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Abstract

Precise quantification of cellular potential of stem cells, such as human bone marrow–derived mesenchymal stem cells
(hBMSCs), is important for achieving stable and effective outcomes in clinical stem cell therapy. Here, we report a method
for image-based prediction of the multiple differentiation potentials of hBMSCs. This method has four major advantages: (1)
the cells used for potential prediction are fully intact, and therefore directly usable for clinical applications; (2) predictions of
potentials are generated before differentiation cultures are initiated; (3) prediction of multiple potentials can be provided
simultaneously for each sample; and (4) predictions of potentials yield quantitative values that correlate strongly with the
experimental data. Our results show that the collapse of hBMSC differentiation potentials, triggered by in vitro expansion,
can be quantitatively predicted far in advance by predicting multiple potentials, multi-lineage differentiation potentials
(osteogenic, adipogenic, and chondrogenic) and population doubling potential using morphological features apparent
during the first 4 days of expansion culture. In order to understand how such morphological features can be effective for
advance predictions, we measured gene-expression profiles of the same early undifferentiated cells. Both senescence-
related genes (p16 and p21) and cytoskeleton-related genes (PTK2, CD146, and CD49) already correlated to the decrease of
potentials at this stage. To objectively compare the performance of morphology and gene expression for such early
prediction, we tested a range of models using various combinations of features. Such comparison of predictive
performances revealed that morphological features performed better overall than gene-expression profiles, balancing the
predictive accuracy with the effort required for model construction. This benchmark list of various prediction models not
only identifies the best morphological feature conversion method for objective potential prediction, but should also allow
clinicians to choose the most practical morphology-based prediction method for their own purposes.
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Introduction

The application of recent advances in cell technologies in

regenerative medicine holds great promise for revolutionizing

conventional medical therapies [1]. However, the lack of

assessment technology for quantitatively evaluating cell quality,

in particular for revealing both the current properties and the

future potentials of intact cells, is a technical obstacle to the

development of quality-assured cellular products for medical use

[2,3]. Conventional methods for cellular assessment using

standard techniques of molecular biology are incompatible with

satisfying clinical requirements, because these methods damage

cultured cells. As a result, manual microscopic monitoring, the

basic and the most traditional scheme for maintaining cells, is still

the most practical quality-control method for facilities that

distribute regenerative cell therapies [4–6].

Technological advances in optical systems and image-processing

technologies have changed the status of image-based data from an

art, available only to experts, to a technique that can be used to
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generate unbiased data. Many high-content image-analysis meth-

odologies based on imaging and image-processing technologies,

especially those focused on fluorescently labeled images, have

contributed to advances in drug discoveries [7–10]. In the field of

applied cell therapy, several reports have indicated that cellular

morphological information, combined with sophisticated compu-

tational modeling approaches, can serve as a descriptive indicator

in evaluations of stem cells [11–14]. However, to fulfill the clinical

requirements for producing intact cells for therapies, wider use of

cell-morphology analysis methodologies that focus on label-free

images should be encouraged.

In an effort to overcome these limitations of conventional

methods using fluorescently labeled images, we previously

performed a model case study of the label-free morphology-based

prediction of the osteogenic differentiation potential of human

bone marrow–derived stem cells (hBMSCs) [15,16], using a

technique that combines an automatic cell monitoring system with

effective computational modeling [17]. Statistically extracted

features of cellular morphologies clearly indicated that their

information content can satisfactorily train computational models,

not only to quantitatively evaluate current cellular status, but also

to quantitatively forecast their future status, i.e., their potentials.

The greatest advantage of our proposed morphology-based cell

quality assessment is its non-invasiveness. As a result of this

feature, our method has benefits that cannot be achieved by

conventional techniques for producing cells for clinical regener-

ative medicine: (1) elimination of risk factors, e.g., contamination

and mishandling by the operator; (2) synchronic and flexible

scheduling of culture and clinical operations, for the best timing of

cellular activity; and (3) repeated assessment of the same sample,

by multiple criteria and at multiple times, yielding data that better

reflects the complex and dynamic features of the samples. Such

intelligent control of culture processes is also a key technology for

process automation [18].

