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Abstract

Motivated by India’s nationwide biometric program for social inclusion, we analyze verification (i.e., one-to-one matching) in
the case where we possess similarity scores for 10 fingerprints and two irises between a resident’s biometric images at
enrollment and his biometric images during his first verification. At subsequent verifications, we allow individualized
strategies based on these 12 scores: we acquire a subset of the 12 images, get new scores for this subset that quantify the
similarity to the corresponding enrollment images, and use the likelihood ratio (i.e., the likelihood of observing these scores
if the resident is genuine divided by the corresponding likelihood if the resident is an imposter) to decide whether a
resident is genuine or an imposter. We also consider two-stage policies, where additional images are acquired in a second
stage if the first-stage results are inconclusive. Using performance data from India’s program, we develop a new
probabilistic model for the joint distribution of the 12 similarity scores and find near-optimal individualized strategies that
minimize the false reject rate (FRR) subject to constraints on the false accept rate (FAR) and mean verification delay for each
resident. Our individualized policies achieve the same FRR as a policy that acquires (and optimally fuses) 12 biometrics for
each resident, which represents a five (four, respectively) log reduction in FRR relative to fingerprint (iris, respectively)
policies previously proposed for India’s biometric program. The mean delay is &38 sec for our proposed policy, compared
to 30 sec for a policy that acquires one fingerprint and 107 sec for a policy that acquires all 12 biometrics. This policy
acquires iris scans from 32–41% of residents (depending on the FAR) and acquires an average of 1.3 fingerprints per
resident.
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Introduction

In India, one of the biggest barriers for poor people to access

government services is the inability to prove one’s identity [1]. To

improve social inclusion [2], the government of India has

undertaken the largest biometric program in human history,

called the Unique Identification Authority of India (UIDAI), with

the aim of creating a unique biometric identity for each of its 1.2 B

residents [1]; other countries, such as Indonesia, are developing

similar programs [3]. This program requires two main biometric

matching activities. During enrollment, it captures 10 fingerprint

images and 2 iris images from every resident (as of August 2012,

&200M residents have been enrolled [4]) and performs identifi-

cation (i.e., 1-to-n matching) to make sure that people do not

create multiple identities. Once the system is operational, residents

will undergo verification (i.e., 1-to-1 matching) every time they

access services, to ensure that they are who they claim to be; this is

achieved by capturing new biometrics and comparing them to

their corresponding biometrics from enrollment. UIDAI predicts

that it will perform up to 106 verifications/hr after the system is

operational, and that most of these verifications will be online, i.e.,

performed while the resident waits.

Details of the verification approach (e.g., whether to use

fingerprints and/or irises) may be left to local or regional

governments and may depend on the nature of the application;

e.g., receiving money may require a more stringent process than

receiving other services. UIDAI has carried out extensive

verification experiments with fingerprints [5] and irises [4], and

(as of October 2013) have implemented a policy that is a variant of

a policy considered in [5]. Hence, there is a pressing need to

identify policies that are more accurate than those in [4] and [5],

but do not cause too much delay for residents. A key complicating

feature of the verification problem is that different hardware and

different procedures are used during enrollment and verification.

More specifically, enrollment uses more sophisticated hardware

and a more standardized procedure (e.g., with human guidance to

guarantee the best possible images) than verification. Similarity

scores when both images are generated by the same equipment

can differ considerably from scores when the images are generated

by different equipment. Moreover, information gathered at

enrollment, such as fingerprint image quality, may be of limited

value in predicting the similarity scores during verification (in

contrast, when the same equipment is used at enrollment and at

subsequent identification, i.e. one-to-many matching, or verifica-
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tion, then image quality can be helpful, e.g., Wein and Baveja [6]).

As a result, UIDAI developed the idea of Best Finger Detection

(BFD), which would occur during a resident’s first verification

(delaying BFD until the first verification has the added benefit of

reducing the possibility of an accidental error or a successful

intrusion). During BFD, all 10 fingers are recaptured and the

similarity score between the new images and the enrollment

images are used as a basis for determining the best finger. They

found that using everyone’s best finger performs much better than

using everyone’s right thumb [5], which was the policy that was

under initial consideration. Moreover, they found that using

everyone’s two best fingers performs even better [5], and to reduce

delay, they have implemented a two-stage policy, where every-

one’s best finger is acquired in stage 1, and for residents whose

similarity score falls below a specified threshold, their second-best

finger is acquired in stage 2. Another important consequence of

UIDAI’s use of different equipment and procedures during

enrollment and verification is that the plethora of publicly

available biometric data, e.g., on the National Institute of

Standard and Technology’s (NIST) web site, which contains

similarity scores from images that use the same equipment, are not

relevant for our purposes. Hence, because UIDAI has not made

their raw data publicly available, we need to resort to performance

data published by UIDAI [4,5].

Here, we take the BFD idea a step further by (i) formulating a

new mathematical model for fingerprint and iris matching that

captures interperson variability and intraperson interfinger (or

inter-iris) variability in similarity scores, as well as measurement

noise during image capture at verification, (ii) estimating the

parameters of this model using extensive experiments performed

by UIDAI, (iii) introducing a Best Iris Detection (BID) process that

is analogous to BFD, (iv) finding near-optimal single-stage and

two-stage individualized policies that allow for a varying number

of fingers or irises to be used, depending upon their similarity

scores during the BFD and BID processes, and (v) comparing the

performance of these optimized policies to several policies

considered in [4]–[5].

Materials and Methods

UIDAI System
During enrollment, 10 fingerprint images (using a 4-4-2 slap,

where the four non-thumbs from each hand are taken from one

hand and then the other hand, followed by the two thumbs) and

two iris images are obtained from each resident with the help of a

human operator. More specifically, they take up to five attempts of

each slap if any finger in the slap has an image quality of 4 or 5 on

NIST’s 5-point image quality scale (where quality 1 is best and 5 is

worst) [7], and they use the best outcome from each slap.

Because dual-eye cameras are more accurate and cause less

delay than single-eye cameras [4], we restrict ourselves to dual-eye

cameras. That is, anytime iris scanning occurs, both irises are

scanned. The same iris scanning process is used during enrollment

and verification: they keep the first image that meets the quality

threshold or the best among three images if none meet the

threshold.

