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Abstract

The past decade has seen a proliferation of new species of Miniopterus bats (family Miniopteridae) recognized from
Madagascar and the neighboring Comoros archipelago. The interspecific relationships of these taxa, their colonization
history, and the evolution of this presumed adaptive radiation have not been sufficiently explored. Using the mitochondrial
cytochrome-b gene, we present a phylogeny of the Malagasy members of this widespread Old World genus, based on 218
sequences, of which 82 are new and 136 derived from previous studies. Phylogenetic analyses recovered 18 clades, which
divide into five primary lineages: (1) M. griveaudi; (2) M. mahafaliensis, M. sororculus and X3; (3) M. majori, M. gleni and M.
griffithsi; (4) M. brachytragos; M. aelleniA, and M. aelleniB; and (5) M. manavi and M. petersoni recovered as sister species,
which were in turn linked to a group comprising M. egeri and five genetically distinct populations referred to herein as P3,
P4, P5, P6 and P7. Beast analysis indicated that the initial divergence within the Malagasy Miniopterus radiation took place
4.5 Myr; most species diverged between 4 and 2.5 Myr, and a secondary period was between 1.25 and 1 Myr. DNA K2P-
distances between recognized taxa ranged from 12.9% to 2.5% and intraspecific variation was less than 1.8%. Of the 18
identified clades, Latin binomials are only associated with 11, which indicates much greater differentiation than currently
recognized for Malagasy Miniopterus. These data are placed in a context of the dispersal history of this genus on the island
and patterns of ecological diversity.
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Introduction

Madagascar is well known as a center of endemism for a wide

assortment of plant and animal taxa. This is directly associated

with the island’s considerable ecological and topographic diversity,

as well as isolation in deep geological time [1,2,3]. In contrast to

other areas of the Old World tropics, Madagascar’s distinctive

biota contains numerous endemic groups at higher taxonomic

levels, representing distinct radiations. In some cases, such as

certain reptiles [4], these endemic groups are best explained as

vicariant relicts originating before the break-up of Gondwana

some 165 million years ago [5,6]. However, much more common

are plant and animal groups that successfully colonized the island

by over-water dispersal in more recent geological time [7]. These

post-Gondwana-split colonizations occurred across multiple geo-

logical periods, resulting in levels of differentiation ranging from

endemic orders to genera [7–9].

Recent molecular research has provided considerable new

insight into these different evolutionary events, levels of taxonomic

diversity, and the complexity of various Malagasy radiations.

These studies have uncovered cryptic species belonging to

previously unrecognized taxa that are largely indiscernible using

more classic taxonomic characters. As such, the results of these

studies provide the means to differentiate shared evolutionary

history versus convergence. The recent recognition of an endemic

Malagasy bird family, the Bernieridae, is an excellent example. It

comprises 11 species that share no defining morphological

characters and formerly were placed in three different songbird

families [10,11]. Members of the endemic family Vangidae were

also previously placed in three separate songbird families [12,13].

Finally, although the island holds a considerable diversity of land

mammals, all existing groups (carnivorans, lemurs, rodents, and

tenrecs), which show extraordinary morphological variation, can

be explained by four colonization events [14]. Study of the extant

fauna has therefore shown that successful colonization of

Madagascar by land mammals has been rare and accompanied

by subsequent adaptive radiations. While several different

hypotheses have been presented to explain patterns of endemism

and micro-endemism in the island’s biota [2,3,15], recent research

has shown that a single model cannot explain the different patterns

observed in the living biota of the island.

In the present study, we explore the complex micro-radiation of

a widespread Old World group of bats, the family Miniopteridae.

While their wing structure is not designed for high speed, they are
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relatively strong flyers [16], attested by their capacity to colonize

offshore and oceanic islands. In a review of Madagascar’s

chiropteran fauna, Peterson et al. [17] reported four species from

the island: one endemic, two shared with the nearby Comoro

archipelago, and one in common with continental Africa. Less

than two decades later, largely based on insights from molecular

genetics and to a lesser extent morphology and bioacoustics, 11

species are recognized today from the island, all endemic with the

exception of two shared with the Comoros [18,19].

