changing their density-

compensation strategy. Some specific combinations of b-values can

coexist, which are those we identified in Fig. 3b. Those pairs of

density-compensation strategies partition the available fluctuating

resources in a way that each species is stabilized at low relative

frequency. In a generalized concept of the niche, one could say

that each species has managed to find a disparate niche space by

specializing either on high or on low levels of resource fluctuations.

However, there is usually a ‘‘generalist’’ density-compensation

strategy that can invade either of those ‘‘specialist’’ strategies,

while it can not be invaded by them in return. This ‘‘generalist’’,

which we identify as the evolutionarily stable strategy in Fig. 5, can

exploit the niches of either of the two ‘‘specialist’’ species, and

hence competitively excludes them (Fig. 4).

Generality and scope of the results
Our study could only explore a limited number of all possible

families of functions that follow the ecologically motivated trade-

off between growth rates at high and low resource availability,

from which we departed in this study. Yet, given the fine-tuning

necessary to achieve evolutionary stability, our results strongly

suggest that only a very restricted subset of all these possible

functional families allows evolutionarily stable coexistence by

RNC. For RNC to be common, one would need a mechanism

that explains why those functions in particular should be favored

in nature. Further analysis of these questions could be conducted

using models that explain density dependence from mechanistic

assumptions, such as [43], but the drawback is that also these

models require assumptions about trade-offs in species traits,

although at a more basic level. Greater certainty could only be

gained by analyzing trade-offs from empirical data, as reported in

a study by Metcalf et al., which examines a trade-off in flowering

time parameterized with real data [47]. Interestingly, Metcalf et al.

do not find conditions that would allow the evolution of RNC in

their plant system, in accordance with our results.

A limitation of our study is that our analysis is based on discrete-

time models with non-overlapping generations and a fixed

resource supply that does not show any lags. Previous research

has suggested that RNC can also occur, and might even be

particularly likely, in populations with non-overlapping genera-

tions and gradually regrowing resources [37,52], a situation we

would expect for resources such as plant biomass, prey, or

nutrients. At the moment, we cannot say anything about the

evolutionary stability of RNC in these time-continuous systems. A

detailed analysis of their evolutionary stability would be a valuable

extension of this study. Another interesting extension could be to

account for spatial structure in the evolving populations. It has

been shown that density compensation coevolving with dispersal

may lead to the evolutionarily stable coexistence of strategy pairs

that differ both in density compensation and dispersal traits [18],

but this may reflect a competition-colonization trade-off, rather

than pure RNC.

Our results by no means exclude the possibility of evolutionarily

stable complex population dynamics and coexistence in fluctuating

environments in general. What we have tested here is whether one

specific coexistence mechanism, RNC, could evolve sympatrically,

or be evolutionarily stable, in a spatially unstructured environ-

ment. We find that this does not seem particularly likely. An

additional insight is that the evolution towards strong overcom-

pensation with complex, oscillatory population dynamics through

this mechanism seems rather unlikely as well. However, this does

not exclude the possibility that complex dynamics could evolve

through any other mechanism. The question of complex

population dynamics, which have been observed both in nature

and in experiments, has been a field of active research for many

years [53], and many possible mechanisms have been proposed

that are not excluded by this study. Therefore, if complex

population dynamics are observed, it seems likely that one or

several of these additional mechanisms are at work.

Moreover, the finding that RNC is unlikely to evolve or be

evolutionarily stable in sympatry does not mean that it could not

emerge in other situations. Speciation, for example, may take

place in isolated areas where species locally evolve different

strategies (see, e.g., Fig. 5). When species from such a source pool

emigrate to other areas, RNC may well play a role in temporarily

stabilizing local species diversity. Similar opportunities may arise

when rapid environmental change leaves species maladapted to

the present environmental regime. It is an interesting avenue for

further empirical and theoretical research to test whether the
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effects of these mechanisms are strong enough to substantially

increase the expected or observed prevalence of coexistence by

RNC.

Conclusions and outlook

In conclusion, our results show that differences in density

compensation may stabilize species coexistence on ecological time

scales, but it seems generally rather unlikely that such coexistence

can arise or be stable on evolutionary timescales. We believe that

this distinction between dynamic and evolutionary stability,

although noted before, is crucial for gaining a better theoretical

understanding of the mechanisms behind diversity patterns in

general, and of coexistence mechanisms in particular. An earlier

study, for example, concluded that ‘‘the paradox of the plankton is

essentially solved’’ after finding that a model of a planktonic

community allows dynamically stable coexistence of more species

than resources when population dynamics are chaotic [54]. Later,

however, [55] demonstrated that evolving resource partitioning

may lead to a drastic breakdown of such dynamically stable

diversity. Differences between evolutionary and dynamic stability

have also been found or conjectured for a trade-off between

maturation rate and birth rate [56], for the aforementioned study

of flowering decisions in plants [47], and for a trade-off in a

predator’s handling time [57]. Following up on the last study, [58]

found that it was possible, but difficult, to construct trade-offs that

allow evolution towards coexistence. Regarding the evolutionary

stability of the temporal storage effect, [28,29,59] report somewhat

more favorable conditions, although some restricting conditions

have to be met as well. Together, this shows that in many cases,

there are significant differences between the coexistence mecha-

nisms that would be beneficial for supporting maximum diversity

in a community, and the coexistence mechanisms that we would

expect to evolve.

We believe that our study, as well as the other mentioned recent

examples, show that there is still a surprising lack of knowledge

regarding the interplay of dynamic and evolutionary mechanisms

responsible for structuring ecological communities. A reason may

be the lack of quantitatively reliable descriptions of trade-offs

among a species’ adaptive traits, including its life-history strategies,

which makes comprehensive evolutionary analyses difficult.

Nevertheless, we think that extending our theoretical understand-

ing in this general direction is important, and may even be

indispensable, for making quantitative predictions about the

evolution of species diversity and biogeographic patterns. Only a

combined analysis of community dynamics and evolutionary

dynamics, as promoted also by the recent trend of eco-

evolutionary approaches [60–62], together with empirical data

from both domains, may be able to provide a more conclusive

answer to how different coexistence mechanisms contribute to

ecological diversity across spatial and temporal scales.
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