After the UIDAI system becomes fully operational, residents will

undergo verification each time they use the system (e.g., to access

government services). The verification process uses different

hardware (e.g., a smaller single-finger sensor) than the enrollment

process, and a finger-placement procedure that does not require a

human operator to be present. Iris capture during verification

would still require a human operator. The current pilot projects

for verification adopt a fixed-finger approach, which uses every

resident’s right thumb (and no irises). However, because the BFD

approach performs much better than the fixed-finger approach in

experiments [5], we incorporate the BFD process into our model.

BFD occurs during a resident’s first verification: the system obtains

a new set of 10 fingerprint images (one finger at a time), and makes

up to three attempts in total on each finger or until each finger has

NIST image quality 1 or 2 [8]. After obtaining these new images,

the UIDAI system computes the 10 similarity scores between the

images during BFD and the corresponding images during

enrollment, and normalizes these scores to be in the range from

0 to 100. They then assign the color green if a score is w60, yellow

if the score is between 20 and 60, and red if the score is v20.

UIDAI has a fixed prioritization of the fingers (from best to worst:

right thumb, left thumb, right index, left index, right middle, left

middle, right ring, left ring, right little, left little). The final BFD

ranking of the 10 fingers depends on the color and the fixed

priority: green fingers are ranked higher than yellow fingers, which

are ranked higher than red fingers, but the rankings within color

are according to their fixed priority. This individualized BFD

ranking remains fixed for each resident during subsequent

verifications.

Model Overview
In contrast to the current UIDAI system, our model incorpo-

rates a corresponding BID process that occurs during a resident’s

first verification, where new iris scans are acquired and similarity

scores between the new scans and those from enrollment are

computed. We develop a probabilistic model for each resident’s 12

genuine (i.e., a comparison of their new images and those captured

during enrollment) similarity scores obtained during the BFD and

BID processes, and also each resident’s similarity scores during

subsequent verifications. This model captures interperson vari-

ability (e.g., some people have more defined fingerprint or iris

features than others), intraperson interfinger (or inter-iris)

variability (e.g., for any given person, some fingerprints have

more defined features than others and some fingers, such as the

right thumb, have higher intraperson similarity scores on average

than other fingers, such as the left little finger), and measurement

noise during the BFD and BID processes and all subsequent

verifications.

We also construct several classes of individualized verification

policies, which decide on a subset of the 10 fingers and 2 irises to

use for verification based on the values of a resident’s 12 similarity

scores during BFD and BID. During each verification, new

similarity scores are computed between the subset of new images

and the corresponding images during enrollment, and then a

decision is made based on these new scores. For single-stage

policies, there are two options in this decision: either accept (i.e.,

decide that the resident is indeed who he claims to be) or reject

(i.e., decide that the resident is an imposter). In two-stage policies,

there is a third option of continuing to a second stage, where

additional fingerprint and/or iris images are obtained, followed by

an accept/reject decision.

We also develop a probabilistic model for imposter similarity

scores, which is the similarity score between fingerprints or irises of

different individuals. We optimize over our policy classes to

minimize the false reject rate (FRR), which is the probability that

we reject a resident who is genuine, subject to constraints on the

false accept rate (FAR), which is the probability that we accept a

resident who is an imposter, and the average amount of time it

takes to verify a resident. We compare the optimized classes of

policies to several policies considered in [5].

Personalized Policies for Biometric Verification
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Biometric Model
Let Xi be the true (as opposed to measured) genuine similarity

score between the enrollment image and the image during

verification (including during BFD and BID), where i~1, . . . ,10
corresponds to the standard indexing scheme for fingerprints (left

little, left ring, left middle, left index, left thumb, right thumb, right

index, right middle, right ring, right little), i~11 is the left iris and

i~12 is the right iris. We assume that fingerprint similarity scores

are independent of iris similarity scores.

For fingerprints, each person has an overall image quality h,

which is not to be confused with NIST’s 5-point image quality. We

assume that h is a normal random variable with mean m and

variance t2 (i.e., h*N (m,t2)). Given a person’s realization of the

random variable h, we assume that the true log (tilde’s are used to

denote logarithmic quantities) similarity score
~XXi~ ln Xi*N (cih,s2), where the ci’s are normalized so thatP10

i~1 ci~10. Hence, m is the overall mean genuine log similarity

score, ci is the finger-dependent correction, t2 is the interperson

variance, s2 is the intraperson interfinger variance, and a

resident’s true similarity score (given h) is lognormally distributed,

which generates positive similarity scores and provides the

flexibility to model a variety of empirical distributions (e.g., [6]).

Because we do not have raw similarity score data, we finesse

some of the details in the measurement process described earlier,

such as the color-coding scheme and the conditional number of

attempts made during BFD. Let ~YYi~ ln Yi be the log similarity

score for finger i obtained during BFD. We assume that
~YYi~ ~XXiz maxj~1,...,3 ~ij for i~1, . . . ,10, where ~ij is the measure-

ment noise associated with the jt attempt for finger i during BFD.

We assume that ~ij*N (d,s2) and independent and identically

distributed (iid) for all i and j; we anticipate that dv0 to capture

the fact that measurement noise typically acts to reduce genuine

similarity scores because of improper finger placement or dirty

fingers. Hence, we assume that three attempts are always made

during BFD, and we ignore the color coding scheme. During

subsequent verifications (with a single acquisition attempt), we

assume that the log similarity score for each attempt of finger i is
~ZZi~ ln Zi~ ~XXiz~i , where ~i is also N (d,s2) and independent of

~i .

We assume that the imposter similarity score, which measures

the similarity between finger i of one person and finger i of a

different person, has a lognormal distribution (with parameters mG

and s2
G ) that is independent of the finger type i and of image

quality. Moreover, due to insufficient data, we ignore measure-

ment noise in the interperson similarity scores, so that repeat

measurements generate the same score.

We also develop a probabilistic model for each resident’s two

iris similarity scores during each verification. Unlike fingerprints,

the same iris capture process is used during the first verification

(i.e., the BID process) and in all subsequent verifications. Our

model for genuine similarity scores for fingerprints offers a succinct

way to capture interperson and intraperson variability for 10

fingers. With only two irises, we can capture both of these issues by

simply having correlated similarity scores between left and right

irises. Although Hamming distances are often used to compare

two irises, similarity scores (roughly on a 0–100 scale) are used in

the experiments in [4], which maintains consistency with the

fingerprint model. We model the true genuine similarity scores of

two irises, denoted by (X11,X12), by a symmetric bivariate

lognormal distribution, where ( ~XX11, ~XX12)~( ln X11, ln X12)

*N (~mm, ), ~mm~(m11,m11)T and ~s2
11

1 r
r 1

� �
. The genuine

similarity score, Yi, measured during the first verification satisfies

ln Yi~ ~YYi~ ~XXiz~cci’ , where ~cci’ *N (y,b2) is the log measurement

noise. The genuine similarity score, Zi, measured during

subsequent verifications is given by ln Zi~~ZZi~ ~XXiz~cci, where ~cci

is also N (y,b2) and independent of ~cci’ .

