
Composing Problem Solvers for Simulation
Experimentation: A Case Study on Steady State
Estimation
Stefan Leye*, Roland Ewald, Adelinde M. Uhrmacher

Institute of Computer Science, University of Rostock, Rostock, Germany

Abstract

Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data
analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state
estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own
(dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of
the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called
synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes
various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or
portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We
show the benefits of our approach by applying it to steady state estimation for cell-biological models.

Citation: Leye S, Ewald R, Uhrmacher AM (2014) Composing Problem Solvers for Simulation Experimentation: A Case Study on Steady State Estimation. PLoS
ONE 9(4): e91948. doi:10.1371/journal.pone.0091948

Editor: Frederic Amblard, University Toulouse 1 Capitole, France

Received August 30, 2013; Accepted February 18, 2014; Published April 4, 2014

Copyright: � 2014 Leye et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The research was funded by the German Reseach Foundation (DFG), under the projects Alesia and CoSA. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: stefan.leye@uni-rostock.de

Introduction

The identification of steady states is essential for many

applications of computational biology, e.g., to study human

cancer [1], T-helper cell differentiation [2], T cell receptor

(TCR) signaling [3], or cell cycles of yeast types [4]. Several

approaches to identify steady states exist. Analytical approaches

typically investigate the full state space of a model. While they are

suitable for some kinds of models, e.g., boolean networks [5], a

complete state-space coverage is often infeasible for more complex

models. In such cases, steady states can be estimated via

simulation.

Simulation-based steady state estimation is independent of the

modeling formalism, as it merely assumes that trajectories through

a model’s state-space can be generated. To understand the steady

state behavior of stochastic models, it is often necessary to generate

multiple trajectories that cover a spectrum of possible paths

through the state-space. For each trajectory, one observes how the

quantity of interest, e.g., the amount of a chemical species, changes

over time. The resulting time series are then analyzed to estimate a

steady state statistic, e.g., the mean. Various methods have been

proposed for this task, e.g., [6–11]. Experimenters need to decide

which method to use.

However, steady state estimation is only one of many sub-tasks

to be carried out. Similar decisions must be made for other tasks,

e.g., regarding parameter optimization, simulation, or further data

analysis. Due to the variety of challenges, a typical user cannot be

expert in all relevant disciplines, and hence will find it difficult to

make these decisions. This calls for a better support in conducting

simulation experiments. While our previous work focused on

automatically selecting simulation algorithms [12], the other sub-

tasks of simulation experiments [13] need to be covered as well.

Moreover, the selection of an individual algorithm is only one way

to solve this problem; it is a special case of the general approach to

compose several algorithms for a certain task into a single algorithm.

To support this, general-purpose simulation systems need to

offer generic composition mechanisms, which should also reflect

the specifics of simulation experiments. For example, sub-tasks of

simulation experiments are usually executed iteratively. Such

mechanisms should also be easy to tune to the given application

domain, to improve their performance. This is especially relevant

for computational systems biology, e.g., Ghosh et. al. [14] demand

that ‘‘software tools and resources for systems biology need to be tailored to

their intended applications in order to achieve the objectives of novel biological

discoveries’’.

In this paper, we present an approach to compose simulation

experiment methods that are fine-tuned toward their application

domain. One of our main goals is to make simulation-based steady

state estimation more accessible to users who lack the experience

to select a suitable method. Nevertheless, our approach is generic,

i.e., it also enables a composition of other simulation experiment

tasks, such as parameter optimization. It is based on the notion of

a synthetic problem solver (called SPS in the following and defined

in Equation 3) component, which incorporates a set of base-line

problem solvers, e.g., steady state estimation methods, and

combines them to improve the overall performance. The main

advantage is that users do not have to manually select the best

suited algorithm for each concrete problem. Instead, a domain

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e91948

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0091948&domain=pdf

expert provides a set of representative example problems, from the

same problem domain as the concrete problem to be solved. A

synthetic problem solver is then trained on those example

problems to learn a suitable algorithm composition for this

problem domain. It will thus be able to find a good solution for the

concrete problem, without involving the user any further.