In this work, we expanded our previous efforts to predict single-

lineage differentiation potentials [17] by pursuing five important

aims: (I) Confirmation of the robustness of our method for

adapting to the practical cellular variation. In our earlier work, it

was not clear whether our original methodology was applicable to

wider ranges of cellular variations. To investigate this issue, our

data were expanded to cover eight continuous passages, ranging

from very recently derived cells to those that had completely lost

their doubling potential. Since a computational modeling solution

for adapting to cellular variations resulting from patient diversity

was already proposed in our previous work [17], our experimental

design in this work was focused on cellular variations affected by

culture processes, because these are the most difficult aspect of

stem cells to evaluate daily. (II) Investigation of the possibility of

shifting the prediction timing to the very early stage. Our previous

prediction required 2 weeks of image acquisition after the

differentiation process began [17]. In this study, however, we

investigated whether much earlier and shorter periods were

possible. In this work, only four images, obtained from the same

sample repeatedly with a 24-hour interval during the first 4 days of

expansion before differentiation culture, were used in the

predictions. (III) Multiplication of the variations of in silico

predictions. Compared to the previous prediction scheme [17],

which could predict osteogenic differentiation potential from the

same image, in this study we attempted to predict four types of

potentials (osteogenic/adipocyte/chondrocyte differentiation, and

population doubling time (PDT)) from the same image. Such

simultaneous prediction of multiple potentials for the same cells

can be achieved by processing the same image data, although the

predictions are performed by four types of differently trained

prediction models running in parallel. Thus, this is a trial of

‘‘overlapping’’ computational evaluation that can compensate for

multiple immunohistochemical staining. (IV) Establishment of new

conversion schemes of morphological feature usage that can

achieve high predictive performance. Morphological features are

the essential information generated from imaging data, and use of

this information is critical in imaging-based applications. To date,

however, there have been few comprehensive studies that compare

the effects of different conversions of morphological features,

especially in the context of label-free time-course imaging data. To

reveal differences resulting from the use of various morphological

features, we proposed six types of novel morphological feature

conversion methods, and then compared their prediction perfor-

mances in detail. To interpret the patterns of morphological

features engaged in high-performance models in each differenti-

ation lineage, we selected LASSO regression as a modeling

method. (V) Quantitative comparison of morphology and gene

expression in prior prediction of differentiation potential. Al-

though morphological information has long been used as an

indicator for cellular evaluation, it has remained unclear how

descriptive such information really is. To quantitatively compare

the performance of morphological and biological information, we

directly compared the performances of predictive models using

morphological features, gene expression, or both in predicting

differentiation potentials from the undifferentiated state. This

comparison provides a performance benchmark for our proposed

morphology-based cellular potential prediction methodology,

enabling complete, non-invasive, daily cellular evaluations that

could support or complement evaluations that rely on conven-

tional biomarkers.

Results

Construction of a dataset that relates hBMSC
morphological information with differentiation potential,
for the purpose of developing a model for early
prediction using undifferentiated status images

To construct the morphology-based cell-quality prediction

model, we first designed to prepare the dataset of hBMSCs

images and their experimentally determined differentiation

potential data. To assemble this dataset, three lots of hBMSCs

were continuously cultured (8 passages) until their growth

terminated. The range of cells was intended to mimic the wide

variations in cell qualities of clinical hBMSCs. At each passage,

each sample was divided into three groups: passage sample (SEED

group), pre-differentiation sample (PRE group), and differentiation

sample (DIFF group) (Fig. 1). Because the diversity of our cell

samples was intended to mimic the clinical situation, in which a

minimum cell yield is often required to meet the production

criteria, the passage timing was controlled by confluency.

Specifically, passage was performed when confluency exceeded

80%. Continuous passage was maintained using the SEED group.

Meanwhile, the PRE group was subjected to phase-contrast

microscopic image acquisition (4 days, 24-h intervals), and the

DIFF samples were differentiated into three mesenchymal lineages

(osteogenic, adipogenic, and chondrogenic). After long-term

differentiation into the three lineages, cells were evaluated for

their differentiation rate and PDT; these data were taken to

represent the biological differentiation potentials. In the dataset,

these potentials were linked to the morphological features

measured from images in the PRE groups by machine learning

using the LASSO model. Because we sought to investigate the

possibility of extremely early prediction of stem cell differentiation

potentials for clinical applications, we acquired our image data,

Label-Free Morphology-Based Prediction of Multipotency
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which we expected to contain predictive information, before the

differentiation process began. Ultimately, the full hBMSC dataset

contained 24 samples of cell variants (3 lots68 passages [P2–P9]);

80 images (5 fields of view64 wells64 time points) from each PRE

group; and 296 experimentally determined differentiation values

( = 26[18 images68 passages]+[1 image68 passages]) (Table S1).

By monitoring morphological changes in response to continuous

passage, we observed a clear morphological transition from a

spindle shape into a flat and polygonal shape, a typical indication

of decay of differentiation potential (Fig. 2A). The morphological

information was quantitatively extracted as morphological fea-

tures, as described in the Materials and Methods section.

Values related to differentiation into the three mesenchymal

lineages revealed that continuous passage severely reduced the

differentiation potential of hBMSCs (Fig. 2B–D, Fig. 3A–C).

However, the transition patterns of differentiation potentials for

the three lineages varied in a complex manner. Potentials to

differentiate into adipogenic (Fig. 3B) and chondrogenic (Fig. 3C)

lineages dropped rapidly, but these potentials were not correlated

with the osteogenic differentiation potential (Fig. 3A). There were

also variations in the changes in differentiation potentials that

could be attributed primarily to differences among patients. Lot A

retained its chondrogenic differentiation potential for a relatively

long period, but suddenly lost it after P7 (Fig. 3C). In Lots B and

C, osteogenic differentiation potential changed dramatically

during continuous passage (Fig. 3A). In Lot C, adipogenic

differentiation potential was sustained in any passages (Fig. 3B).

Therefore, as a summary of Fig. 3B, it was realized that the

tendency of differentiation potentials between patient cells can be

drastically disturbed by the effect of culture process. This result

indicates that simple categorization of cells by ‘‘patient informa-

tion’’ is not effective in the clinical cell production processes, and

their daily evaluation is essential.

PDT changed relatively slowly between P2 and P8 in Lots B

and C (Fig. 3D). By contrast, in the case of Lot A, a rapid increase

in PDT (i.e., reduction in growth rate) was observed starting at P6,

indicating that this lot was sensitive to passage-related stresses

(known as culture process–derived stress) triggered by both

manipulations and in vitro culture conditions [19]. The irregular

PDT increase in Lot A could be an indication of loss of

Figure 1. Schematic illustration of experimental setup for dataset construction for morphology-based prediction model
construction. Figure S1 shows the illustration of usage of the objective morphology-based prediction model, and its major technological
achievements using this dataset. The initial sample (P1) was divided into three separate culture samples (SEED, PRE, and DIFF) at each passage. SEED
samples were mainly used for the continuous-passage culture until termination of growth (P9). From the cell yield at each passage of the SEED
samples, population doubling time (PDT) was calculated, and taken as the experimentally determined potential. DIFF samples derived from each
passage were divided into three differentiation cultures (samples O, A, and C for osteogenic, adipogenic, and chondrogenic differentiation,
respectively) and grown under the indicated conditions for 3–4 weeks. The differentiation values of samples O, A, and C were experimentally
quantified by individual staining protocols. The staining results were then converted by image-processing analysis to obtain the experimentally
determined differentiation potentials. The three types of differentiation potentials together with the population doubling potential (population
doubling time: PDT) were designated as ‘‘multiple differentiation potentials’’ of the hBMSCs. PRE samples consisted of sample I (for imaging) and
sample R (for RNA extraction). From sample I in each passages, phase-contrast image were acquired at 24 h intervals over 4 days. Acquired images
were then converted by image processing to obtain morphological features from every cell in all images (see also Fig. S2 and S3 for the details of
image processing). Morphological features were statistically processed to yield transformed morphological features through data cleansing and
statistical calculations, and the results were used as the input features. Sample R were subjected to total RNA extraction for gene-expression analysis.
Either or both morphological features or/and gene-expression data were combined (input parameters), and arranged with the experimentally
determined potentials of the hBMSCs (output parameters) to constitute training data for construction of prediction models.
doi:10.1371/journal.pone.0093952.g001
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differentiation potential; however, such an indication does not