The imposter Hamming distance is accurately modeled by a

distribution that is the maximum (among several rotations) of

several binomial random variables [9]. However, for analytical

tractability, we assume that the imposter distribution for each iris is

iid lognormal with parameters mGI and s2
GI . As with fingerprints,

we ignore measurement noise in the imposter iris scores.

Biometric Parameter Estimation
We estimate the fingerprint parameters (m,t,c1, . . . ,c ,

s,d,s,mG,sG) from 61 probabilities that appear in Figs. 8, 10 and

11 in [5]; see }1 in File S1 for details. These studies use 3500

residents based on Wayman’s ‘‘Rule of 30’’ [10], so as to obtain

true FRRs that are within +30% of the observed error rates, and

use a large number of imposter scores from the field to obtain

statistically significant FAR results in the range from 10{7 to 10{3

[5]. We use a two-stage estimation process because the experi-

mental set-up in Fig. 8 of [5] differs from that in Figs. 10–11 of [5]:

the former uses one very good sensor and includes the 1.87% of

people that were unlikely to be verified successfully because they

had red rank-1 and rank-2 fingers in UIDAI’s color-coding

scheme, while the latter uses the average of 14 good sensors and

excludes the 1.87% of people with insufficient image quality. Fig. 8

of [5] contains the probabilities that each of the 10 fingers is the

rank-1 finger and the rank-2 finger during the BFD process. We

calculate mathematical expressions for these 20 probabilities in

terms of the model parameters and choose (m,t,c1, . . . , ,s,s) to

minimize the sum of squared deviations between the observed and

predicted probabilities. We retain only (c1, . . . ,c1 ) from this

solution.

In the second stage, we first use four known threshold values

that generate four FAR values in the one-finger setting [5] to

estimate the imposter parameters mG and sG. We then use three

FRR vs. FAR curves – each consisting of seven points – from Figs.

10–11 in [5] to estimate the remaining parameters. More

specifically, we use the blue curve in Fig. 10 of [5], which

performs verification using a single attempt of the rank-1 finger

during BFD, the red curve in Fig. 10 of [5], which uses up to three

attempts of the rank-1 finger, and the green curve in Fig. 11 of [5],

which uses the sum of the rank-1 and rank-2 fingers during BFD

with up to three attempts. After deriving mathematical expressions

for FRR and FAR in these three cases, we choose (m,t,s,d,s) to

minimize the sum of squared deviations between the observed and

predicted FRR values subject to constraints that the predicted

FAR values coincide with the observed values.

Recall that 98.13% of people in the fingerprint studies were

likely to be verified successfully using 1 or 2 fingers, and the

remaining 1.87% were excluded from the fingerprint verification

studies (pg 23–24 of [5]). Because we are allowing up to 10 fingers

to be used for verification and because UIDAI’s failure-to-acquire

(FTA) rate due to poor biometrics is only 0.14% [11], we estimate

the parameter values in two scenarios. In the exclusion scenario,

we assume that the 1.87% of people are omitted from the study

and use the 21 FRR and FAR values directly. In the inclusion

scenario, we assume that the failure-to-acquire (FTA) rate is

0.0187 and that the 21 FRR and FAR values from Figs. 10–11 in

[5] are false non-match rates (FNMR) and false match rates

(FMR), respectively. We then recalculate the 21 FRR and FAR

values via the formulas FRR = FTA+FNMR(1-FTA) and
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FAR = FMR(1-FTA) (}8.3.2.2 and }8.3.3.2 of [12]). While the

exclusion scenario requires less extrapolation of the data, the

inclusion scenario allows us to obtain a rough idea of the potential

of our proposed policy when applied to the entire population.

We estimate most of the iris parameters from the dual-eye

experiments reported in Fig. 13 and Table 8 in [4], which include

four points on a FRR vs. FAR curve for two attempts of both

irises, and one (FRR,FAR) point for one attempt of both irises. For

multiple attempts, the maximum similarity score is used. In these

experiments, the similarity scores for left and right irises are fused

using the maximum of the two scores. Of the seven parameters to

estimate, m11 and y appear in the mathematical expressions for

FRR only via their sum m11zy. Hence, we cannot determine

their individual values and arbitrarily assume that y~0, leaving us

with six parameters: (m11,s11,r,b,mG,sG). We estimate the

imposter parameters mGI and sGI using Hamming distance data

in [9] and the assumption that the similarity scores equal 100 times

1 minus the Hamming distance. We estimate the correlation r
from Fig. 6 of [13], and then choose (m11,s11,b) to minimize the

sum of five squared deviations between the observed and predicted

FRR values subject to constraints that the predicted FAR equals

the observed values. The iris FTA rate is 0.0033 [4], and we

estimate the iris parameter values in the inclusion and exclusion

scenarios exactly as in the fingerprint case: ignoring 0.0033 in the

exclusion scenario and using the formulas FRR = FTA+FNMR(1-

FTA) and FAR = FMR(1-FTA) in the inclusion scenario.

Policies
For the purposes of comparison, we consider three benchmark

policies that are tested in [4]–[5]. The first benchmark policy is the

simplest individualized fingerprint policy, which uses one attempt

of the rank-1 finger (as measured by BFD). We also test one

attempt of the sum of the rank-1 and rank-2 fingers, which is also

considered in [5]. We do not consider the versions of these two

policies that use up to three attempts, because there are not ample

data to measure the average delay incurred by residents for these

policies (i.e., we do not know the mean number of attempts that

were actually made); however, results in [5] show that acquiring

new biometrics results in better performance than re-acquiring

biometrics. The final benchmark policy uses one attempt of the

maximum of the left and right iris score [12]. These three

benchmark policies have a single parameter, which is the accept/

reject threshold (i.e., accept the resident if the similarity score is

greater than the threshold).