To date, systematic research on Malagasy Miniopterus has

concentrated on the delimitation of species. Little attention has

been given to the evolutionary relationships of the different taxa

relative to Madagascar or nearby islands and continental areas.

The purposes of this paper are to apply molecular phylogenetic

data to explore primarily the patterns of diversification of

members of this genus in Madagascar, within an ecological

context. Secondarily, to explore aspects of their colonization

history and patterns of dispersal.

Methods

Bat sampling and specimens examined
Specimens were captured from diverse areas and habitats for

this study, essentially covering the entire range of Miniopterus spp.

on Madagascar (Figure 1), using mist nets and harp traps most

often placed at cave entrances. This study was conducted in strict

accordance with the terms of research permits issued by national

authorities in Madagascar (Direction du Système des Aires

Protégées, Direction Générale de l’Environnement et des Forêts,

and Madagascar National Parks; and in the Union of the Comoros

(Centre National de Documentation et de Recherche Scientifique),

following the laws of these countries, and the associated research

permit numbers are listed in the acknowledgements. Seventy-five

animals were captured, manipulated and euthnanized in accor-

dance with guidelines accepted by these different national

authorities and the scientific community for the handling of wild

animals [20]. Voucher specimens are housed in the Field Museum

of Natural History (FMNH), Chicago, and the Université

d’Antananarivo, Département de Biologie Animale (UADBA),

Antananarivo.

The mitochondrial cytochrome-b (cyt-b: 1140 bp) has previously

been shown to be informative at the species level in the study of

miniopterine bats [21–24], which is our primary focus herein. The

dataset we have employed includes all recently published work on

Malagasy miniopterine species and incorporates new sequences

from specimens previously defined as M. manavi [17]. In total, 264

sequences have been employed herein, 75 acquired for this study

and 189 previously used in different taxonomic studies (Table S1).

The dataset also incorporates sequences from islands in the

Comoros, including Grande Comore and Anjouan [25]. Due to

the reliance on pre-existing published sequences to build a

complete taxonomy, the study was limited to the use of cyt-b

alone, specifically as a number of tissue samples amomgst the 264

samples are not available to the authors for sequencing nuclear or

microsatellite markers.

Cyt-b sequences of African, European, Asian and Australasian

Miniopterus spp. were also included from Genbank records (Table

S1). With no clear sister group to the genus Miniopterus or the

family Miniopteridae, we chose Myotis ricketti (EF530349) as the

outgroup. The use of outgroup sequences from other chiropteran

families did not alter the relationships between the Miniopterus spp.

[23,24,26,27] Analysis using M. ricketti as the outgroup resulted in

two fully supported (posterior probability 1.00) Miniopterus clades:

one consisting of Malagasy, African and European taxa and

another consisting of Asian and Australasian taxa. For reasons

detailed below and to improve resolution, the Asian and

Australasian clade was then used as the outgroup for determining

relationships between the Malagasy, African and European taxa.

Molecular analysis
Production of the sequences was achieved using the same

methods described in previous studies on Malagasy Miniopterus

[27].

Sequences were assembled and aligned using Sequencher

version 4.6 (Gene Codes Corporation, Ann Arbor, MI). Analysis

using DNA strider [28] showed that sequences did not contain

insertions, deletions or stop codons. All new sequences were

deposited in GenBank (Accession numbers listed in Table S1). The

program jModeltest v2.1.4 [29,30] reported HKY + G as the

optimal nucleotide substitution model for the dataset according to

Hierarchical Likelihood Ratio tests, Aikake Information Criterion

and Bayesian Information Criterion. This model was applied to

the Bayesian and molecular clock analyses.