explain the early change in adipogenic and chondrogenic

differentiation potentials in Lots B and C. These results reveal

that there are no simple correlations between passage number and

transition patterns. If passage numbers or PDT do not reflect

changes in differentiation potential, then this information would

never be sufficient to avoid a sudden quality collapse or

insufficiency of cellular potential.

From gene-expression profiles of the earliest stage of expansion

culture prior to differentiation, we found that most of the

conventional differentiation markers did not exhibit clear

synchronization with passage number (Fig. 4). Most of the

Figure 2. Representative morphological images of continuously passaged hBMSCs. Columns indicate passage numbers, indicated as P-
number. Rows indicate hBMSC lot names. (A) Phase-contrast microscopic images (106) prior to differentiation culture (sample I). Scale bar, 50 mm.
(low-resolution cellular images shown in Figure S4) (B) Alizarin red staining after 2 weeks of osteogenic differentiation culture (sample O). Scale bar,
200 mm. (C) Oil red staining after 3 weeks of adipogenic differentiation culture (sample A). Scale bar, 200 mm. (D) Alcian blue staining after 4 weeks of
chondrogenic differentiation culture (sample C). Scale bar, 200 mm. From P7–P9, near the termination of growth, differentiation samples could not be
prepared for (B) and (C) because of the lack of cell numbers. In (D), when the pellet sizes were smaller than 200 mm, we declined to produce
specimens from the sample on the grounds that the differentiation culture had not been successful.
doi:10.1371/journal.pone.0093952.g002
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clustered genes indicated the expression transition characteristic to

certain cell lot. Therefore, there were several clusters, which

partially showed synchronization to passage number in certain lot

was considered to be more genes that reflect patient specific

response to passages. However, in clustered genes which indicated

clear synchronization with passage number (correlation coeffi-

cient.0.673) among all cell lots, either cellular senescence–related

genes (CDKN1A [p21], CDKN2A [p16]) or cytoskeleton-related

genes (PTK2, CD146 [MCAM], and CD49 [ITGA1]) were

included. Since passage number significantly correlated with the

decrease of differentiation potentials (Fig. 3), such passage number

synchronizing gene expressions commonly observed in all cell lots

were considered to be the ‘‘genetic signature of potential collapse’’.

Comparison of performances of prediction models to
achieve the most balanced performance

In our previous study, we found that time courses of

morphological features of cultured hBMSCs were informative in

the construction of computational models aimed at forecasting

future osteogenic differentiation [17]. To evaluate the multiple

potentials of hBMSCs in practice, our concept of prediction had to

be expanded from single-lineage to multi-lineage differentiation

while retaining the ability to adapt to wider cellular variations.

However, we hypothesized that in order to predict multi-lineage

differentiation potential, informative morphological features and

combinations thereof should be optimized for each type of

differentiation. In addition, in order to increase the clinical

applicability of this approach, our conceptual prediction models

had to balance the accuracy with the effort (time, cost, and

computational memory size) required for model preparation.

Therefore, we have set our goal to define the effective construction

scheme yielding the optimized prediction performance for each

four different types of hBMSC potentials: potential I, osteogenic

differentiation rate after 2 weeks of differentiation; potential II,

adipogenic differentiation rate after 3 weeks of differentiation;

potential III, chondrogenic differentiation rate after 4 weeks of

differentiation; and potential IV, PDT of cells after the passages.

Our objective prediction model with the newly developed

techniques in this work is illustrated in Fig. S1.

To achieve the best prediction models for these objectives, we

examined nine patterns (Models 1–9) of input data usages, which

critically change the users’ efforts for data preparation. Model 1

was designed to be the negative control, and Models 2 and 3 were

designed to compare gene expression–based predictions compared

to morphology-based models. Models 4–9, consisting of five model

patterns (M-patterns), were designed to compare morphological

feature conversion methods by investigating the various conver-

sion concepts and time-course data usage in morphological

features (Fig. 5). The comparison of morphological features was

Figure 3. Quantified experimentally determined differentiation values and population doubling times of hBMSCs. Green bar, Lot A;
blue bar, Lot B; pink bar, Lot C. Passage numbers are indicated as P2–P9. (A) Bar plots of average stained areas of Alizarin red–stained samples (n = 6).
(B) Bar plots of average stained areas of Oil red–stained samples (n = 6). (C) Bar plots of stained areas in Alcian blue–stained samples (n = 1),
normalized by their pellet size. (D) Line plots of PDT. Green diamonds, Lot A; blue squares, Lot B; pink triangles, Lot C. Error bars indicate standard
deviation (s.d.).
doi:10.1371/journal.pone.0093952.g003
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Figure 4. Heat map of gene-expression transitions and passage numbers. Genes were clustered by hierarchical clustering for indicating
clusters that correlate to the passage number increases. The red boxed cluster is the cluster of genes that correlate to passage number within all cell
lots, indicating non–patient-specific passage-related genes. The relationship between colors and normalized values of gene expression is illustrated in
the explanatory heat map at lower right.
doi:10.1371/journal.pone.0093952.g004
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deepened by balancing accuracy vs. feasibility of usage in the

clinic. Therefore, M-patterns were numbered in the order of

higher cost performance, considering the time, cost, and

computational memory size involved in the model-construction

process. All model performances were compared by two criteria,

‘‘scaled error rate’’ and ‘‘correlation coefficient’’. The scaled error

rate indicates the median value of prediction errors among all the

samples, normalized by the actual experimental values. Therefore,

low scaled error rate indicates that prediction values are relevant

to the experimental values. However, usage of the scaled error rate

alone is vulnerable to accidental prediction noises. Therefore, we

introduced the second criterion, correlation coefficient, which

evaluates the combined correlations of experimentally determined

values and predicted values among all samples. These criteria are

complementary: scaled error reflects differences between plots,

however discards information about overall plot accuracy, whereas

correlation coefficient reflects the overall similarity of measure-

ments and predictions, however is sensitive to outliers. The

combination of low scaled error rate and high correlation

coefficient indicates stable performance of a given model.

