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Abstract

Understanding the connectivity of the brain neural network and its evolution in epileptiform discharges is meaningful in the
epilepsy researches and treatments. In the present study, epileptiform discharges were induced in rat hippocampal slices
perfused with Mg2+-free artificial cerebrospinal fluid. The effective connectivity of the hippocampal neural network was
studied by comparing the normal and epileptiform discharges recorded by a microelectrode array. The neural network
connectivity was constructed by using partial directed coherence and analyzed by graph theory. The transition of the
hippocampal network topology from control to epileptiform discharges was demonstrated. Firstly, differences existed in
both the averaged in- and out-degree between nodes in the pyramidal cell layer and the granule cell layer, which indicated
an information flow from the pyramidal cell layer to the granule cell layer during epileptiform discharges, whereas no
consistent information flow was observed in control. Secondly, the neural network showed different small-worldness in the
early, middle and late stages of the epileptiform discharges, whereas the control network did not show the small-world
property. Thirdly, the network connectivity began to change earlier than the appearance of epileptiform discharges and
lasted several seconds after the epileptiform discharges disappeared. These results revealed the important network bases
underlying the transition from normal to epileptiform discharges in hippocampal slices. Additionally, this work indicated
that the network analysis might provide a useful tool to evaluate the neural network and help to improve the prediction of
seizures.
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Introduction

Epilepsy is a neurological disorder of the brain function

characterized by recurrent unprovoked discharges in large

aggregates of neurons. Because seizures involve complex interac-

tions across several regions of the brain, investigating the regional

interactions during the evolution of seizures may help to

understand the pathophysiological changes of the neural network,

and provide meaningful guidance for the epilepsy therapy [1].

Neural networks are mainly described by anatomical, functional

and effective connectivity [2,3]. The anatomical connectivity

represents physical connections, i.e. chemical synapses, electrical

synapses, etc. The functional connectivity demonstrates the

symmetrical statistical dependence between the activities of pairs

of nodes. The effective connectivity reflects the directed or causal

influence of one node on another. The analyses on neural network

connectivity have been carried out extensively in human brain

based on various measurements, such as electroencephalogram

(EEG), magnetoencephalogram (MEG), functional magnetic

resonance image (fMRI), diffusion tensor image (DTI) and so on

[4–6], providing valuable knowledge on the brain functions,

disease diagnosis, etc. For the epilepsy researches, neural network

characteristics, such as out-degree [7], betweenness centrality [8],

small-world property [9–11], have been used to localize the

seizure-onset zone [7,8] and inspect the alteration of network

connectivity patterns in the interictal state [11,12]. These

researches were performed on large-scale brain networks with

relatively low spatial resolution, which might result in low

precision of the spatial properties of the networks. The investiga-

tion of the network topology on smaller, localized brain regions

using the technique with higher spatial resolution might provide

more detailed information about the network. The microelectrode

array (MEA) is an ideal equipment to record signals with high

spatial and temporal resolution [13], and has been employed to

investigate the initiation, propagation, and spatiotemporal patterns

of the epileptiform discharges in rat hippocampal slices [14–16], as

well as the effects of anti-epilepsy drugs [17,18].

Hippocampus plays an important role in the temporal lobe

epilepsy (TLE). The hippocampal neural network is a complex

network containing a large amount of neurons distributed in

several subfields and layers, with these subareas being intercon-

nected in a complex way. For TLE patients, the abnormal

electrical activities were often detected in the hippocampus [19].

Moreover, neuroanatomical researches found that TLE was often

related to the mossy fiber sprouting, loss of neurons in CA1

subfield, and some other changes [20]. Highly interconnected
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hubs were found existing in the dentate gyrus (DG) of epileptic rats

and might contribute to the initiation and propagation of the

epileptiform discharges in the epileptogenic networks [21].

Researches on the hippocampal slices of developing rats revealed

that the network followed a scale-free topology and the highly

connected hubs were a subpopulation of interneurons [22]. The

hippocampal network might change its effective connections

among the local circuits during the transition from normal to

epileptiform discharges. However, the quantitative analysis

focused on the alteration of the network connectivity during the

transition process is still limited.

In the present study, epileptiform discharges in rat hippocampal

slices were induced by Mg2+-free artificial cerebrospinal fluid

(ACSF) and recorded by the MEA. The networks during control

and epileptiform discharges were constructed from the association

matrix formed by partial directed coherence (PDC) and the

network characteristics were analyzed by graph theory. The results

increased the knowledge on the functional organization of the

hippocampal neural network and might help to better understand

the network transition from normal to epileptiform discharges in

the hippocampus.

Materials and Methods

Ethics statement
The animal experiments were approved by the Ethics Com-

mittee, School of Biomedical Engineering, Shanghai Jiao Tong

University. All efforts were made to minimize the number of

animals used and their suffering.