Bayesian analyses were conducted using MrBayes v3.2 [31]

under uniform priors. Four chains were run under MrBayes for

2,000,000 generations with a sampling frequency of 1,000. Burn-

in was set at 25% of initial trees. The deviation of split frequencies

was below 0.01 at the conclusion of the analysis. Maximum

likelihood analyses were run using RaXML Black Box workbench

[32,33], using the GTRGAMMA model. Bootstrap values were

estimated using 1000 pseudoreplicates.

Bayesian and ML analyses were initially run with the full dataset

in order to confirm fine-scale topology (Figure S1); however, due

to the influence of wide variations in sequence divergences on the

gamma distribution and increased branch length, these analyses

were repeated using only two to four sequences from each major

clade and with the removal of the highly divergent outgroup.

Myotis proved to be more than 24% divergent in cyt-b (Kimura 2-

parameter, K2P) [34] from Miniopterus, significantly altering the

shape of the tree and resulting in difficulties in the estimation of

rate heterogeneity parameters. As a consequence, Myotis was

removed from the analysis in order to aid in the resolution of the

tree and to avoid the extensive branch length difficulties reported

by recent studies of the phenomenon [35,36]. The overall topology

was unaffected by the removal of the additional individuals and

the outgroup.

Molecular clock analyses were conducted using BEAST 1.7.4

[37,38], incorporating a Yule tree model under a uniform

speciation prior. A relaxed uncorrelated lognormal molecular

clock [39] was applied using a variable rate of 2.0% sequence

evolution per lineage per million years [40]. No further calibration

was possible due to the paucity of the fossil record with regard to

this group.

All posterior parameter distributions for analysis were checked

in Tracer v1.5 [41] for modality and effective sample size (ESS).

Genetic divergence between and within clades were computed

as pairwise Kimura 2-parameter distances (K2P) with the software

MEGA version 3.1 [42]. The K2P model was chosen to be

comparable with previous studies reporting taxonomic inferences

on miniopterid bat species based on genetic distances

[22,24,25,27,43].

Results

Complete or near complete cyt-b sequences (1100 to 1140 bp)

were obtained for most of the 82 samples sequenced in this study,

as well as some critical specimens used in previous taxonomic

studies. Exceptions to this were: (1) the paratype of Miniopterus

Cryptic Radiation of Malagasy Bats
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Figure 1. Bioclimatic map of Madagascar with collection localities of all specimens sequenced in this study (see Table S1).
doi:10.1371/journal.pone.0092440.g001
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manavi (FMNH 5650), a museum skin collected in 1896, and from

which 220 bp were obtained; and (2) a tissue sample of FMNH

151718 from which only 710 bp were obtained. All available cyt-b

sequences, including pre-existing sequences sourced from Gen-

bank, are provided by region and taxon in Table 1. Full specimen

details, including Genbank references, are provided in Table S1.

The initial ML and Bayesian analyses recovered the 264

specimens of Malagasy Minioptserus included in this study, as 18

clades (Figure S1). The X3 clade is represented by a single

individual. The two to four most divergent haplotypes in each

clade were then used for more extensive Bayesian, BEAST and

ML analyses. The resulting ML and Bayesian phylogenetic trees

produced broadly similar tree topologies, which recovered the

reduced set of 54 of Malagasy Miniopterus included in this study as

18 clades (Figure 2). Each of these clades received 100% bootstrap

(ML) and 1.00 posterior probability (Bayesian) support.

The 18 clades further clustered into five primary lineages. One

of these, M. griveaudi, encompassed a single species. The remaining

four sub-clades were comprised as follows: 1) the three taxa M.

gleni, M. griffithsi and M. majori, supported with 0.94 posterior

probability; 2) the three taxa M. sororculus, X3 and M. mahafaliensis,

supported with 0.86 posterior probability; 3) the three taxa M.

aelleniA, M. aelleniB and M. brachytragos with a lower support of

0.56; and 4) a sub-clade including M. petersoni, M. manavi, M. egeri

and the genetically distinct populations referred to herein as P3,

P4, P5, P6 and P7, with an overall support of 1.00. Sister

relationships between 1) M. petersoni and M. manavi; 2) M. aelleniA

and M. aelleniB; 3) and M. sororculus and X3 were all supported

within their respective lineages at 1.00. The African taxa including

M. fraterculus and M. minor, as well as the Malagasy M. gleni/M.

griffithsi/M. majori lineage, formed a polytomy with M. natalensis, M.

newtoni and the remainder of the Malagasy species. This is most

likely due to the effect of a rapid radiation combined with the fast

rate of evolution and fixation of the mitochondrial genome.