Figure 6 depicts all prediction results. The data indicate that by

using only the prior morphologies before the differentiation

process, future collapses in all of differentiation potentials

(potential I–IV) under continuous passage stresses can be predicted

in advance. Comparisons of the transition patterns of the

experimentally determined and predicted values (blue line plots

and red line plots, respectively, depicted in Fig. 6) revealed that all

cellular properties were predicted with reasonable accuracy.

Furthermore, in contrast to our previous study that used all

morphological data from 14 days of differentiation culture period

[17], the predictive performance was enhanced in this study using

morphological data collected only from the first 4 days before the

differentiation.

For prediction of potential I (osteogenic differentiation rate), the

best prediction accuracy was achieved by Model 3, which utilizes

both morphological features (M-pattern 1) and gene-expression

profiles. Compared to the scaled error rate of the NULL model

(Model 1), the performance of Model 3 can be expressed as 2.6-

fold more accurate. In the sense of cost-efficiency of model

construction, Model 8, which utilizes only the morphological

features from 24 h, had a reasonably high predictive performance

(scaled error rate = 0.338).

For predicting potential II (adipogenic differentiation rate),

morphology-based models such as Models 4, 6, 7, and 9 yielded

extremely high predictive performance. Model 4 achieved the best

accuracy, and Model 7 was the best model at the lowest cost

(scaled error rate = 0.954).

For predicting potential III (chondrogenic differentiation rate),

most of the models could not significantly outperform the NULL

model. However, Model 9 had fairly accurate predictive

performance.

For predicting potential IV (PDT of cells after repeated

passages), most of the models had very high predictive accuracies

(scaled error rate,0.09). The best performance was achieved by

Model 4, which utilizes only morphological features.

Although morphology-based prediction models (Models 4–9;

M-Patterns 1–5) had consistently high overall performances in

predicting various potentials, the use of direct biological informa-

tion (i.e., gene-expression information including conventional

differentiation markers) did not dramatically improve the predic-

tive performance (Model 2 in Fig. 6). From the interpretation of

parameter usages in LASSO models (Table S4–S7), we found that

cytoskeleton-related genes were more frequently involved than

differentiation markers in the prediction models (Models 2 and 3).

This result is a biological confirmation that morphological genes

are more informative than our selected subset of differentiation

marker genes for prediction of differentiation potential, and

explains the high performances of models that use only

morphological data (Models 4–9).

Discussion

To replace human estimations of cell quality in the production

of cells for cell-based therapies, we examined the performances of

machine-learning models in predicting the quantitative rates of

multi-lineage differentiation after long-term differentiation, using

data from undifferentiated label-free images of hBMSCs. The

novel advancing technological points achieved in this work are

illustrated in Fig. S1. From images collected during the first 4 days

of expansion culture before differentiation, the morphological

features of each cell in the images were individually measured and

converted into various morphological metrics that represented the

statistical morphological profiles of the group of cells. These

features were then used to train computational models that

forecast the experimental results collected 2–4 weeks after the

differentiation. Advancing from our previous success in predicting

the single-lineage differentiation potentials of hBMSCs [17], here

we showed that the best predictive results for all differentiation

potentials (i.e., the differentiation rates into three lineages and their

PDTs) can be obtained at the same time, even in the early stage

before differentiation, using selected morphological features. In

these comparisons, we addressed three technical questions, with

the aim of identifying the most practical scheme for obtaining such

cell-quality prediction models in clinical facilities. First, can

morphology-based prediction methods be expanded to the

prediction of multiple differentiation potentials? Second, is

morphological information (i.e., indirect phenotypic signals) of

greater use than gene-expression information (i.e., direct biological

signals) in predicting the qualities of hBMSCs? Third, how far can

we optimize model performance by selecting the appropriate

conversion and combination of information from the time-course

morphological features?

To our great surprise, considering the current lack of

comparable evaluation methods, most of the examined prediction

models using only morphological features showed practically

useful performance in multiple predictions (Fig. 5 and 6). Even

with the Model 9 (M-pattern 6, using morphological features

obtained only from the first day of expansion culture), the multi-

lineage potential prediction was available. Practically, potential II

(adipogenic differentiation rate after 3 weeks) can be predicted

with high accuracy using only morphological data from the first 4

days of culture. Both potentials I and III (osteogenic and

chondrogenic differentiation rates) could also be predicted with

reasonable accuracy from the early morphological data. In

addition to differentiation rates, future PDT following repeated

passages can also be predicted with high accuracy using only

morphological features. These results strongly indicate that it will

be possible to develop practical methods for cell assessment that

are multiple, rapid, cheap, non-invasive, and significantly more

effective than conventional staining-based assessment techniques.

Our models’ performance indicate that such novel predictive

methods will enjoy several advantages: (1) non-invasiveness, i.e.,

avoiding damage to patients’ cells; (2) synchronism, repeated

quality evaluation throughout the culture period for all patients;

and (3) multivalent consideration of the same sample, i.e., multiple

quality assessments can be performed with the same sample, which

is not possible when using data obtained by destructive methods

such as fluorescently labeled imaging analysis.