Hippocampal slice preparation
Eight male Sprague-Dawley (SD) rats at postnatal day 23–25

were used in our experiments. After decapitation, the brain was

rapidly dissected and placed in oxygenated (95% O2/5% CO2)

Figure 1. Epileptiform discharges recorded by MEA. A: An example of hippocampal slice mounted on MEA. CA1, CA3a, CA3b and CA3c, fields
of the hippocampus; DG, dentate gyrus; al, alveus; so, stratum oriens; pcl, pyramidal cell layer; sr, stratum radiatum; sl-m, stratum lacunosum
moleculare; ml, molecular layer; gcl, granule cell layer; pl, polymorphic layer. B: Simultaneous extracellular recording of the hippocampal slice at about
30 min after the start of Mg2+-free ACSF perfusion. The channel number of each electrode is labeled at its top right corner. Several channels were
closed (blank grids) because of a low signal-to-noise ratio. The two gray dashed curves illustrate the positions of pyramidal cell layer and granule cell
layer. C: Epileptiform discharges displayed in different time scales. The epileptiform discharges were recorded by electrode #23, which is indicated by
a black square in (A). D: Ensemble mean (black line) and standard deviation (dark gray shade) of 50 epileptiform discharges. Three blocks of light
shades indicate the early, middle and late stages of epileptiform discharges.
doi:10.1371/journal.pone.0092961.g001
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ice-cold ACSF containing (in mM): NaCl 124.0, NaHCO3 25.0,

KCl 3.5, CaCl2 2.5, MgCl2N6H2O 1.3, NaH2PO4 1.2, and glucose

10.0. pH of the solution was adjusted to 7.4 with 1.0 M HCl. The

osmolarity was approximately 300 mOsm/L. Transverse hippo-

campal slices (400 mm) were prepared using a mechanical

vibratome (Series 1000, Tissue Sectioning System, Vibratome,

Natural Genetic Ltd., USA) and incubated in oxygenated ACSF at

25–27uC for at least 2 hours before recording. The Mg2+-free

ACSF was prepared to induce the epileptiform discharges by

omitting MgCl2N6H2O from the ACSF without substitution.

Electrophysiological recordings
The neural electrical activities were acquired by the multi-

channel recording system (MEA60, Multi Channel Systems

GmbH, Germany). The MEA consists of 60 planar electrodes

arranged in an 868 array with diameter of 30 mm (leaving the 4

corners void). The horizontal and vertical tip-to-tip distance

between neighboring electrodes is 200 mm as shown in Fig. 1A.

The hippocampal slice was placed in the electrode area

(1.4 mm61.4 mm) of the MEA and covered by a nylon mesh to

make a better contact with the electrodes. The slice was perfused

with oxygenated ACSF at a rate of 2 ml/min with a peristaltic

pump. The temperature of perfusate at MEA chamber was

maintained at 25–27uC with a temperature control unit (TC01,

Multi Channel Systems GmbH, Germany). After the slice was

perfused for at least 10 min, the normal ACSF was changed to

Mg2+-free ACSF to induce epileptiform discharges. The repetitive

synchronized epileptiform discharges were observed in most

hippocampal regions after 10–30 min of the Mg2+-free ACSF

perfusion. After 12006 amplification (bandwidth 1 Hz to 3 kHz)

by a 60-channel amplifier (MEA1060, Multi Channel Systems

GmbH, Germany), the signals were sampled at a rate of 20 kHz

and stored for offline analysis.

Data Preprocessing
In our experiments, the epileptiform discharges induced by

Mg2+-free ACSF were observed in most recording channels in

hippocampal slices (Fig. 1B). A threshold of 10 times the standard

deviation of the background signal was set to detect the

epileptiform discharges in one channel in the pyramidal cell layer

which had a high signal-to-noise ratio. Once the signal of the

selected channel exceeded the threshold, 800-ms data segments

(300 ms pre- and 500 ms post- the detected time point) in all of the

channels at the same time episode were taken as epileptiform

discharges. The continuous 800-ms segments of signals prior to

Mg2+-free ACSF perfusion which did not contain apparent

population spikes were used to study the hippocampal networks

in control. After the control and epileptiform discharges were

detected, a notch filtering was performed to filter out the 50 Hz

power noise. Then the temporal mean was subtracted and the

standard deviation was divided from each data segment [23]. The

difference of the functional organization of the neural network

during control and epileptiform discharges was investigated.

Partial Directed Coherence
PDC is a method to determine the causal interaction between

multivariate time series based on the multivariate autoregressive

(MVAR) model, which was first introduced by Sameshima and

Baccala in 1999 [24]. PDC was used in our present study to

generate the association matrix of the hippocampal neural

network.