We assume that each base-line problem solver can solve

problems of the given type alone, and that all solvers for this

problem type work on the same input data, e.g., time series in case

of steady state estimation. Our approach involves two major steps:

a) it evaluates the base-line problem solvers on a set of

representative problems, and b) it analyzes the collected data to

generate an SPS instance with superior performance, e.g., in terms

of robustness. To prototype the creation and usage of synthetic

problem solvers, we extend the modeling and simulation

framework James II [15,16] to accommodate them as synthetic

(i.e., user-specified, automatically generated) plugins. By extending

James II ’s plugin system, we ensure a high degree of flexibility

with respect to both the base-line algorithms and the mechanisms

for combining them. To illustrate the generality of our approach,

we discuss related approaches for algorithm composition, and later

show how they can be realized with the SPS concept. To show the

effectiveness of our approach, we describe an SPS for steady state

estimation. It is based on ten base-line problem solvers and

performs well on simulation output data from seven biochemical

models: six simple reaction networks from [17] and a T cell

receptor (TCR) signaling model from [3].

Materials and Methods

2.1 Background and Related Work
Ghosh et. al. [14] structure tools and methods applied in

systems biology according to iterative cycles of experimentation,

data acquisition and analysis, modeling, and computational

analysis. They stress the need for standardization and interoper-

ability between tools and demand unifying platforms to make tools

accessible in a consistent manner, in order to improve productivity

and reduce possible errors. James II is such a platform for

modeling, simulation, and experimentation [15,16]. It is the basis

of the presented composition mechanism and offers various

methods at different points of the experiment process, e.g.,

simulators, parameter optimization methods, and steady state

estimators.

The basic idea of automatically composing software compo-

nents is anything but new. The challenge we tackle here is to

integrate such functionality into simulation software systems, in a

way that allows both a high degree of automation and also high

flexibility when it comes to the way in which the software

components are composed. Therefore, we briefly review relevant

formal methods to compose algorithms (Section 2.1.1) and then

discuss automatic component composition in other software

systems (Section 2.1.2).

2.1.1 Composition Schemes. Composing algorithms is

typically associated with applying a function to the results of

another function (e.g., via function composition: f 0g). Another

notion, on which we focus here, is composing algorithms

a1, . . . ,an[A, all of which are applicable to elements from the

same problem space P, so that the overall performance of a

composite algorithm c(a1, . . . ,an) is superior to that of a1,a2, . . . ,
and an, respectively.

Rice’s formalization of the so-called algorithm selection problem

(ASP) can be regarded as a general scheme to compose better-

performing algorithms [18]. In principle, it deals with selecting the

most suitable (base-line) algorithm from an algorithm space A to

solve a problem x from problem space P. To achieve this goal,

features f [F are extracted from x, using an extraction mapping

F : P?F. A (typically unknown) performance mapping

p : A|P?Rk defines the (multi-faceted, hence k-dimensional)

performance of algorithms (in A) on problems (in P). Additionally,

a norm DD:DD that depends on user criteria w[Rk is introduced to

characterize algorithm performance with a single value (for

algorithm comparison). User criteria may, for example, define

the desired balance between the accuracy and the speed of an

algorithm. The problem is now to find a selection mapping

S : F|Rk?A, i.e., a function that takes the features F (x)[F of a

problem x[P and the user criteria w[Rk to select the best-

performing algorithm a[A. Rice considers this to be an

approximation problem, i.e., a selection mapping S can be found

with techniques from machine learning. The approach allows, for

example, to support users in selecting a suitable execution

algorithm for a model [19]. A fully automatic selection is also

feasible, e.g., it could considerably speed up the simulation of

chemical reaction networks in James II [12]. However, most

implementations of this approach are focused on recommender

systems for scientific software in general, i.e., algorithms are

selected but not composed (e.g., see [20]).

Instead of selecting a single base-line algorithm, the fundamen-

tal idea of algorithm portfolios is to apply a set A(A of algorithms to

the same problem and to combine their results afterwards. This

approach originated in finance, where financial assets are bundled

into portfolios that maximize the expected return, given the risk

aversion preferences of an investor [21]. Instead of a selection

function, portfolios assign weights to each available algorithm, and

use them to combine the algorithms’ results afterwards. Portfolio

approaches have been successfully applied to SAT solving (e.g.,

[22]) and other NP-hard problems (e.g., [23,24]), as well as the

simulation of chemical reaction networks in James II [12].

Portfolio-based approaches receive attention in many other

domains, e.g., for valuating and managing biodiversity [25], and

for exploring biological robustness and a suitable balance of

fragility and performance in cell biological systems [26].