Label-Free Morphology-Based Prediction of Multipotency
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The quantitative predictions made possible by these methods

will permit prior evaluation of cellular fate, which will in turn

facilitate scheduling of cell-therapy operations in the clinic. As

shown in Fig. 3, most of the transition events in hBMSC potentials

were abrupt, and would be nearly impossible to estimate the future

linearly from the present result plots. Therefore, conventional cell-

assessment techniques could never outperform quantitative

prediction methods for hBMSC quality assessment. Our results

thus provide a successful example of the use of machine-learning

models to model biological information and generate output that

can overcome a major practical problem in clinical cell therapy.

Taken together with the non-linear correlation of conventional

marker gene-expression levels with passage numbers (Fig. 4) and

the predictive performance of models (Models 2 and 3 in Fig. 6),

we concluded that morphological data from the early stage of

culture are more useful than measurements of conventional

markers in forecasting future quality disruptions. In some cases,

gene-expression measurement enhanced morphological predic-

tions, when an early gene marker such as SPP1 [osteopontin]

occasionally function as extreme early osteogenesis predictor

(Model 2, Potential I prediction in Fig. 6). However, differentiation

gene markers are not always promising to function as extreme

early predictor in the undifferentiation stage. By introducing

LASSO modeling into this work, the combinational effects of

parameters can be interpreted in our models (Fig. 6). In particular,

by interpreting the parameter usages chosen through automatic

Figure 5. Schematic illustration matrix of prediction feature data profile and usage concepts of prediction models. Six types of
morphological feature conversion methods are proposed as M-patterns. Briefly, M-patterns are numbered in order of the amount of efforts required
to prepare for model construction. M-patterns 1–4 require four images at 24-hour intervals; M-pattern 5 requires two images each on days 1 and 4;
and M-pattern 6 requires only one image on the first day. For parameters described as ‘‘linked’’, each morphological feature is not only used as the
data for each time point, but this information is also converted into the changing ratio between time points. For ‘‘non-linked’’ parameters,
morphological features are used as they are. Averages, quintile points, and groups of distribution representatives were compared to find the best
statistical parameter to represent the morphological features measured in all individual cells in an image. Therefore, M-patterns 1–4 were designed to
increase the amount of information about cellular distribution for incrementing the heterogeneity of cells.
doi:10.1371/journal.pone.0093952.g005
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Figure 6. Comparisons of prediction models. For the detailed definition of ‘‘M-pattern’’, see Material and Methods. Conceptual illustration of M-
pattern appears in Figure 4. Potential I, osteogenic differentiation rate; potential II, adipogenic differentiation rate; potential III, chondrogenic
differentiation rate; potential IV, PDT. Each matrix involving line plots consists of three columns, separated by dotted lines, representing differences
among lots (Lots A, B, and C). In each column, horizontal axis represents passage numbers, from P2 on the left to P9 on the right. Upper number at
the shoulder of each matrix indicates scaled error rate, i.e., the median value of prediction errors among all the samples, normalized by the
experimental values. The lower number at the shoulder of each matrix indicates the correlation coefficient. Blue line plot represents the value of
experimentally determined values. Red line plot represents the prediction values from the prediction models. Greater overlap between blue and red
line plots and minimum differences across passages and lot differences corresponds to higher predictive performance, represented by lower scaled
error rate and higher correlation coefficient.
doi:10.1371/journal.pone.0093952.g006
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exploration of the best LASSO model formula, it was possible to

clearly detect the correlation of cytoskeleton-related and senes-

cence-related genes with the decrease of potentials (Table S4–S7).

Such correlation was supported by previous studies showing that

the TGF-b signaling cascade links cellular quality collapse with

morphological changes [20–22].

Compared to the successful predictions of adipogenic differen-

tiation potential and PDT, the predictive performance for

osteogenic and chondrogenic differentiation could not be

increased by altering the modeling techniques. We believe that

the main reason for this limitation on performance did not reflect a

shortcoming of our method. Machine-learning performance relies

heavily on the quality of training data. In this work, we are

uncertain of the quality of our ‘teacher signal’ data, i.e., the

converted data from conventional staining assays for evaluations of

differentiation potential. In practice, the staining technique is

usually used as only one aspect of differentiation confirmation, but

is not commonly used for strict quantitative analysis. A growing

body of evidence describes the quantitative use of immunohisto-

chemical staining results in high-content analysis, analogous to the

way in which we converted the staining results into numerical

values. However, our machine-learning model results show that

only Oil red [23], but not other staining values, results in excellent

performances. In addition we have identified a few critical sources

of experimental noise that might partially explain the compara-

tively poorer performance of osteogenic and chondrogenic

differentiation. For example, in osteogenic staining with Alizarin

red [24], small parts of stained cells tend to be ripped from the

plate during the washing process, resulting in larger deviations

within some wells. Similarly, in chondrogenic staining, the pellet

size and its slice position greatly affect the staining level, resulting

in larger deviations within some samples. Hence, the large

difference between prediction models suggests that reproducibility

and signal-to-noise ratio of staining results must be carefully

examined in order for modeling to be effective. In other words, if

one can introduce more stable staining, the prediction models

should perform better.