The Beast analysis (Figure 3) revealed that the initial divergence

within the Malagasy Miniopterus radiation took place at about 4.5

million years ago (Mya). This is, therefore, the minimum date

proposed for colonization of Madagascar by Miniopterus. Most of

the species level divergences are recorded from the period between

4 and 2 Mya. A second set of diversifications took place 1.25 to

0.75 Mya, although uncertainty around these estimates allows

some minor overlap between these two diversification periods.

Levels of DNA divergences between the recognized species of

Malagasy Miniopterus ranged from 12.9% to 2.5% Kimura 2-

parameter (K2P) (Table 1). Levels of within species variation were

less than 1.8% K2P.

Discussion

Origins of Malagasy Miniopterus
The DNA phylogenetic analyses recovered Malagasy and

African Miniopterus spp. as a monophyletic clade relative to Asian

and Australasian taxa (Figure 2). Although some Malagasy bird

species, which have similar capacity to bats for flight dispersal,

appear to have originated through colonization events from Asia

and Australasia across the Indian Ocean [44,45], the cyt-b data of

the present study clearly supports an African origin for Malagasy

Miniopterus. With the recent taxonomic revision of Malagasy

members of the tribe Emballonurni [46], the only remaining bat

genus occurring on Madagascar that is demonstrably Asiatic in

origin is the large and strong-flying Pteropus.

The available mtDNA data did not resolve conclusively whether

there were one or multiple colonization events from Africa into

Madagascar. The 18 clades identified among the Malagasy

Miniopterus clustered into five primary lineages, but these were

not recovered as a monophyletic assemblage, relative to African

taxa (Figures 2 and 3). The prevailing winds in the nearly 400 km

stretch of water separating Madagascar from Africa are westerly

since the early Cenozoic [47] and well before the evolution of

Miniopterus, indicating that colonizations in an easterly direction

(i.e. Africa to Madagascar) would be against the prevailing winds.

Under this scenario and based on extrapolation from a variety of

flying and terrestrial vertebrates [10–13,48], it is unlikely that the

five identified Malagasy lineages of Miniopterus would each

represent a separate colonization event.

Although the five primary lineages were not recovered as a

monophyletic group, two major assemblages were identifiable

among the Malagasy species: (1) M. gleni, M. griffithsi and M. majori;

and (2) the remaining taxa. These two assemblages, referred to as

Y and Z (Figure 3), diverged approximately 4.5 Myr ago. They

Table 1. Number of cyt-b sequences by taxon and region
included in the present study; with one exception all belong
to the genus Miniopterus.

Region Species/clade Number of sequences

Madagascar M. sororculus 17

X3 1

M. mahafaliensis 19

M. griveaudi 47

M. brachytragos 12

M. manavi 5

M. petersoni 11

P6 10

P7 2

P5 3

P4 5

P3 2

M. egeri 13

M. majori 38

M. griffithsi 6

M. gleni 28

M. aelleni A 15

M. aelleni B 24

Africa M. minor 9

M. fraterculus 10

M. natalensis 14

M. newtoni 4

Europe M. schreibersii 10

Australasia/Asia M. australis 1

M. macrocneme 1

M. oceanensis bassanii 1

M. oceanensis orianae 1

M. blepotis 1

M. fuliginosus 3

Myotis ricketti 1

Full details including Genbank numbers and literature references are included
in Table S1.
doi:10.1371/journal.pone.0092440.t001
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represent either two separate colonization events or a single event

that was followed by early divergence. Current data does not allow

for the rejection of either of these hypotheses.