MVAR model analysis requires that the time series are

stationary. For our signals, which were not stationary, the strategy

that Ding et al. used to process the event-related potentials was

adopted [23]. Two sources of nonstationarity were removed by

two steps. Firstly, the nonstationarity embodied in the mean and

standard deviation was removed by subtracting the ensemble

mean and being divided by the ensemble standard deviation.

Here, each epileptiform discharge was considered as a realization

of one stochastic process. When the epileptiform discharges

steadily appeared (usually 30 min after the Mg2+-free ACSF

perfusion began), we continuously sampled 50 epileptiform

discharges from each recording channel. The ensemble mean

and the ensemble standard deviation of the signals were calculated

across all the 50 epileptiform discharges at each time point for

each channel. Secondly, the correlation nonstationarity was

removed by using short time windows in which the underlying

stochastic processes were considered to be locally stationary. Here,

highly overlapped short time windows (window size: 50 ms, sliding

step: 10 ms) were used. Meanwhile, the same processing

procedure was applied to data segments collected in the control

condition. The preprocessed signals were used to construct the

MVAR model as follows.

Let X (t)~(X1(t),X2(t), � � � ,XN (t)) be a set of the preprocessed

signals of neural activities. Here t refers to the time and N is the

number of recording channels. The signals in all recording

channels were used except for a few ones with a low signal-to-noise

ratio or recorded by the electrodes that were not covered by the

slice.

The MVAR model takes the form

X (t)~
Xp

r~1

A(r)X (t{r)zE(t), ð1Þ

where A(r) are N|N coefficient matrices to be estimated; E(t) is

a vector of multivariate zero-mean white noise; p is the model

order which was determined by Akaike information criterion

(AIC) [25] defined as

AIC(p)~2 log½det (S)�z2N2p=L, ð2Þ

where det(S) denotes the determinant of the covariance matrix of

E(t) and L is the number of the data points applied in the

estimation. To estimate A(r), Equation (1) is multiplied from the

right by X T (t{k), where k~1,2, � � � ,p. Taking expectation, we

obtain the Yule-Walker equations

Xp

r~0

A(r)R({kzr)~0, ð3Þ

where A(0)~I , with I being the N-dimensional identity matrix;

R(n)~SX (t)X T (tzn)T is X (t)’s covariance matrix of lag n. For

multiple realizations, we compute R(n) for each realization and

average across all the realizations to obtain the final estimate of the

covariance matrix. Then A(r) is obtained using the Levison-

Wiggins-Robinson (LWR) algorithm [26].

After the Fourier transformation of the MVAR coefficients

A(f )~
Xp

r~1

A(r)e{2pifr, ð4Þ

the frequency-domain representation of the MVAR model was

obtained. Define the matrix A(f ) as

Alteration of Hippocampal Network in Epilepsy
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A(f )~I{A(f ), ð5Þ

Then PDC value at frequency f from variable Xj to Xi is defined

as

pij(f )~
D�AAij(f )DffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k D�AAkj(f )D2
q ð6Þ

The 3-demesional PDC values depict causal relationships

among all channels at different frequencies. Statistical significance

test was performed in order to remove the spurious interactions

between channels [27]. A Fourier-transformed surrogate data

method [28] was applied to each channel. Then the PDC method

was applied on the surrogate data. After repeating that procedure

1000 times, a distribution of PDC values of surrogate data was

obtained that corresponded to the null hypothesis of no causal

interactions. A significance level was set (p = 0.05) for the statistical

test and the links in the network with the connecting strengths

below the threshold were discarded.

After the spurious links were eliminated, the maximal PDC

values along the frequency dimension in a low frequency band (1–

300 Hz) were selected and transposed to obtain the association

matrix

W~ ½max
f

(pij(f ))�T , ð7Þ

where the superscript T denotes matrix transposition. Each

element wij in the 2-dimensional association matrix W denotes

the strength and direction of interaction from the channel i to the

channel j.

Graph Analysis
Graph analysis provides a relatively simple way to quantitatively

analyze complex networks [29], which allows for a set of measures

to quantify the characteristics of networks. Graph is a model to

describe the system by defining a set of nodes and edges that

represent the elements of system and their interactions. In the

present study, the nodes represent a group of neurons around the

recording sites and the edges represent the causal interactions

among the nodes. The weight of each edge is the element in the

association matrix denoting the interaction strength of the two

nodes it connected.

The effective connectivity between neural groups in the

hippocampal slices was investigated. Several measures were

employed to characterize the neural network topology of

hippocampal slices, which are defined as follows.

Degree: the degree of a node in a directed network consists of

the in-degree and the out-degree. The in-degree of node i (idi) is

defined as the sum of the weights of edges pointing towards i (i.e.,

inward edges). The out-degree of node i (odi) is accordingly defined

as the sum of the weights of edges originating from i (i.e., outward

edges). Formally,

idi~
X
j=i

wji ð8Þ

and

odi~
X
j=i

wij , ð9Þ

where wij is the weight of edge eij in the network. The total

weighted degree of a node is the sum of its in- and out-degree. The

connection strength of the network was computed as the sum of

degrees of all nodes in the network. In the hippocampal neural

network, a node with large in-degree and small out-degree

indicates that it is an information flow-in site, and a node with

small in-degree and large out-degree indicates that it is an

information flow-out site. The distribution of the nodes with

different in-degrees and out-degrees might indicate the informa-

tion flow in the network.