Our expression data regarding other types of genes lead us to

expect that effective gene combinations could be defined as new

quality assessment markers (Fig. 4B, 4C). The interpretation of

weights of LASSO regression models can provide insights

regarding essential parameters that contributed to successful

predictions (Table S4–S7). For prediction of potential I (osteogenic

differentiation rate), a combination of morphological features from

the whole pre-differentiation period (days 1–4), together with

expression of the cytoskeleton-related genes (RAC1 [25] and RHOA

[26]) and the early osteogenic marker SPP1 [osteopontin] [27],

were weighted. The decision to weight these genes reflected

previous reports of interactions between osteogenic marker genes

and cytoskeleton genes [27]. Together, the selected morphological

features support the commonly observed flat and expanded

cellular morphology of hBMSCs, known as an indication of bone

differentiation. For prediction of potential II (adipogenic differen-

tiation rate), relative hole area (the morphological feature that

describes the ‘‘roughness’’ of the cell surface) and inner radius (a

reflection of polygonal and tentacle-like features in the cellular

periphery) from the whole pre-differentiation period (days 1–4)

were weighted. This result can be interpreted to mean that the

continuous evolution of hBMSCs during the expansion period

toward a jagged morphology is the signature of adipogenic

potential. For prediction of potential III (chondrogenic differen-

tiation rate), a shape factor (specifically, the roundness of cells) on

day 1, but not throughout the whole period of expansion culture,

was weighted. This can be interpreted to mean that very early

roundness of hBMSCs can indicate the potential for chondrogen-

esis. For prediction of differentiation potential before induction,

morphogenic markers are sufficient because these data contain

both time-course and multi-parametric information. However, in

microarray experiments, we identified four genes related to

osteogenic differentiation (ALPI, BMP2, BGLAP [osteocalcin],

SSP1 [osteopontin]), three genes related to adipogenic differenti-

ation (ADIPOQ [adiponectin], LEP [leptin], and LPL [lipoprotein

lipase]), and one gene related to chondrogenic differentiation

(ACAN [aggrecan]). From this background, these gene profiles

were not sufficient to explain the difference in differentiation

potential. As it happens, in prediction of potential I, PIK3CA and

SPP1 [osteopontin] were useful markers even before differentiation

induction; however, for the other two cell types, there were no

critical marker genes. For prediction of potential IV (PDT of cells

after repeated passages), both gene-expression profiles and

morphological features were weighted. Cell cycle–related genes

such as TP53 [p53] [28] and CDKN1A [p21] [29,30], actin-related

genes such as ACTA2 [31] and IQGAP1 [32], and the cellular

senescence–related gene CDKN2 [p16] [33–35] were heavily

weighted in the best prediction models. Such gene selection

reflects reports that indicate a correlation between senescence and

cytoskeleton gene cascades in hBMSCs [19,36]. The weighted

morphological features (total area, inner radius, and fiber length)

reflect the common culture sense of regular size and slenderness

during the expansion process are markers of active hBMSCs

[19,37].

To confirm the utility of our proposed method in clinics, its

adaptive performance in the context of the cellular diversity is an

important criterion. Cellular diversity derived from patient

diversity should be the first concern; we have previously

investigated a new modeling scenario, designated as the ‘‘ongoing

patient scenario’’, as one strategy for adapting to such diversity

[17]. In this scenario, we proved that inclusion of new patients’

own morphological features in prediction models can greatly

enhance the prediction accuracy for new patients. Thus, this

proposed method avoids attempting to adapt to all cellular

variations arising due to patient diversity, which is ideal but

impossible, and instead seeks to ‘re-train’ the prediction model

upon the arrival of each new patient, thereby allowing the system

to adapt to new morphologies. Such re-training is feasible with our

proposed regression models, and it is also feasible at various times

in the clinic, because there are various opportunities to obtain

images of primary cells before making critical potential predic-

tions. Therefore, in this study, we attempted to optimize the

adaptive performance of our model in the context of cellular

diversity arising due to culture processes. In contrast to patient

diversity, such culture process–derived diversity may expand

during the cell production process, and may therefore require

daily monitoring with non-invasive methods. Our results showed

that even an extraordinarily diverse group of samples could be

modeled feasibly using only morphological features. In addition,

because our model performance is a summary of detailed cross-

validation results combined with our ongoing patient scenario, we

believe that our results provide a reliable performance benchmark

reflecting robustness.

Throughout this work, we have successfully demonstrated

models for predicting multiple future qualities of hBMSCs. Such

models address an urgent need on the part of facilities that provide

cell-based therapies. With similar objectives, Moghe’s group and

Gantenbein-Ritter’s group have reported encouraging studies that

reveal the effectiveness of multidimensional morphological pa-

rameter modeling in the evaluation of stem cell differentiation

potentials [11–13]. However, in spite of the effectiveness of these
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strategies, such quantitative and bioinformatic technologies are

still not fully utilized in clinical cell therapies. To advance image-

based cellular evaluation technologies as a reliable supportive

option in regenerative medicine, it will be necessary to perform

more studies that connect computational technology with stem cell

biology. We believe our morphology-based modeling approach

will contribute to new technological developments in regenerative

medicine. It has been known that cell shape takes a part in the

regulation of biological processes, such as proliferation and

differentiation [27,38–40]. Although our main focus was to utilize

such morphological information as ‘‘a signature of biological

reflection’’ instead of investigating its meaning, our gene

expression analysis and LASSO model interpretation have

revealed the involvement of previously known cell shape-regula-

tory proteins, such as RHO-related proteins [27]. Therefore, we

believe that our morphology-based modeling approach will

contribute not only to the new technological developments in

regenerative medicine, but also for deeper understanding of

morphology effect in stem cell biology.

Materials and Methods

Cells and cell culture
Three lots of hBMSCs were purchased from Lonza (Walkers-

ville, MD, USA): Lot A (lot number 8F3211, Black, Male, 18 year-

old), Lot B (lot number 8F3434, Caucasian, Male, 22-year-old),

and Lot C (lot number 8F3560, Hispanic, Female, 24-year-old).

All cultures were maintained in MSCGM (Lonza) supplemented

with BulletKit (Lonza), and sub-culture was performed with

0.025% trypsin solution (Life Technologies, Inc., Carlsbad, CA,

USA). To expand the cell populations, each lot was continuously

sub-cultured at 7–21-day intervals until the termination of cell

growth. Passage timing was controlled by confluency. Specifically,

passage was performed when confluency exceeded 80%, and we

obeyed the supplier-recommended cell seeding density for

PoieticsTM human mesenchymal stem cells (Lonza). From all cell

variants, P2–P9 samples were used. At each passage, cells were

divided into three groups: passage sample (SEED group), pre-

differentiation sample (PRE group), and differentiation sample

(DIFF group). Sample I was subjected to an image-acquisition

step. Sample R was subjected to RNA extraction for gene-

expression profiling. The PRE groups represent the intact

differentiation potentials of each hBMSC sample before the

subsequent long-term differentiation process. The DIFF group was

subdivided into three differentiation samples: Sample O for

osteogenic differentiation, sample A for adipogenic differentiation,

and sample C for chondrogenic differentiation. All differentiation

cultures followed the protocol for Poietics Human Mesenchymal

Stem Cells (Lonza). Briefly, samples were differentiated for 2 weeks

(sample O), 3 weeks (sample A), or 4 weeks (sample C). See also

Fig. 1 for the experimental scheme.