The BEAST analysis (Figure 3) also indicated that the five

primary Malagasy lineages arose over a period of 3 to 4 Myr ago.

There was a pulse of diversification in both assemblages Y and Z

around 2 to 3 Myr ago and a further one in assemblage Z within

Figure 2. Bayesian majority consensus tree based on cvt-b sequence data and according to a HKY + G nucleotide substitution
model. The first number at each node represents bootstrap support according to the Maximum Likelihood analysis; the second represents Bayesian
posterior probability. An asterisk (*) at a node indicates full support from both analyses, i.e. 100/1.00. Where clades contain more than a single
individual, these have been collapsed into triangles. Colour coding refers to the origin of the species, as follows: Blue = Madagascar; Green = Africa;
Brown = Europe; Red = Asia and Australasia. Large bold numbers beside lineages indicate the five primary lineages referred to in the text.
doi:10.1371/journal.pone.0092440.g002
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the last million years. As Madagascar’s fossil record has a major

gap from the Late Cretaceous to Late Quaternary, little is known

about the existing habitats and climatic regime on the island

during the inferred Pliocene-Pleistocene period of Miniopterus

diversification.

A caveat to the preceding discussion is that only a single

MtDNA gene (cyt-b) was analyzed in this study. Although this gene

Figure 3. BEAST molecular clock analysis of representative cvt-b sequences, incorporating a HKY + G nucleotide substitution model
and a Yule model of speciation. Molecular evolutionary rates were calibrated at 2% per million years under a relaxed lognormal clock. Numbers at
nodes refer to the age of the node in millions of years (my); the scale bar indicates branch length in my. Grey bars represent 95% highest posterior
distributions around node age estimates. Assemblages Y and Z are indicated as noted in the text.
doi:10.1371/journal.pone.0092440.g003
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has proven highly useful in identifying cryptic taxonomic diversity

in Miniopterus [21–24] it is clear that further mtDNA augmented

with nuclear sequence data is required to better resolve the early

radiation and colonization history of the genus in Madagascar.

The clarification of the number of taxa as discussed further below

will set the framework for more detailed sequencing analyses.

Diversification of Malagasy Miniopterus
The various phylogenetic analyses (ML, Bayesian) all recovered

the same 18 clades (Figure 2) of Malagasy Miniopterus. Eleven of

these correspond directly with currently recognized species

[18,19,24,27,49–51]. The other seven clades may represent

additional species level diversity, but in certain cases other markers

will be needed to resolve relationships.

In terms of DNA distances, the lowest recorded level between

recognized sister species involved M. petersoni and M. manavi, where

DNA distances ranged from 2.5% to 3.3% across the different

haplotypes (Table 2). Distances between these two species and M.

egeri ranged from 3.7% to 5.3%, while those involving comparisons

between M. majori, M. gleni and M. griffithsi were higher still,

ranging from 7.3% to 8.7% (Table 2). These relationships provide

context for assessing the level of cyt-b differentiation recorded

between M. sororculus and taxon X3. Although recovered as sister

taxa, the two differed by a DNA distance of 7.2%, which is

consistent with species level differentiation. As currently under-

stood, M. sororculus is restricted to the central and southern portions

of the Central Highlands and the single known individual referred

to the X3 clade is from the foothills (810 m) of the central portion

of the Central Highlands (Table 3). These two clades are not

known to occur in sympatry and most likely represent an example

of allopatric speciation that occurred 2 Myr ago based on the

BEAST analysis (Figure 3). If this relationship is supported with

additional specimens and sequence data, a taxonomic diagnosis for

X3 will be required.