We optimize six classes of policies that are special cases of the

general two-stage policy pictured in Fig. 1. Our approach uses

likelihood ratios (Fig. 1), which is known to be optimal (in the

Neyman-Pearson sense) for a single-stage problem in the absence

of a delay constraint [14]. We show in }3.1 of File S1 that it is

optimal to rank the fingers of each resident by the index mi, which

is defined in terms of the model parameters (m,t,s2,d,s,ci) and the

similarity scores Yi observed during BFD via equations (8), (9), (63)

and (65) in File S1. This ranking greatly simplifies the computation

of an optimal policy: e.g., in stage 1 we simply need to determine

the number of fingers to acquire, n1, rather than evaluating allP10
k~1

10

k

� �
possibilities. For the general two-stage policy in

Fig. 1, in stage 1 we decide on which biometrics to acquire, and

after observing the acquired similarity scores, we calculate the

likelihood ratio, which is the probability of observing the acquired

similarity scores if the resident is genuine divided by the

probability of observing the acquired similarity scores if the

resident is an imposter, and decide (via two thresholds that are

chosen prior to observing the acquired similarity scores) whether

to accept the resident, reject the resident or continue to stage 2,

where additional biometrics are acquired. After observing the

similarity scores acquired in stage 2, we compute the new

likelihood ratio, which is based on the cumulative biometrics

acquired during both stages, and decide whether to accept or

reject the resident.

The six special cases – three single-stage policies and three two-

stage policies – of the general two-stage policy in Fig. 1 are

described in Table 1. Because the general two-stage policy is

difficult to optimize, we impose two restrictions in our three two-

stage policies. First, all three two-stage policies use a different

mode of biometric (i.e., fingerprints or irises) in the two different

stages for each resident. The two-stage iris-finger and finger-iris

policies requires every resident to provide irises and fingerprints,

respectively, in the first stage and fingerprints and irises,

respectively, in the second stage. The two-stage either-other policy

allows either fingers or irises to be acquired in the first stage (i.e., it

can vary for each resident), and the other biometric mode to be

acquired in the second stage. Although the policy in Fig. 1 allows

the second-stage threshold t2 to be a function of the biometric

measurements observed in the first stage, our second restriction in

the three two-stage policies in Table 1 is to force the stage-two

FAR to be independent of the outcome of stage one, but optimized

for each resident. This restriction leads to a threshold t2 that is

independent of the stage-one biometric measurements (}3.2 in File

S1).

Delays
In addition to FRR and FAR, delays experienced by residents

also play an important role in system performance. The total

verification delay includes the initial pre-biometric time, where

basic information such as a person’s name is collected, the image

acquisition time, the operator review time, the processing time and

the network delay. We perform a least squares fit of a lognormal

distribution to 3 points (the probability that the total verification

delay v30 sec is 0.24, v1 min is 0.844, and v2 min is 0.98) for

the dual-eye camera in Fig. 14 of [4], which gives an estimate of

D~43 sec for the mean verification delay for both irises. Similar

information for fingerprints is not reported in [5], and so we

loosely estimate the difference between fingerprint delay and iris

delay. The pre-biometric time is the same for fingerprints and iris

and is &10 sec. The image acquisition time is &2{4 sec/finger

and is &10{12 sec less than the acquisition time for irises. The

operator review time (which is several seconds) and the network

delay time (which is &10 sec) are each a few seconds shorter for

fingerprints than irises. While pre-biometric time is only incurred

once, the network delay time is incurred twice for residents who

undergo two stages of acquisition. Based on these assumptions, we

use the delay times in Table 2.

Optimization Problem
To optimize our proposed class of policies, we choose the

parameters to minimize the FRR subject to constraints on the

FAR and the average verification delay D, and also the additional

constraints in Table 1. Mathematical derivations of the likelihood

ratios, the FRR and the FAR appear in }3 in File S1. For the sake

of tractability, we require that each resident’s FAR be equal to the

specified value. While this may be suboptimal (e.g., it may be

optimal to allow a higher FAR for a person with lower similarity

scores), this simplifying assumption does prevent residents from

gaming the system and can be viewed as the problem of

minimizing the maximum FAR over all residents.

By moving the delay constraint to the objective function via a

Lagrange multiplier and solving the optimization problem for

Personalized Policies for Biometric Verification
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many values of the Lagrange multiplier, we can sweep out FRR vs.

D curves for a fixed FAR. We perform this procedure for

FAR~10{3,10{4,10{5 and 10{6. The three benchmark policies

and the single-stage iris policy have fixed values of D (30, 36, 43

and 43 sec, respectively because they always acquire one finger,

two fingers, two irises and two irises, respectively) and are

represented by points on the FRR vs. D graphs. For D~36 and

43 sec, we also generate FRR vs FAR graphs.

In our computational runs, we simulate 106 residents, each of

whom are characterized by their similarity scores (Y1, . . . ,Y12)
during their first verification, and then derive optimal first-stage

decisions (n1,I
(1)
11 ,tL,tU ) for each resident (Fig. 1). We then put

each resident through the verification process 103 times (i.e.,

observing (Z1, . . . ,Z10,I
(1)
11 Z(11)) and carrying out the remainder

of the process depicted in Fig. 1). With 95% confidence, the mean

delays are within +0:1%, the FAR values within +6%, and the

FRR values are within +2|10
x{5

2 % when the estimated value is

10{x; because the lowest FRR value is &10{7, the maximum

error is within +20%, or +0:1 on the logarithmic scale in Fig. 2,

which does not affect our qualitative insights. It took approxi-

mately one day of computing time on a quad-core 3.7 Ghz

machine to generate the results for all single-stage policies in Fig. 2,

while the two-stage policies took four days on a cluster of 320

cores. Therefore, using a single core, it takes &0:002 seconds to

determine the optimal single-stage policy for a resident, and

between 0.2–0.4 seconds to determine the optimal two-stage

policy, which enables online verification.

Results

Parameter Estimates
The first stage of the parameter estimation procedure for

fingerprints leads to reasonably accurate estimates of the rank-1

and rank-2 probabilities in both the exclusion and inclusion

scenarios (Figs. 2e and 3e in File S1), with an average relative error

of 19.9% over the 40 FRR probabilities in both scenarios

(although it drops to 7.9% when omitting the first and tenth

fingers, which have very small probabilities). In the second stage of

the procedure, the lognormal imposter distribution provides an

excellent fit to the known threshold-FAR pairs (Fig. 1 in File S1),

predicted FRR values (for a given FAR) were nearly always within

+10% of the observed values, and the average relative error is

2.4% (Figs. 3a–c in File S1) for the inclusion scenario, whereas in

the exclusion scenario five of the 21 probabilities fell outside of

+10% of the observed FRRs and the average relative error is

5.2% (Figs. 2a–c in File S1). In both scenarios, an out-of-sample

point (a single attempt of the fusion of 2 fingers) does not predict

the observed FRR to within 10% (Figs. 2d, 3d in File S1).