In addition to the weighted degree, another degree definition,

combinatorial degree [30] is used to define the clustering

coefficient. The combinatorial degree of node i is the number of

edges connected it (including inward and outward edges).

Clustering coefficient: the clustering coefficient of node i (Ci ) in

a weighted directed network is defined as follows [31]:

Ci~
(W ½1=3�z(W T )½1=3�)3

ii

2½ki(ki{1){2k<
i �

, ð10Þ

where W is the N|N association matrix, ki is the combinatorial

degree of node i, k<
i is the number of the bidirectional

connections between the node i and the other nodes. The average

clustering coefficient (C) is defined as the average of Ci across all

nodes in the network:

C~
1

N

X
i[N

Ci ð11Þ

The clustering coefficient C quantifies the local interconnectiv-

ity of the network. The random networks have low average

clustering coefficients, whereas the complex networks have high

average clustering coefficients that indicate the high local

efficiency of the information transfer.

Path length: the path length between nodes i and j is defined as

sum of the edge lengths along the path, where each edge’s length is

obtained by computing the reciprocal of the edge weight 1=wij .

The shortest path length Lij between nodes i and j is defined as the

length of the path with the shortest length between the two nodes.

The characteristic path length (L) of the network is measured by

the ‘‘harmonic mean’’ length between all of the node pairs as

follows:

L~
1

1=(N(N{1))
PN
i~1

PN
j=i

1=Lij

ð12Þ

The characteristic path length quantifies the ability of parallel

information transfer and can reflect the efficiency of information

transfer.

Small-world property: the small-world property was originally

proposed by Watts and Strogatz [32]. The network that exhibits

small-world property is one kind of the complex networks.

A small-world network has the similar characteristic path length

but higher clustering coefficient compared to a random network,

namely, the normalized characteristic path length l~L=Lr&1
and the normalized clustering coefficient c~C=Crw1, where L

Alteration of Hippocampal Network in Epilepsy
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and C are the characteristic path length and the clustering

coefficient of the network, the subscript r denotes the random

network. Those two conditions can also be summarized into one

quantitative measurement, the small-worldness, s~c=l, which is

typically .1 for the network with a small-world organization [33].

The small-world organization is economical in the sense of

providing high global and local efficiency of parallel information

processing for low connection density [33].

Previous studies indicated that the brain network of each patient

normally differed in both the number and the weighting of its

edges [34]. Because the small-world property depended on the

connection density of the networks, the small-worldness of each

network should be compared at the same cost. Here the cost

reflected the connection density of a network and was defined as

the number of edges divided by the maximum possible number of

edges [33,35]. The small-world property of networks was inspected

and compared at the same cost ranging from 0.05 to 0.3 by a step

of 0.01 to insure an appropriate network density [11,35].

To measure the small-worldness of the hippocampal neural

network, 100 random directed weighted networks with the same

number of nodes and edges were constructed [36,37], which

preserved the out-degree distribution of the original networks, and

Cr and Lr were defined as the average clustering coefficient and

characteristic path length of the 100 random networks. Then, c, l
and s were calculated to evaluate the small-worldness of the

hippocampal networks.

Statistical Analysis
The analyses were made on the data collected from 8 slices.

Only one slice was taken from each rat. The statistical analysis

results are expressed as the means 6 SEM. Statistical comparisons

were made using Student’s t-test, and P,0.05 was accepted as

significant. The false discovery rate was used to correct the

multiple comparisons [38].

Results

Mg2+-free-ACSF-induced Epileptiform Discharges
In our experiments, the application of Mg2+-free ACSF

consistently induced synchronous epileptiform discharges across

the hippocampal slices (Fig. 1B and C), which consisted of multi-

unit activities (MUAs, .200 Hz) superimposed on local field

potentials (LFPs, 1–200 Hz). The first epileptiform discharge

appeared at 20.0617.0 min after the onset of the Mg2+-free ACSF

perfusion, and then the epileptiform discharges occurred at a

frequency of 4.9062.44 per minute (n = 8 slices). The epileptiform

discharges recorded by the same electrode had similar amplitudes

and waveforms (Fig. 1C and D) during the Mg2+-free ACSF

perfusion. When the epileptiform discharges were steadily

appeared (usually 30 min after the onset of Mg2+-free ACSF

perfusion), 50 epileptiform discharges (each contained 800-ms

recording data) were sampled from each electrode. To investigate

the possible network alteration during the transition from normal

to epileptiform discharges, each 800-ms data segment (76 windows

with 50-ms-long window size and 10-ms-long sliding step) was

divided into 3 stages: early, middle and late stage of epileptiform

discharges, corresponding to 0–240 ms (window #1-#20), 280–

520 ms (window #29–#48) and 560–800 ms (window #57–#76)

of the 800-ms data segment, respectively (Fig. 1D).