The M. aelleniA and M. aelleniB clades were less differentiated

with distances ranging from 3.1% to 3.6% across the different

haplotypes. Nevertheless, this is comparable to levels recorded

between closely related and morphologically distinct species such

as M. petersoni and M. manavi, as well as between these two species

and M. egeri (Table 2). In this context, the two M. aelleni clades are

best treated as separate species. The type series of M. aelleni

includes individuals from the M. aelleniA clade [27]. Consequently,

a taxonomic diagnosis for M. aelleniB is required. The M. aelleniA

clade includes individuals taken in dry deciduous forests, three of

the four being from Ankarana, while those in the M. aelleniB clade

are from humid forest formations, three being from Montagne

d’Ambre (Table 3). The sites of Ankarana and Montagne d’Ambre

are in close geographical proximity (about 40 km) and share

numerous faunistic elements [52].

The five taxa assigned to the P-group were genetically

differentiated at levels comparable to those separating M. manavi

and M. petersoni (Table 2). However, additional markers, specifi-

cally based on nuclear DNA, are needed to differentiate between a

single genetically variable taxon or several distinct species. It is

important to note that the clade assigned to M. manavi is based on

sequence data from a paratype of this species [24]. The most

closely related forms were P3, P4, and P7 with genetic distances

between them ranging from 2.5% to 3.3% (Table 2). Within each

taxon, haplotypes differed by 0.3% to 0.7%. Genetic distances

involving comparisons with P6 ranged from 3.2% to 5.3%, while

those involving P5 ranged from 2.7% to 5.1%. Within both P5 and

P6, haplotype variation did not exceed 1.6%. Distances between

M. egeri and the various P taxa ranged from 2.9% to 6.9%.

The geographical distribution of the P clades provides further

insights into the patterns of taxonomic and genetic diversity,

although the following conclusions will need to be verified with

further field data. P3 is largely restricted to the central portions of

the Central Highlands, notably at Ambohitantely, where it shares

a day roost with members of the M. manavi, P7, M. aelleniB, and P5

clades. It also occurs at sites in the Northern Highlands [53],

specifically the Anjanaharibe-Sud and Marojejy Massifs. The form

P4 is restricted to a relatively well-defined region at the foot of the

Central Highlands (three individuals are from Midongy Sud and

the fourth individual is from Andringitra) and all taken between

800 and 875 m. The single known individual of the X3 clade was

also collected at Andringitra at 810 m. The form P5 shows a

relatively broad distribution, with two individuals taken at

Ambohitantely in the Central Highlands and at same day roost

Table 2. mtDNA distances between Malagasy taxa belonging to the genus Miniopterus based on Kimura distances [34].

Comparison between taxa Distance range % Comparison within taxa Maximum distance %

majori vs griffithsi 7.6 – 8.5 majori 1.1

majori vs gleni 8.3 – 8.7 griffithsi 0.3

griffithsi vs gleni 7.3 – 7.9 gleni 1.0

petersoni vs manavi 2.5 – 3.3 manavi 1.8

manavi-petersoni vs P complex 3.2 – 5.3 petersoni 1.1

manavi-petersoni vs egeri 3.7 – 5.3 egeri 1.7

egeri vs P7 4.0 – 5.3 P7 0.3

egeri vs P6 4.6 – 6.9 P6 1.6

egeri vs P5 3.8 – 5.3 P5 1.6

egeri vs P4 3.3 – 4.5 P4 0.4

egeri vs P3 2.9 – 4.1 P3 0.7

within the P complex 2.5 – 6.9

aelleniA vs aelleniB 3.1 – 3.6 aelleniA 1.7

aelleniB 1.5

sororculus vs X3 7.2 sororculus 0.5

doi:10.1371/journal.pone.0092440.t002
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site as M. manavi, M. aelleniB, P7 and P3, as well as at 50 m

elevation in the eastern lowlands. P7 also occurs in the Central

Highlands (Ambohitantely) and Fanadana co-occurring with M.

manavi, P6 and M. majori. The form P6 is widespread and includes

individuals from the central western site of Namoroka, the

northwestern offshore island of Nosy Be, and Fanandana.