The fingerprint parameter values (Table 3) reveal that the

finger-dependent population-wide averages ci range from 0.552

(left little) to 1.313 (right index). Most of the parameter values

make intuitive sense: the overall median genuine similarity score in

the exclusion case is em~60:34, and in both scenarios the

measurement error dv0, the coefficients of variation (mean

divided by the standard deviation) of the interperson parameter h

Figure 1. The general two-stage class of policies. In stage 1, for each resident we choose the number of fingers (n1) to acquire and whether

(I
(1)
11 ~1) or not (I (1)

11 ~0) to acquire the irises, based on the BFD and BID scores (Y1, . . . ,Y12). We then observe the new similarity scores

(Z½1�, . . . ,Z½n1 �,I
(1)
11 Z11,I

(1)
11 Z12) of the acquired biometrics, where the fingerprint scores Z½i� are ranked according to the index mi . We compute the

likelihood ratio L1 and accept the resident as genuine if L1 is greater than the upper threshold tU , reject the resident if L1 is smaller than the lower

threshold tL, and otherwise continue to stage 2, where both irises (if I
(2)
11 ~1) and n2 additional fingerprints are acquired. Finally, we compute the

likelihood ratio L2 based on the biometrics acquired in stage 2 and then accept or reject the resident using the second-stage threshold t2 .
doi:10.1371/journal.pone.0094087.g001

Table 1. The six classes of policies.

Policy Additional Constraints

Single-stage finger tL~tU , I
(1)
11 ~0

Single-stage iris tL~tU , n1~0

General single-stage tL~tU

Two-stage iris-finger n1~0, I
(2)
11 ~0

Two-stage finger-iris I
(1)
11 ~0, n2~0

Two-stage either-other minfn1,I
(1)
11 g~0,

minfn1,n2g~0, minfI (1)
11 ,I

(2)
11 g~0

The notation used here is introduced in Fig. 1. Note that when tL~tU , no one
proceeds to the second stage.
doi:10.1371/journal.pone.0094087.t001
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(t=m~0:28 and 0.14) and the log measurement noise (s=jdj~0:49
and 0.63) are modest.

Relative to the exclusion scenario, the inclusion scenario has

slightly larger measurement errors, higher average fingerprint

quality, more variable fingerprint quality across residents, and

much less intraperson interfinger variability. Hence, the inclusion

scenario has more residents with significantly bad quality and

these residents tend to have all fingerprints of bad quality, making

them difficult to correctly verify. Although the median genuine

score em
w100 in the inclusion scenario, this is not a concern

because system performance depends only on the left tail of the

genuine similarity score distribution.

In the iris parameter estimation procedure, the average relative

error over the five FRR probabilities is 2.7% and 1.2% in the

exclusion and inclusion scenarios (Figs. 4–5 in File S1). The

standard deviation of the log measurement noise is much less than

the standard deviation of the log genuine scores, and the

correlation between the genuine scores of the left and right iris

is 0.6. As in the fingerprint case, the inclusion scenario for irises

has slightly larger measurement errors, and has genuine scores

with a higher mean and higher standard deviation relative to the

exclusion scenario (Table 4), resulting in a fatter left tail that leads

to a higher FRR.

Computational Results
We begin with the exclusion scenario and initially focus on the

three policies that use only fingerprints. In the single-stage finger

policy, the FRR, which is measured on a log scale in Fig. 2 due to

the wide range of outcomes, falls by 1.5–1.7 logs when the delay is

increased from 30 to 40 sec, where the reduction decreases with

smaller FAR values. The FRR reduction relative to the

benchmark BFD policy is v10{3 at the theoretical minimum of

D~30 sec (where all policies are forced to use exactly one

fingerprint), implying that the use of the likelihood ratio with the

ranking based on mi offers no significant improvement over the use

of the raw similarity score with the ranking based on Yi. However,

the single-stage finger policy achieves a 0.8–1.7 log reduction in

FRR relative to the fusion policy that sums the two best fingers,

where the reduction is smaller for lower FAR values. No further

improvements are achieved by the single-stage finger policy by

increasing the delay beyond &40 sec, which corresponds to an

average of 2.7 fingers acquired per person (Fig. 2), where one

finger is acquired from &40% of residents, two from &30%, three

from &10%, four from &5%, and five or more fingers from

&15% of residents.

The 0.6–0.7 log discrepancy between the two policies that use

only irises is due to the fact that the benchmark policy is based on

the similarity score of the maximum iris whereas the single-stage

iris policy is based on the likelihood ratio of both iris scores

conditioned on the iris scores during the first verification. As

expected, the performance of both of these policies relative to the

three fingerprint policies improves as FAR is decreased, due to the

light right tail of the iris imposter distribution [9]. Indeed, the

single-stage iris policy has a slightly lower FRR than the single-

stage finger policy for FAR ƒ10{4, but incurs &3 sec of

additional delay.

The general single-stage policy offers &3:7 orders-of-magnitude

reduction of FRR compared to the single-stage finger policy for

any delay beyond &38 sec. At D~39 sec, this policy uses irises

from 32% of residents when FAR ~10{3

4

6

, and this percentage

increases to 41% when FAR drops to ~10{ . To get a sense of

how our probabilistic model generates the log similarity scores

during BFD and BID, ( ~YY1, . . . , ~YY12), and how the individualized

policy behaves, we present h values and log similarity score vectors

for 25 randomly simulated residents, along with the optimal subset

of biometrics acquired under the general single-stage policy and

the optimal threshold (recall that tL~tU ) when FAR ~10{

(Table 5). Of these 25 random residents, only irises are acquired

from 11 residents, and only resident 6, who has lower iris scores

than these eleven residents, has irises and one fingerprint (without

a particularly high score) acquired. Of the remaining 13 residents,

three fingerprints are acquired from two residents, two fingerprints

are acquired from three residents and one fingerprint is acquired

from eight residents. Some residents (e.g., residents 9 and 21) have

large iris scores but do not have their irises acquired because they

possess one very high fingerprint score that can be acquired more

quickly. The subtlety of the optimal solution is revealed by

comparing residents 4 and 14 in Table 5: resident 4 has higher iris

scores and both residents have similar maximum finger scores, and

yet the optimal policy acquires irises from resident 14 but not from

resident 4. This is because resident 49s second- and particularly

third-best fingerprint score are higher than resident 149s, leading

to the acquisition of three fingerprints from resident 4 in lieu of

irises. Finally, as expected, lower thresholds are chosen for higher

BFD and BID scores of the acquired subset.