Image acquisition
For sample I, 106 magnification images at the exactly same

positions (five fields at the center and four neighboring images

separated by vertical displacements of 2.2 mm) were obtained

every 24 hours for 4 days by phase-contrast microscopy on an X71

instrument regulated by an electric x-y stage (Olympus, Tokyo,

Japan) (Fig. 1). The image data were gray-scale, 8-bit, 136061024

TIFF format. Focusing was semi-automatically defined by the

original regulation journal run by MetaMorph (Molecular

Devices, Sunnyvale, CA, USA). In total, 1,920 images ( = 5 view

fields64 replicates of wells63 lots64 time points68 passages) were

stored in the image database.

Image processing
All phase-contrast microscopic images were processed using

MetaMorph (Molecular device) with an original combination of

image-processing filter sets (Figure S2 and Table S3) to measure

morphological features of cells. In the binarization process, a single

universal threshold was applied to all images. The universal

threshold was defined as the threshold that provided the minimum

error between manually determined cell number and the

recognized total object counts (obtained using that threshold)

among 30 images picked randomly from all lots and time points.

After binarization, all individual objects in each image, consisting

of cells and noise (non-cell objects), were measured using the

integrated morphometry analysis function to measure nine

morphological features: (1) breadth, (2) elliptical form factor, (3)

fiber breadth, (4) fiber length, (5) hole area, (6) inner radius, (7)

relative hole area, (8) shape factor, and (9) total area (detailed in

Figure S3). In addition to morphological features, cellular object

counts were added as the tenth feature. The morphological

features were carefully selected in the MetaMorph measurement

settings by clustering analysis, in order to eliminate problems

arising from multi-colinearity. From this data, which consisted of

object IDs and the corresponding morphological features, the

noise (non-cell objects) was then removed by a noise-reduction

algorithm developed in-house before subsequent analysis. The

object morphological data obtained from each PRE sample

summarized nearly 20 images consisting of 2,000–5,000 cellular

objects. The morphological feature information representing these

groups of objects was characterized by various statistical values,

including average (AVE), quantile points (10, 25, 50, 75, and

90%), median (MED), interqurtile range (INT), robust skewness

(SKEW), and robust kurtosis (KURT) (see detail in Fig. 5). Such

statistics related to morphological values were obtained from four

time points (24, 48, 72, and 96 hours). Six patterns of morpho-

logical feature sets (M-patterns 1–6) were designed to examine

their effects on predictive performance (Fig. 5). M-pattern 1 (non-

continuous average information), 40 features: AVE of nine

morphology features at all four time points. M-pattern 2 (non-

continuous quantile information), 184 features: five quantile points

of nine morphology features at all four time points. M-pattern 3

(short continuous quantile information), 138 features: ratio of five

quantile points of nine morphological features within three

intervals between four time points. M-pattern 4 (non-continuous

distribution pattern), 148 features: MED, INT, SKEW and

KURT of nine morphological features at all four time points.

M-pattern 5 (long continuous quantile information), 46 features:

ratio of five quantile points of nine morphological features within

one interval between 0 h and 96 h. M-pattern 6 (short non-

continuous quantile information), 46 features: five quantile points

of nine morphological features at 24 h only.

Quantitation of osteogenic differentiation rate
Calcium accumulation of differentiated samples was determined

by Alizarin red staining [24] with some modifications. Cells were

fixed with 70% ethanol for 1 hour, washed, and stained for

10 min with 40 mM alizarin red S solution (pH: 4.2). The

quantitation of staining results was summarized by image-based

measurements of the red pixels from 18 images (3 view fields66

replicate wells, 160061200, color, RGB, jpg file) collected using a

DP21 CCD camera (Olympus). The color image measurements

were processed using MetaMorph (Molecular Devices) to extract

the red pixels. The count of red pixels was taken as the quantitated

value of the osteogenic differentiation rate.
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Quantitation of adipogenic differentiation rate
Samples subjected to adipogenic differentiation were stained

with Oil red S [23]. Briefly, cells were fixed with 4%

paraformaldehyde (PFA) for 1 hour, washed, and stained for

30 min with Oil red S solution. The quantitation of staining results

was summarized by image-based measurements of the area of

stained droplets from 18 images (3 view fields66 replicate wells,

160061200, color, RGB, jpg file) using a DP21 CCD camera. The

stained lipid droplets were identified using MetaMorph (Molecular

Devices), and their total pixel area was taken as the quantitated

value of the adipogenic differentiation rate.

Quantitation of chondrogenic differentiation rate
Pellet samples differentiated into chondrocytes cultured under

the chondrogenic differentiation condition were stained with

Alcian blue [41]. Briefly, cells were fixed with 4% PFA for 1 hour,

embedded in paraffin, and sliced into 20-mm sections. All sliced

tissue samples were stained on the same day according to a

conventional Alcian blue protocol. The quantitation of chondro-

genic differentiation rate was obtained from image-based mea-

surements of 1 image (160061200, color, jpg file) collected using a

DP21 CCD camera. The area of Alcian blue staining was

identified using MetaMorph (Molecular Device), and the total

number of pixels was measured. To control for pellet size, the

number of pixels staining positive for Alcian blue were normalized

against the total pellet size (in pixels), and the resultant value was

taken as the quantitated value of the chondrogenic differentiation

rate.