The fact that each P clade was recovered as monophyletic,

combined with the levels of genetic divergences between clades,

and the co-occurrence at Ambohitantely and Fanandana of several

of the P3 to P7 clades, requires further comment. One

interpretation is that the P clades represent distinct but closely

related cryptic species. The previous identification of additional

species diversity in the M. manavi complex (e.g. M. petersoni, M. egeri)

has been defined by both DNA and morphological evidence, such

as tragus shape [19,27,49]. An examination of the tragi of animals

from Ambohitantely belonging to clades P5 and P7 did not

disclose noticeable differences in tragus structure. It may be that

the P forms are incipient species and although genetic separation

has occurred, obvious morphological differences have not yet

evolved.

The P clade may comprise cases of incomplete lineage sorting of

the mitochondrial genome, introgression and hybridization of

closely related taxa or possibly a combination of these processes

[54,55]. The source taxon, however, is not clear from the available

data: none of the P haplotypes were associated with any named

species. Further analysis of this complex will require multiple

nuclear markers in order to resolve their taxonomic status and

relationship.

One further aspect that may have confounded our analyses of

genetic relationships in the manavi group, including M. petersoni, M.

egeri and the P group of clades, is that we used a mitochondrial

marker that is only transmitted by females [56]. Hence, our

evaluations here are only of the genetic relationships passed on by

females, which may not accurately reflect patterns of overall gene

flow. In bats, females tend to be notably more philopatric than

males [57] and the use of bi-parentally inherited genes might

provide further insight into the phylogenetic relationships of these

different clades. However, we come to the same question as above:

to which species do the P haplotypes align? Clearly, further

morphological, ecological and behavioral work is required to

understand better the taxonomic status of the five P taxa. At the

very least, they may represent a single cryptic species with high

levels of haplotype diversity to five currently unrecognized taxa

requiring formal description.

Colonization of the Comoros
It has been demonstrated that two species of Miniopterus are

shared between Madagascar and the Comoros [58,59] and include

M. griveaudi and M. aelleni [27]. Using mtDNA and microsatellites,

it was concluded that M. griveaudi colonized the Comoros from

Madagascar some 180 000 years ago [58]. Although this suggests a

similar colonization history for M. aelleni, DNA differentiation was

not compared between Malagasy and Comorian populations of

the latter because of low sample sizes [58].

Herein, our study reveals that individuals of M. aelleni from

Comoros are nested within the M. aelleniA clade (Figure 2). This

indicates a recent colonization of the Comoros from a member of

this apparent species complex. As the principal four islands of the

Comoros have never been connected to other landmasses,

Table 3. Summary of different size and life-history parameters of Malagasy (M) and Comorian (C) Miniopterus spp. [19,52].

Taxon Body Size Elevation (m) Distribution Habitat

sororculus MB 950–2200 C, S mhf, oh, sbf

X3 SB 810 E lhf

mahafaliensis SB 0–950 C, S, W ddf, oh, sbf

griveaudi (M) SB 0–600 N, W ddf

griveaudi (C) SB 0–900 Grande Comore, Anjouan lhf, oh

majori MB 0–1550 C, N, S lhf, mhf, oh

griffithsi LB 25–110 S sbf

gleni LB 0–1200 E, N, W, S ddf, lhf, mhf, oh, sbf

brachytragos SB 0–600 E, N, W ddf, lhf

aelleniA (M) SB 40–500 N, W ddf

aelleniA (C) SB 220–700 Anjouan lhf

aelleniB SB 810–1340 N, C lhf, mhf

manavi SB 900–1500 E, C mhf, oh

petersoni MB 10–550 S, E lhf, oh

egeri SB 0–550 N, E lhf

P3 SB 810–1340 N, C lhf, mhf

P4 SB 800–875 E lhf

P5 SB 50–1340 E, C lhf, mhf

P6 SB 60–1425 C, W ddf, mhf, oh

P7 SB 1340–1425 C mhf, oh

Body size: based on mean forearm length (FA), and animals are designated as small-bodied (SB), medium-bodied (MB) and large-bodied (LB); Distribution: E = east, N =
north, W = west, S = south, C = central and for the Comoros the name of the island is presented; Habitat: lhf = lowland humid forest, mhf = montane humid forest,
oh = open habitat (anthropogenic), ddf = dry deciduous forest, sbf = spiny bush forest.
doi:10.1371/journal.pone.0092440.t003
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dispersal would have been over-water in a westerly direction and

following the prevailing winds.