Information Flow in Hippocampal Network
The interactions of neural activities in hippocampal slices were

derived by PDC, using 50-ms-long windows of the data segments

during control and epileptiform discharges. The association matrix

and connectivity graph of one representative control network are

shown in Fig. 2A. For clarity, only the 100 connections with large

weights among all 41 nodes are shown. In control, the interactions

among the neural groups in different recording sites appeared to

be random and the network was dominated by long-distance

connections. The association matrices of all 76 windows had

similar random patterns. During the epileptiform discharges, the

network organizations in different stages were distinct. The

representative networks in the early stage (window #1,

Fig. 2B(a)), middle stage (window #35, Fig. 2B(b)) and late stage

of epileptiform discharges (window #76, Fig. 2B(c)) are shown in

Fig. 2B. All of the association matrices of the three networks

showed large weights in their diagonal directions (left of Fig. 2B).

According to the arrangement of electrode numbers, the weights

in the brightly-colored diagonals of the association matrices (left of

Fig. 2B, especially B(b)) correspond to the edges that connecting

horizontally or vertically adjacent nodes (right of Fig. 2B). Hence

all of the three networks showed some regularity, i.e., many

connections were formed in local areas. Most weights of the

network in the middle stage of epileptiform discharges were much

larger than those in the early and late stages. In the early and late

stages of epileptiform discharges, there were no apparent

synchronous discharges, whereas the networks in these two stages

exhibited some regularity which was obviously different from the

random organization of the network in control. During the

epileptiform discharges, the nodes in the granule cell layer were

connected to the other nodes with the edges mostly pointing to

rather than departing from them (right of Fig. 2B). Similar

observations were obtained from the other 7 slices. The network

properties discussed here as an example would be further analyzed

quantitatively and statistically in the following sections.

After removing the spurious links by the statistical significance

test, the in- and out- degrees of all nodes in each network at each

time window during control and epileptiform discharges were

obtained. Statistical analysis results of 8 slices are shown in Fig. 3.

The averaged in-degree and out-degree of the networks were

steady at all time windows in control. There was no difference of

the in-degree or out-degree between the nodes in the pyramidal

cell layer (pcl) and the granule cell layer (gcl). However, during

epileptiform discharges, both of the averaged in-degree and out-

degree of the network were increased. The averaged in-degree of

the nodes in the pcl was smaller than that in the gcl (Fig. 3A).

Meanwhile, the averaged out-degree of nodes in the pcl was larger

than that in the gcl (Fig. 3B). There was no significant difference

between the averaged in-degree or out-degree in the pcl and the

gcl in most of the time widows in the early and late stages of

epileptiform discharges. The averaged out-degree in the gcl was

smaller than that in the pcl in the whole middle stage of

epileptiform discharges, whereas the difference in the in-degree of

the pcl and the gcl was only significant in the center period of the

middle stage of the epileptiform discharges (P,0.05, n = 8, paired

t-test with FDR correction).

These results indicated that during epileptiform discharges, the

connection strength of the hippocampal neural network was

increased. The large out-degree, small in-degree of nodes in the

pcl vs. large in-degree and small out-degree of nodes in the gcl

indicated that there was net information flow from the pcl to the

gcl, with the nodes in the pcl being sources and the nodes in the gcl

being sinks. There was no apparent net information flow between

the pcl and the gcl observed in networks in control, which was

consistent with the property of random networks.

Alteration of Hippocampal Network in Epilepsy
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Small-world Property
To inspect the small-world property of networks and its possible

alteration during epileptiform discharges, the small-world property

in each stage was inspected. The normalized clustering coefficient

(c), normalized path length (l) and small-worldness (s) of networks

within each stage of epileptiform discharges were similar, and the

averaged values in each stage were used to characterize the

networks. Because the small-worldness was related with the

network connection density (cost), different costs were applied to

access the small-worldness of the networks.

The networks in all three stages of epileptiform discharges

showed the small-world property, whereas the networks in control

did not. The results are shown in Fig. 4. The network in control

had the similar average clustering coefficient and characteristic

path length as random networks. However, the networks in all

three stages of epileptiform discharges exhibited the small-world

property. The normalized clustering coefficient (c) and normalized

path length (l) were larger than 1 during epileptiform discharges,

which indicated that the networks had more local connections as

well as less long-range connections than random networks. The

results demonstrated that the network shifted from a random

organization towards a more regular (lattice-like) organization

during the transition from normal to epileptiform discharges.