Quantitation of population doubling time (PDT)
At each passage, the total cell number was counted to obtain the

PDT [42].

Gene expression measurement
Total RNA was extracted using the RNAprotect Cell Reagent

(Qiagen, Hilden, Germany) from sample R at confluence. RNA

samples from P2–P9 were applied to the custom designed gene

chip GenoPerl (Mitsubishi Rayon, Kyoto, Japan) (gene list in

Table S2). The gene chip assay and analysis were carried out

according to the manufacturer’s protocols, and the data was used

for prediction modeling. For global gene-expression analysis,

expression levels of all genes were scaled by standard normaliza-

tion between arrays and genes. The clustering heat map was

created by Cluster 3.0 (http://bonsai.hgc.jp/,mdehoon/

software/cluster/software.htm#ctv) and Java Tree View (http://

jtreeview.sourceforge.net) with some modifications.

Prediction model construction
The LASSO regression model was selected for modeling the

relationships between morphological features and experimentally

determined differentiation potentials. The detailed modeling

process was previously described [17]. Briefly, the LASSO

regression model is a penalized regression model that is widely

used in the statistics and machine-learning literatures [43]. By

using LASSO, one can find the linear combination of input

features that best predict the teaching signal. LASSO tends to

induce a sparse linear model, i.e., it can also select a set of input

features that are useful for predictive purposes. The entire LASSO

model-building process is automatic, including the model-selection

process using leave-one-out cross-validation, and the relationships

between morphological features and experimentally determined

values can be represented as a simple and robust linear model. For

model training, a total of 24 samples (P2–P9 in all three lots) were

used as the dataset. For input features, six patterns of morpho-

logical features (M-patterns 1–6) were assigned as non-invasively

obtained information for cell-quality prediction. For teaching

signal information, four types of experimentally determined

differentiation potentials were used to train models: Potential I,

osteogenic differentiation potential (Osteo), osteogenic differenti-

ation rate determined by Alizarin red; potential II, adipogenic

differentiation potential (Adipo), adipogenic differentiation rate

determined by Oil red staining; potential III, chondrogenic

differentiation potential (Chondro), chondrogenic differentiation

rate determined by Alcian blue staining; and potential IV,

population doubling time (PDT)[42] from the growth rate over

continuous passages. For the relative comparison of prediction

performance, a NULL prediction model (NULL model) was

constructed. The NULL model is defined as the prediction model

that sets the average value of all experimentally determined values

as the threshold. This imitates the case of a poor prediction, and is

easily established in practical experiments. Simply put, the NULL

model is a negative-control model, similar to a random-guessing

model restricted to one threshold value. Furthermore, gene-

expression data were also assigned in the prediction model, as

rivals of morphology-based cell-quality prediction models. From

the custom microarray measurements, 69 gene-expression profiles

were used as additional input features in the prediction modeling.

Two types of prediction models were constructed: expression data

for 69 genes in combination with the M-pattern 1 feature set, and

the other was the expression data for 69 genes without

morphological features. In total, 36 prediction models (9 types of

input feature sets64 types of differentiation potential predictions

[3 lineages and population doubling time]) were constructed

(Fig. 5).

Supporting Information

Figure S1 Conceptual illustration of usage and techno-
logical achievements of label-free morphology-based
prediction of multiple differentiation potentials. A user

can obtain three advantageous profits from our investigated

method; (1) An early prediction, even from the images from the

undifferentiation period to predict the final result after differen-

tiation. Such prediction timing is designed to be fastened in this

work, by the examination of the effect of early and sparse cellular

images for future prediction. (2) An effective morphological feature

conversion method, which can maximize the objective prediction

of certain potential. Such morphological feature conversion

method is comprehensively examined in this work, to reflect the

meaning of heterogeneous nature of cells and their time-course

changes by various ideas of morphological feature calculations. (3)

A multiple simultaneous prediction for same image. In our

method, four types of potential prediction model are constructed,

and provide results at the same time for one image. Such

paralleled prediction concept enables ‘‘overlapping’’ multiple

evaluations of cells with non-invasive manner.

(TIF)

Figure S2 Schematic procedure of image processing
and data processing. (A) The procedure listed as Filter 1–4 in

Table S3 is illustrated. (B) The procedure listed as Filer 5–6 in

Table S3 is illustrated. Especially, the illustration describes the

detail of cell measurement and their data processing scheme

followed by Filter 6 processing. As shown in the figure, all cells in

the images are measured as data consist of ‘‘group of cells’’, and

their distribution is used to calculate statistic values to describe

such ‘‘group of cells’’. Through the process, ells are measured

individually by morphological indices; however our final morpho-
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logical features reflect the information of ‘‘group of cells’’. In other

words, our morphological features contain the information of

‘‘heterogeneity’’ of ‘‘group of cells’’, which strengthen our

prediction model.

(TIF)

Figure S3 Detailed definition of the basic nine morpho-
logical features used for cell measurements. Formulas and

schematic illustration of morphological features are presented in

detail. The nine features are carefully selected to represent

independent information, with the aspect of low-correlating

parameters, for stabilizing prediction models which utilize

morphological features from label-free phase contrast images.

(TIF)

Figure S4 Low-magnification images of cells in
Figure 2A. The low-magnification images provides overall image

of cellular morphological profile and its distribution.

(TIF)

Table S1 Dataset profile used for prediction model
construction.
(XLSX)

Table S2 Gene list in custom designed gene chip
microarray.
(XLSX)

Table S3 Image processing scheme.
(XLSX)

Table S4 Parameters and weights explored to contrib-
ute in prediction models for Potential I.

(XLSX)

Table S5 Parameters and weights explored to contrib-
ute in prediction models for Potential II.

(XLSX)

Table S6 Parameters and weights explored to contrib-
ute in prediction models for Potential III.

(XLSX)

Table S7 Parameters and weights explored to contrib-
ute in prediction models for Potential IV.

(XLSX)
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