Although M. griveaudi and M. aelleniA are not phylogenetically

closely related, they are similar in their habitats, distribution and

morphology (Table 3). Both taxa occur in dry deciduous forests in

Madagascar. The ability to colonize islands in these two taxa is

likely linked to similar ecological parameters. Interestingly, the

populations in the Comoros of both M. griveaudi and M. aelleniA

occur in lowland humid forest, the former also occurring in open

habitat (anthropogenic).

Patterns of ecological diversification and speciation
in Madagascar

All of the individuals in the P3 to P7 clades occur in the eastern

humid forests at high (Central Highlands) to low (Sahafina)

elevations (Table 3), with only a few exceptions: P6 includes two

individuals from the dry deciduous forest site of Namoroka and

one individual from the transitional dry deciduous/humid forest

Sambirano formation of Nosy Be. Thus, most of the genetic

diversity has been generated in the east. Based on the Beast

analysis for extant species, the differentiation of the Malagasy

Miniopterus radiation commenced about 4.5 Myr ago, with two

periods of cladogenesis: 4–2 Myr and 0.75–1.25 Myr. These are

periods for which little hard data exist for environmental

conditions on the island and an interpretation of the ecological

and evolutionary forces that gave rise to this differentiation is not

evident. However, given the high level of syntopic occurrence of

members of the P group, specifically at Ambohitantely and

Fanandana, it is possible that past fragmentation of populations

followed by range expansion are related, for example, to the cyclic

climate changes of the Late Pleistocene/Early Holocene [60,61],

particularly in more montane zones, such as the Central

Highlands, where Ambohitantely and Fandanana are found.

Using measures of species diversity of Miniopterus on Madagascar

and the Comoros, the number of recognized species has gone from

four in 1995 [17] to eleven currently recognized species [18,19].

When the current genetic data are analyzed together, there are

indications that, at least from the perspective of phylogenetic

species, something approaching 18 taxa occur on Madagascar.

Similar studies of continental African Miniopterus reveal that levels

of species richness are higher than current estimates would

indicate [62] and that, for example M. minor is paraphyletic

(Figures 2 and 3). We suspect the same pattern will be found in

other portions of the Old World range of this genus. Before the

recent wave of molecular studies of members of this genus,

something approaching 20 species were recognized across its Old

World distribution [63]. If the patterns of cryptic species richness

on Madagascar hold for other areas, it is conceivable that over a

hundred taxa comprise this genus, making it an example of one of

the most successful adaptive radiations amongst bats.
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tion Vahatra and the Field Museum of Natural History. We acknowledge

Scott G. Cardiff, Julie Ranivo, Zafimahery Rakotomalala, Eddy N.

Rakotonandrasana, Beza Ramasindrazana, Fanja Ratrimomanarivo,

Ishaka Saı̈d, M. Corrie Schoeman, William T. Stanley, Voahangy

Soarimalala, and Peter Taylor for their aid with fieldwork or access to

tissues. We are grateful to three anonymous reviewers for their comments

on an earlier version of this paper.

Author Contributions

Conceived and designed the experiments: LC SMG KN BA. Performed

the experiments: BA. Analyzed the data: LC KN BA. Contributed

reagents/materials/analysis tools: BA SMG. Wrote the paper: LC BA KN

SMG.

References

1. Goodman SM, Benstead JP (2005) Updated estimates of biotic diversity and

endemism for Madagascar. Oryx 39: 73–77.
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