Additionally, the network organizations in different stages of the

epileptiform discharges were discrepant. The relation cMSwcES

wcLS and lMSwlESwlLS (MS: middle stage, ES: early stage and

LS: late stage of epileptiform discharges) indicated that during the

transition process from normal to epileptiform discharges, the

network underwent increase in local connections and decrease in

long-range connections, and then, in the late stage of epileptiform

discharges, the local connections decreased and the long-range

connections increased, and the network shifted towards a more

random pattern than the network in the early stage of epileptiform

discharges.

Figure 2. Association matrix (left) and connectivity graph
(right) of the networks during control and epileptiform
discharges. A: Association matrix and connectivity graph at window
#1 of control state. B (a), (b), (c): Association matrices and connectivity
graphs at windows #1, #35 and #76, which represent three stages of
the epileptiform discharges. Coordinates of association matrix corre-
spond to channel numbers (arranged in columns) shown in Fig. 1B. In
the connectivity graphs, the direction and strength of interactions
between any two nodes (white dots) are portrayed using arrows and
their line widths. Only edges with the largest 100 weights in the
corresponding association matrix are shown.
doi:10.1371/journal.pone.0092961.g002

Figure 3. The in- and out-degree of nodes in hippocampal
networks. Averaged in-degree (A) and out-degree (B) of the nodes in
the pyramidal cell layer (pcl) and the granule cell layer (gcl) of the
hippocampal slice in control (light shades and lines) and epileptiform
discharges (dark shades and lines). Lines denote mean values and
shades denote standard errors. Differences of the averaged in-degree/
out-degree of nodes in the pcl and the gcl during epileptiform
discharges are tested (*P,0.05, n = 8, paired t-test with FDR correction).
doi:10.1371/journal.pone.0092961.g003
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Time Courses of Epileptiform Discharges and Network
Alteration

The recurrent epileptiform discharges in hippocampal slices

were induced by Mg2+-free ACSF, meanwhile networks topology

changed during this process. The preceding results showed that

the networks in the early and late stages of epileptiform discharges

exhibited some regularity and had the small-world network

property, whereas the networks in control were randomly

organized and did not exhibit the small-world property. On the

other side, in the early and late stages there were no apparent

epileptiform discharges and the signals were similar to those in

control. These results suggested that there might be inconsistencies

between the time courses of the epileptiform discharges and the

network alteration.

To compare the time courses of the epileptiform discharges and

the network alteration, longer data segments (7 s, 2 s pre- and 5 s

post- the detected time point of epileptiform discharges) of the

epileptiform discharges were analyzed in the same way as the

previous procedure. The ensemble mean of the 50 epileptiform

discharges in each channel was calculated at each time point.

The averaged waveform was then smoothed (y(t)~
1

201X100

i~{100
x(tzi), where x(t) and y(t) are the waveforms before

and after smoothing). The start and end time were determined

using a threshold of 64 times the standard deviation of the

baseline of the smoothed waveform. The start and end time were

the first and last time points when the smoothed waveform crossed

the threshold. Compared among all channels, the earliest and

latest time were identified as the start and end time of epileptiform

discharges in the whole network, respectively.

The network connection strength was computed in all windows

during the epileptiform discharges. The results were smoothed

using the Bayesian adaptive regression splines (BARS [39]) as

shown in Fig. 5D. A threshold of 64 times the standard deviation

of the baseline of the smoothed connection strength was set. The

first and last windows that the smoothed curve exceeded the

threshold were detected and their corresponding time points were

regarded as the start and end time of the network alteration.

The start and end time of the epileptiform discharges and the

alteration of network connection strength were compared. The

result demonstrated that the alteration of network connection

strength started earlier than the epileptiform discharges appeared,

and such network alteration was kept unrecovered even when the

epileptiform discharges ceased. The leading and delay time of the

network alteration as compared to the epileptiform discharges

change were 0.1960.17 s and 3.6160.92 s, respectively (n = 8

slices). The results illustrated that the effective connectivity of the

hippocampal network started to change before the appearance of

the epileptiform discharges. The network reorganization and the

enhancement of the network connection strength might underlie

the generation of epileptiform discharges in the hippocampal

network. When epileptiform discharges ceased, the network

connection strength did not recover immediately, but underwent

a slow recovery process that lasted for several seconds. During the

time episode between each two epileptiform discharges, the

Figure 4. Small-world property of hippocampal networks at
different time stages. Normalized clustering coefficient (c), normal-
ized characteristic path length (l) and small-worldness (s) (top to
bottom, respectively) of control and 3 stages of epileptiform discharges
(early, middle and late stages of epileptiform discharges, abbreviated as
ES, MS and LS) as a function of the cost. Lines denote the mean values
and shades denote the standard errors. Difference of s, c and l
between early stage and middle stage are tested (*P,0.05, n = 8, paired
t-test with FDR correction). Difference of s, c and l between early stage
and late stage are also tested (*P,0.05, n = 8, paired t-test with FDR
correction).
doi:10.1371/journal.pone.0092961.g004