Turning to the three two-stage policies, the performance curve

of the iris-finger policy starts at the single-stage iris policy and

drops nearly vertically (Fig. 2), and achieves its improvements by

using second-stage fingerprints for a very small fraction (&10{3)

of residents with poor BID scores. However, the two-stage iris-

finger policy is dominated by the general single-stage policy. In

contrast, the other two two-stage policies dominate the general

single-stage for small delays (Dƒ37 sec), but plateau at a FRR

level that is higher than that of the general single-stage policy due

to the restriction that the second-stage threshold is independent of

the first-stage biometric observations. The more traditional FRR

vs. FAR curves (Fig. 6 in File S1) reinforce some of the points

above.

The results for the inclusion scenario (Figs. 7–8 in File S1) are

qualitatively very similar to those in the exclusion scenario. As

expected, the performance in the inclusion scenario is worse than

in the exclusion scenario for all policies that use only fingers or

only irises. However, for the general single-stage policy and the

two-stage policies, the FRR vs. delay tradeoff curves in the

Table 2. Delay times for both stages.

Biometrics Acquired Delay in Stage 1 (sec) Delay in Stage 2 (sec)

Fingers only 24z6n1 14z6n2

Irises only 43 33

Fingers and irises 47z6n1 37z6n2

The number of fingers acquired in stage i is ni for i~1,2.
doi:10.1371/journal.pone.0094087.t002
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inclusion scenario dominate (although just barely) the tradeoff

curves in the exclusion scenario for FAR ~10{3. We attribute this

counterintuitive result to the fact that, even though the iris and

finger genuine distributions each have fatter left tails in the

exclusion scenario, they also have higher means, and the general

single-stage policy exploits these higher means by typically

choosing to acquire either fingerprints or irises, whichever is

better.

To test the accuracy of our analytical approximation, we

compare the actual FARs in the simulation runs to the target

FARs in the exclusion scenario (Table 1 in File S1). For policies

that use only fingers, the accuracy of the FAR approximation is

very high, although decreases to 6:7% relative error when the

target FAR is 10{6. The FAR approximations are somewhat less

accurate (e.g., 15% relative error for FAR ~10{6) for irises, but

still accurate for general single-stage policies because they

primarily use fingerprints. Our analytical approximation degrades

for the two-stage policies when FAR decreases to 10{6 due to the

difficulty in accurately estimating the denominator in equation

(127) in File S1. Nonetheless, we find that when the analytical

approximation errs, it overestimates the true FAR, and so is

conservative with respect to satisfying the FAR constraint.

Discussion

Our goal is to develop a fast and accurate individualized

verification policy that optimizes the tradeoff between FRR, FAR

and delay. A fast and accurate policy is derived by using several

analytical approximations and by discovering that the fingers can

be ranked according to the index mi, which greatly simplifies the

search for a near-optimal solution. From a theoretical perspective,

mi can be viewed as a more rigorous version of UIDAI’s color-

coded approach to BFD, which also combines ci and Yi

information. Substituting our parameter values into mi, taking

expectations, and scaling yields mi&ciz3:07 ln Yi in the exclusion

scenario. Because typical values are ci&1 and ln Yi&m~4:104,

ranking by mi is not very different than ranking by Yi; indeed, in

all instances in Table 5, the largest Yi fingerprints are chosen for

acquisition. More generally, the weight on ci increases with the

measurement error and with a resident’s image quality, and the

weight on Yi increases with the interfinger variance s2.

The proposed policies perform very well. By acquiring either

fingerprints or irises – but not both – from 98–99% of residents on

an individualized basis, the general single-stage policy nearly

achieves the ideal FRR vs. FAR tradeoff that would be obtained if

all 12 biometrics were acquired from every resident, but at only a

small increase in delay: compared to the minimum delay of 30 sec

incurred by one finger and the maximum delay of 107 sec

incurred by all 12 biometrics, the general single-stage policy

achieves this performance with a delay of &38 sec. This

performance represents a 105-fold reduction in FRR compared

to the fingerprint policies tested in [5], a 20,000-fold reduction in

FRR relative to the iris policy proposed in [4] when FAR ~10{3

and 10{4, and a 5000-fold reduction in FRR compared to the iris

policy proposed in [4] when FAR ~10{5 and 10{6. The 3.7 log

FRR reduction achieved by the general single-stage policy relative

to the single-stage finger policy is greater than the iris FAR of

&0:004 because we acquire both fingers and irises from 1–2% of

residents. Among the policies tested (Table 1), the optimal policy

class is nearly independent of FAR (and hence does not depend

upon the level of security required), and is the two-stage finger-iris

policy if the target delay Dv37 sec and the general single-stage

policy if Dw37 sec (Fig. 2). That is, unless there is a large marginal

delay cost in the range of 30–37 sec, the optimal policy among

those in Table 1 is the general single-stage policy.

The currently implemented policy (as of October 2011) is a two-

stage policy that acquires everyone’s rank-1 finger in stage 1 and

acquires the rank-2 finger in stage 2 if the stage-1 similarity score

falls below a threshold. The FRR of this policy is at least as large as

that of the benchmark policy that uses the sum of the rank-1 and

rank-2 fingers, although its average delay will be smaller and will

fall in the 30–36 sec range. Hence, relative to the currently

implemented policy, we predict that the single-stage finger policy

achieves a 0.8–1.7 log reduction in FRR and the general single-

stage policy achieves an additional 3.7 log reduction.

Recall that the two-stage policies in Fig. 2 plateau at a higher

FRR level than that of the general single-stage policies because we

force the second-stage threshold to be independent of the first-

stage biometric observations. We conjecture that the optimal

general two-stage policy (i.e., the one depicted in Fig. 1 and that

allows the second-stage threshold to vary with the first-stage

observations) would perform nearly the same as the two-stage

either-or policy for very small delays (Dv34 sec) because it should

be optimal to use both biometric modalities in the same stage for

only a small fraction of residents due to the separate setup cost (in

terms of delay) each mode incurs. We also conjecture that the

optimal general two-stage policy would achieve the same

minimum FRR level as the general single-stage policy for large

Table 3. Parameter values for the fingerprint model.

Notation Description Exclusion Scenario Inclusion Scenario

c1, . . . ,c10 finger-dependent normalization 0.676, 0.818, 0.975, 1.179 0.552, 0.813, 1.013, 1.214

1.193 1.282, 1.280 1.232, 1.313, 1.313

0.998, 0.879, 0.719 1.036, 0.894, 0.620

m mean log genuine score 4.104 6.142

t interperson standard deviation 0.579 1.700

s intraperson, interfinger std. dev. 1.026 0.120

d mean log measurement error –0.796 –0.854

s std. dev. log measurement error 0.391 0.541

mG mean log imposter score 2.124 2.124

sG std. dev. log imposter score 0.417 0.417

The inclusion scenario incorporates the FTA rate of 0.0187.
doi:10.1371/journal.pone.0094087.t003
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Figure 2. Results for the three benchmark policies and the six policies in Table 1 in the exclusion scenario. FRR vs. verification delay
tradeoff curves for FRR equals (a) 10{3 , (b) 10{4 , (c) 10{5 and (d) 10{6 . The mean number of fingers acquired per resident (E½n1�) and the fraction of

residents who have their irises acquired (E½I (1)
11 �) are reported for points, a,b,c,x,y,z along two of the tradeoff curves.

doi:10.1371/journal.pone.0094087.g002
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delays (e.g., D~107 sec). Nonetheless, the general two-stage policy

would incur the 10-sec network delay twice for a small fraction of

residents who move on to the second stage, and consequently the

general two-stage policy may not necessarily strictly dominate the

general single-stage policy for all delays.

We should reiterate that our verification delay only refers to the

time it takes for a resident to be verified, and does not include any

queueing delays, i.e., waiting for residents in front of them in the

waiting line. The queueing delays depend on a variety of factors,

including the number of verification operators (more specifically,

the amount of service capacity in excess of average demand), the

time of day, and the statistical nature of the arrival pattern.

However, for a fixed service capacity, the queueing delay is an

increasing convex function of the verification time [15], and hence

care should be taken in determining the mean allowable

verification delay (i.e., where to reside on the FRR vs. delay curve).

Limitations of Analysis
There are several ways to further improve performance. Our

approach is essentially a minimax approach, where each resident

is forced to satisfy the FAR constraint. If we enforced only an

average FAR constraint over all residents, then the average FRR

might be reduced by achieving very low FAR rates for residents

with high-quality biometrics and allowing a higher FAR rate for

residents with poor-quality biometrics; however, the average-FAR

approach leads to a much more difficult mathematical problem

and is more vulnerable to gaming (e.g., imposters intentionally

degrading their biometric quality). Also, we have developed

individualized policies based on only one set of BFD/BID

measurements (i.e., the information acquired during a resident’s

first verification, where considerable care is taken to obtain

accurate similarity scores). Jain and Ross [16] propose individu-

alized weights of various biometrics after gathering new data

during many visits.

While a parametric approach (i.e., using a probabilistic model

with specific distributional forms) is not as accurate as a

nonparametric approach (e.g., constructing a simulation model

based on actual (Y1, . . . ,Y12) samples), a parametric approach –

due to its analytical tractability – enables the development of real-

time individualized verification strategies; indeed, it is not clear

how one could develop a reliable (i.e., assuring that the FAR and

delay constraints are satisfied and the FRR values are accurate)

real-time verification strategy using a nonparametric approach.

Nonetheless, the biggest limitation of our analysis is that we

estimated the model parameters in Tables 3–4 using aggregate

FRR vs. FAR performance data in [4]–[5]. These performance

curves cannot be uniquely inverted to derive the model

parameters, and it would be more reliable to fit the distributional

parameters in Tables 3–4 directly to raw distributional data from

UIDAI (as noted earlier, we did not have access to such data);

indeed, this would be a required next step towards the

implementation of our procedure. If we had raw similarity score

data, it would have been possible to have a training set to calibrate

the model and a test set to compute the performance of the various

policies; using only performance data, this approach was not

possible here.

We suspect that our broad qualitative conclusions for the

exclusion scenario for FAR~10{3 and 10{4 are reasonably

robust because this was the FAR range for the fingerprint

experiments in [5] and because huge improvements are achieved

(i.e., inaccuracies due to using parametric distributions based on

aggregate performance curves are likely to be much smaller than

the performance gap between the benchmark policies and the

proposed policies). However, the sample size of 3500 in [5] was

chosen to accurately predict the FRR of the benchmark policies,

not the proposed policies. Hence, although our qualitative

conclusions still hold, the quantitative accuracy of the proposed

policies is low because the FARs are very small (10{7{10{4)

relative to the sample size in [5]. Moreover, the fingerprint portion

of our model is being extrapolated to FARv10{4 (the iris model

is calibrated using FAR values as small as 10{6), and hence the

results for FAR~10{5 and especially FAR~10{6 should be

viewed with caution, particularly given the difficulty in reliably

modeling the tails of similarity score distributions with parametric

distributions [17].

On a similar note, the exclusion scenario excludes 1.87% of

residents with poor fingerprint image quality (even though the

fingerprint FTA rate is only 0.14%) and 0.33% of residents with

iris image quality so poor that their images could not be acquired.

Hence, assuming statistical independence between fingerprints

and irises, less than five residents per million (i.e., 0:0014|0:0033)

fail to generate any biometric images during acquisition. In our

inclusion scenario, we assume that all residents excluded in the

exclusion scenario generate fingerprint and iris similarity scores.

While our inclusion scenario results for the general single-stage

policy and the general two-stage policy should be viewed with

skepticism (recall that under several policies, the tradeoff curves in

the inclusion scenario actually dominate the tradeoff curves in the

exclusion scenario for FAR~10{3), there is reason to believe that

our general single-stage policy should perform very well when all

residents (except the five per million who fail to acquire) are

included. Even under the very conservative assumption that the

1.87% of residents who are excluded from the exclusion scenario

due to poor fingerprint image quality must be verified only with

Table 4. Parameter values for the iris model.

Notation Description Exclusion Scenario Inclusion Scenario

m11 mean log genuine score 6.14 8.02

s11 std. dev. of log genuine score 0.92 2.00

r correlation of left and right genuine scores 0.6 0.6

y mean log measurement error 0 0

b std. dev. of log measurement error 0.18 0.21

mGI mean log imposter score 4.00 4.00

sGI std. dev. of log imposter score 0.039 0.039

The inclusion scenario incorporates the FTA rate of 0.0033.
doi:10.1371/journal.pone.0094087.t004
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irises (an analysis of the US-VISIT Program suggests that

detection of poor-quality fingerprint images can be greatly

improved by using 10 rather than two fingers [6]) and that the

0.33% of residents with poor iris quality must be verified only with

fingerprints, a back-of-the-envelope calculation using these per-

centages and the FRR values in Fig. 2b suggest that for

FAR~10{4, the FRR in the inclusion scenario is no larger than.