Figure 5. Time courses of epileptiform discharges and network
alteration. A: Typical epileptiform discharges averaged across 50
epileptiform discharges recorded by one channel. B: Detection of the
start and end time of the averaged signals. After detecting the start and
end time in each channel, the earliest start time and the latest end time
across all channels were identified as the start and end time of
epileptiform discharges in the whole network. C: Network connection
strength during epileptiform discharges. Two black dots with arrows
indicate the start and end time of epileptiform discharges, and two red
dots with arrows indicate the start and end time of the network
alteration. D: Detection of the start and end time of the network
connectivity alteration. In (B) and (D), red curves are smoothed signals,
horizontal dashed lines are thresholds and vertical lines indicate the
start and end time detected.
doi:10.1371/journal.pone.0092961.g005
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network had stronger connection strength as compared to that in

control (data not shown).

Discussion

In our present study, the graph theory was applied to investigate

the effective connectivity of rat hippocampal neural network and

its alteration during the transition from normal to the epileptiform

discharges induced by Mg2+-free ACSF. The results showed that

neural groups in different layers and regions of hippocampal slices

exhibited distinct network properties, which might reflect the

different functional roles in each region. The networks showed the

small-world organizations and were more regular during epilep-

tiform discharges, whereas the networks in control were random

networks. These results might be helpful for understanding the

characteristics of hippocampal neural network and its alterations

related to epilepsy. On the other hand, the network analysis results

showed that the network property changes occurred before the

detectable epileptiform discharges appeared, and the network

properties did not recover immediately to the control when the

epileptiform discharges ceased. So, the network analysis might

provide a meaningful tool to evaluate the neural network and its

alteration during the transition from normal to epileptiform

discharges.

Model Order Determination
One of the problems in MVAR modeling is to choose the model

order, which could be determined by the AIC. Fig. 6 shows the

AIC value as a function of the model order for our representative

multivariate signals. The AIC value decreases monotonically with

increasing order, which is consistent with MVAR modelings

applied on EEG time series [23]. The decreasing rate of AIC value

was very slow when the model order was larger than 4, so we

applied a 5th-order MVAR to fit our data. The model orders of 3–

10 were additionally applied to test the fitting effect, and the results

demonstrated good tolerance of the process to different model

orders (data not shown).

Weighted and Directed Graphs
Unweighted links in a network indicate the presence or absence

of connections between nodes, which are usually obtained by

applying a threshold to the weighted network. The weight is set to

1 when it is larger than the threshold, otherwise it is set to 0. To

date, most network studies using graph theory construct

unweighted graphs [29,40]. Recently the weighed network has

been used to explore the neural network characteristics, such as

the seizure onset zone of epileptic patients [7,8] and the network

topology of human brain in physical and pathological conditions

[11,41].

Graphs can also be formed with directed or undirected edges.

The directed edges contain the information about the causal

relations between nodes, whereas an undirected graph can only

tell the existence of connections [40]. Thus, the directed graph

might be more valid when modeling causal interactions among

neural groups. The human neuroimaging data are difficult to

assign directionality to the networks [40], which might be the

result of the low time resolution of the signals. However, the

electrical signals recorded by multiple microelectrodes are feasible

for constructing the directed graphs. The weighted and directed

network analyses were effective in identifying the seizure onset

zone in the cortices of epilepsy patients [7,8]. In the present study,

we investigated the characteristics of hippocampal neural network

using the weighted and directed graph, which made the network

analysis more realistic.

Information Flow
Studies on the information flow by inspecting the effective

connectivity had been carried out within the hippocampus as well

as between the hippocampus and the other cortex regions.

Korzeniewska et al. investigated the information flow between

the hippocampus and the other related structures during various

types of rat’s behaviors. The result demonstrated that during

different behavior tasks, the information flow among the different

brain regions of rat has different strengths or directions [42].

Baccala et al. applied PDC analysis on EEG data collected from

rats during the slow-wave sleep which had spindle episodes

containing a burst of oscillatory brain activities [43]. Their result

illustrated that the direction of the information flow between two

brain regions changed before/after and during spindle episodes

[43]. These studies indicated that under different physical

conditions, behavioral tasks, etc., the information flow in neural

network would change its connection status. In our study, the net

information flow from the pcl to the gcl formed during the

epileptiform discharges but not in control. This might be the result

of increased excitatory of CA3 neurons, which influenced the

granule cells due to the collaterals of CA3 pyramidal cells’ back-

projection to the DG during epileptiform discharges. However, in

control, the back-projection from CA3 to dentate granule cells was

normally suppressed by the GABAergic inhibition, so CA3 did not

have a robust excitatory influence on the granule cells [44]. Zhang

et al. investigated the excitatory synaptic input to the granule cells

from CA3 regions in pilocarpine-treated rats, and the result

demonstrated that the stimulation on the proximal CA3 pcl were

more likely to evoke the excitatory postsynaptic currents in the

granule cells of the epileptic rats as compared with control rats

[45]. Furthermore, the synaptic strengths of recurrent excitatory

inputs to the granule cells from CA3 pyramidal cells were

increased in epileptic rats [45]. These evidences might give an

explanation for the increased information flow from the pcl to the

gcl in our research.

Small-World Property
The results of graph analysis showed that the neural networks

during control and epileptiform discharges exhibited different

small-world property. The random network organization was

Figure 6. Model order determination. The AIC value as a function
of the model order, computed in a representative 50-ms window of
epileptiform discharges. The shape of the curve is similar for all
windows during control and epileptiform discharges.
doi:10.1371/journal.pone.0092961.g006
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observed in control, whereas the small-world architecture

appeared during epileptiform discharges. During epileptiform

discharges, the hippocampal networks showed significant increases

of normalized clustering coefficient (c), which indicated that the

network formed more local connections as compared to the

control. It denoted an alteration from a random architecture in the

normal network to an organized architecture in the pathological

networks. Some studies on the neural network topology of human

brain using EEG data (including intracranial or intracerebral

EEG) demonstrated the increased small-world organization or

more regular network configuration in epileptic brains as

compared with normal or less pathological controls [46–49].

However, some other studies showed the disrupted or decreased

small-world organization in epileptic brains [9,11] or epileptiform

network of cultured hippocampal neurons [50]. Our study on

hippocampal network in Mg2+-free epilepsy model supported the

former result. Moreover, scale-free organization was observed in

developing hippocampal networks [22]. These discrepancies in the

network topology and its alteration during epileptiform discharges

might be due to the different experimental preparations or

epilepsy phenotypes, etc. Additionally, it reflects the demands of

further understanding on the organizational mechanism of the

complex neural network.

Epileptiform Discharges and Alteration of Network
Organization

The study on the time courses of the epileptiform discharges

and the network alteration indicated that the enhancement of the

network connection strength might underlie the epileptiform

discharges in rat hippocampal slices. According to the exploration

results of small-world property of the network, the enhancement of

connection strength might be the result of the rapid increase of

connections among adjacent neural groups. This might involve the

increased neuronal excitability due to the activation of N-methyl-

D-aspartate (NMDA) receptors during the perfusion of Mg2+-free

ACSF. During the epileptiform discharges after the perfusion of

Mg2+-free ACSF, the glutamate released from the presynaptic

neuronal terminals could generate larger excitatory postsynaptic

potentials by both NMDA and non-NMDA receptor-gated ion

channels than by non-NMDA receptor-gated ion channels only

[20]. It indicated that larger influence of presynaptic neurons

would be exerted on the postsynaptic neurons and formed a

comprehensive effect of increased connection strength in the

network during the perfusion of Mg2+-free ACSF. After a period of

enhancement, the network connection strength decreased to a

level lower than that in the early stage of epileptiform discharges

and then recovered to the baseline in several seconds. The shape

of the recovery procedure and its time course were similar to the

after-hyperpolarization (AHP) of the interictal spike recorded

intracellularly in the hippocampal pyramidal cell [51,52]. It is

possible that the recovery procedure reflected the AHP of the

interictal spike. This conjecture might be tested by blocking the

AHP and observing the recovery procedure, which would be one

of the research subjects in pharmacological studies in the future.

The network analysis reflected the network alteration that was not

revealed by the signal waveform. This manifested the advantages

of the network analysis in exploring the network characteristics

and its potential applications in seizure prediction, seizure foci

localization, and so on.

Conclusions

In this study, the network characteristics of hippocampal slices

and their alterations during the transition from normal to

epileptiform discharges were investigated. The effective connec-

tivity of hippocampal neural network was formed by the PDC, and

the network characteristics were analyzed based on the graph

theory. The results showed that during epileptiform discharges, the

nodes in the pcl had large out-degree and small in-degree, whereas

the nodes in the gcl had large in-degree and small out-degree. This

indicated that there was net information flow from the pcl to the

gcl during epileptiform discharges, which did not exist in control.

The network exhibited random connections in control, whereas it

showed a small-world organization during epileptiform discharges,

and the increased local connections contributed this transition.

Additionally, we found that the network alteration occurred prior

to the start of the epileptiform discharges and posterior to the end

of the epileptiform discharges. These results revealed several

important alterations of the network characteristics during the

transition from normal to epileptiform discharges. This might

provide new insights into the hippocampal neural network and

epilepsy mechanisms. The study manifested the advantage of the

network analysis method in analyzing the network characteristics

and might help to improve the prediction of seizures.
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