(0:9813)(0:9967)10{6:7z(0:9813)(0:0033)10{3

z(0:0187)(0:9967)10{3:1z(0:0187)(0:0033)~10{4:1,
ð1Þ

which is still 1.6 orders of magnitude lower than the FRR of the

best benchmark policy in the exclusion scenario. Taken together,

given the orders-of-magnitude reduction in FRR achieved by our

individualized policies in our computational study, it seems safe to

infer that our approach provides significant improvements,

regardless of FAR value and of whether residents with poor-

quality images are included or excluded.

Supporting Information

File S1 Supporting Material. Explains the mathematics and
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policies.

(PDF)

Acknowledgments

We thank Rajesh Mashruwala and Yash Shah for helpful discussions and

Jason Su for computational assistance.

Author Contributions

Conceived and designed the experiments: AS YY LMW. Performed the

experiments: AS YY. Analyzed the data: AS YY LMW. Contributed

reagents/materials/analysis tools: AS YY LMW. Wrote the paper: LMW.

References

1. UIDAI Planning Commission (2012) UIDAI strategy overview. Technical
report, UIDAI, New Delhi, India. Available: http://uidai.gov.in/images/

concept paper social inclusion.pdf. Accessed September 5, 2012.

2. Khachi A (2012) Social inclusion and Aadhaar: Introduction & concept paper.
Technical report, UIDAI, New Delhi, India. Available: http://uidai.gov.in/

UID PDF/FrontPageArticles/Documents/StrategyOverveiw-001.pdf. Accessed
September 5, 2012.

3. Primanita A (2013). E-KTP deadline delayed until 2014. Jakarta Globe.
Available: http://www.thejakartaglobe.com/home/e-ktp-deadline-delayed-

until-2014/565232. Accessed March 2, 2013.

4. UIDAI (2012) Role of biometric technology in Aadhaar authentication: Iris
authentication accuracy - PoC report. Technical report, UIDAI, New Delhi,

India. Available: http://uidai.gov.in/images/role of biometric technology in
aadhaar authentication 020412.pdf. Accessed September 14, 2012.

5. UIDAI (2012) Role of biometric technology in Aadhaar authentication.

Technical report, UIDAI, New Delhi, India. Available: http://uidai.gov.in/
images/role of biometric technology in aadhaar authentication 020412.pdf.

Accessed March 27, 2012.
6. Wein LM, Baveja M (2005) Using fingerprint image quality to improve the

identification performance of the US visitor and immigrant status indicator
technology program. PNAS 102: 7772–7775.

7. Tabassi E, Wilson C, Watson C (2004) Fingerprint image quality, NISTIR 7151.

Technical report, National Institute of Standards and Technology (NIST).
Available: ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7151/ir_7151.

pdf. Accessed April 12, 2014.
8. UIDAI (2012) Aadhaar best finger detection. Technical report, UIDAI, New

Delhi, India. Available: http://uidai.gov.in/images/FrontPageUpdates/

aadhaar bfd api 1 6.pdf. Accessed September 13, 2012.
9. Daugman J (2005) Results from 200 billion iris cross-comparisons. Technical

report, Computer Laboratory, University of Cambridge, Cambridge, U.K.

Available: www.cl.cam.ac.uk/techreports/UCAM-CL-TR-635.pdf. Accessed

July 17, 2013.

10. Mansfield AJ, Wayman JL (2005) Best practices in testing and reporting of

biometric devices, version 2.01, CMSC 14/02. Centre for Mathematics and

Scientific Computing, National Physical Laboratory, Middlesex, U.K.

11. UIDAI (2012) Role of biometric technology in Aadhaar enrollment. Technical

report, UIDAI, New Delhi, India. Available: http://uidai.gov.in/images/

FrontPageUpdates/role of biometric technology in aadhaar jan21 2012.pdf.

Accessed September 13, 2012.

12. International Organization for Standardization (2006) Information technology -

biometric performance testing and reporting - part 1: principles and framework.

ISO/IEC 19795-1. Technical report. Available: http://www.iso.org/iso/home/

store/catalogue tc/catalogue detail.htm?csnumber = 41447. Accessed Septem-

ber 4, 2012.

13. Phillips PJ, Bowyer KW, Flynn PJ, Liu X, Scruggs WT (2008) The iris challenge

evaluation 2005. In: 2nd IEEE International Conference on Biometrics: Theory,

Applications and Systems (BTAS 08). IEEE, 1–8.

14. Prabhakar S, Jain AK (2002) Decision-level fusion in fingerprint verification.

Pattern Recognition 35: 861–874.

15. Gross D, Harris C (1985) Fundamentals of queueing theory, 2nd edition. New

York: John Wiley and Sons.

16. Jain AK, Ross A (2002) Learning user-specific parameters in a multibiometric

system. In: Image Processing. 2002. Proceedings. 2002 International Conference

on. IEEE, volume 1, I-57.

17. Wu JC, Wilson CL (2005) Nonparametric analysis of fingerprint data, NISTIR

7226. Technical report, National Institute of Standards and Technology (NIST).

Available: ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7226.pdf. Ac-

cessed April 12, 2014.

Personalized Policies for Biometric Verification

PLOS ONE | www.plosone.org 11 May 2014 | Volume 9 | Issue 5 | e94087

http://uidai.gov.in/images/concept
http://uidai.gov.in/images/concept
http://uidai.gov.in/UID
http://uidai.gov.in/UID
http://www.thejakartaglobe.com/home/e-ktp-deadline-delayed-until-2014/565232
http://www.thejakartaglobe.com/home/e-ktp-deadline-delayed-until-2014/565232
http://uidai.gov.in/images/role
http://uidai.gov.in/images/role
http://uidai.gov.in/images/role
ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7151/ir_7151.pdf
ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7151/ir_7151.pdf
http://uidai.gov.in/images/FrontPageUpdates/aadhaar
http://uidai.gov.in/images/FrontPageUpdates/aadhaar
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-635.pdf
http://uidai.gov.in/images/FrontPageUpdates/role
http://uidai.gov.in/images/FrontPageUpdates/role
http://www.iso.org/iso/home/store/catalogue
http://www.iso.org/iso/home/store/catalogue
ftp://sequoyah.nist.gov/pub/nist_internal_reports/ir_7226.pdf