Similar to algorithm portfolios, algorithm ensembles typically

apply multiple algorithms to a single problem. In contrast to

portfolios, however, the application of algorithms is not defined by

weights. Instead, an additional function is learned that considers

the results of the algorithms in A to generate a result. Algorithm

ensembles are predominantly used in machine learning, where

various methods exist to train the base-line algorithms on (subsets

of) input data first, and to then train a function that operates on

their results, afterwards. The learned function could, for example,

decide which base-line algorithm ai performs well in which region

of the problem space P, i.e., which result to choose in which

situation [27,28]. In machine learning, the latter approach is

called meta-learning; it can be tackled with methods to solve the

ASP [29]. This approach of algorithm composition from empirical

data is promising, since the results of the base-line algorithms in A

may reveal important properties of the problem at hand.

Ensemble methods are widely used in bioinformatics, e.g., for

proteomics data analysis [28].

All composition schemes discussed above imply some form of

learning: either a selection function, portfolio weights, or an

ensemble function shall be learned, typically from past perfor-

mance data. Learning these elements can also be done online, i.e.,

during a sequence x1, . . . ,xn[P of problems being solved. An

example for such an approach is the adaptive online time

allocation (AOTA) method [30]. It adapts the weights of

algorithms according to their performance observed so far, by

Composing Problem Solvers

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e91948

maintaining a history of problem features and performance

measurements, which are also recorded during the solution of a

single problem. Based on this history, it is possible to predict the

additional computing time an algorithm ai needs until it solves a

problem xj , and to allocate resources accordingly. This approach

allows to learn algorithm portfolios incrementally [31] and lends

itself to an integration of various learning methods, e.g.,

reinforcement learning [32]. Reinforcement learning has already

been used to speed up the simulation of chemical reaction

networks [33].

2.1.2 Automated Composition in Software Systems. In

practice, an automated composition of software components is

particularly relevant for (self-)adaptive software, i.e., software that

is designed to adapt to changes in the user’s needs or changes in its

environment. To achieve this, adaptive software is flexible with

respect to the methods for handling a problem, i.e., it does not rely

on one design decision for an algorithm but employs different

ones, continuously re-deciding which one to use in the given

context. Norvig and Cohn [34] list five key technologies that form

the foundation of adaptive software: dynamic programming

languages, agent technology, decision theory, reinforcement

learning, and probabilistic networks. While we use a programming

language that is mostly static (Java) and do not rely on the agent

metaphor, the composition scheme we put forward in Section

‘‘Synthetic Problem Solvers’’ can integrate elements that rely on

the last three technologies. Each of those could be used within a

composed algorithm c(:::) to reason about the performance of the

a1, . . . ,an[A (see Section 2.1.1) and adapt itself accordingly.

In [35], McKinley et al. present a taxonomy of composition

techniques for adaptive software. From their point of view, we

realize a dynamic composition of algorithms at runtime. From the

perspective of autonomous computing [36], our approach allows

to dynamically re-configure simulation systems by (re-)creating

composed algorithms that are better tuned to the tasks at hand.

Via learning, the simulation system gets aware of its context, i.e.,

the problems it shall be applied to, and can optimize itself.

While we strive to automate the overall process of composing an

algorithm c(. . .), it should still be triggered manually by a user.

This is a major difference to the autonomous computing setting,

but it is necessary: a user needs to define the performance metric of

interest and the problems to be used for training. Although the

need for manual intervention could be perceived as a drawback, it

also helps a practitioner to be aware of the available algorithmic

alternatives and the underlying assumptions of their composition,

e.g., that the training set of problems is representative for the tasks

to come.

Automatic composition has also been addressed in other fields,

but mostly for enabling the execution of new tasks that require

interaction between the components (e.g., web services). Such a

composition can be supported via languages or language features,

such as language-integrated queries (LINQ, e.g., see [37]), or by

additional tools. For example, K-BACEE [38] allows to automat-

ically evaluate component ‘ensembles’. These methods are

fundamentally different from our approach: we aim to compose

complete algorithms, each already designed to fulfill the task at

hand. Our main motivation for this is to improve performance

metrics, such as the quality of the results.

Ostertag et al. [39] propose AIRS, an AI based library for

software reuse, which is designed to browse software libraries for

(reusing) components and packages that best meet given require-

ments. As components are described according to features, which

represent classification criteria, they can then be selected

according to the similarity between description and target

requirements. While the application domain of AIRS (browsing

of components) differs from our approach (orchestration of

algorithms to gain improved results), they share one key idea,

namely to represent components (i.e., algorithms) by their features

to assess their suitability for the problem at hand. In the domain of

simulation, adaptation is typically not realized as a property of the

simulation system, but as a feature of specific algorithms. For

example, there are many approaches for adaptive algorithms in

the field of parallel and distributed discrete-event simulation (e.g.,

[40–45]). Similarly, some numerical integration methods in

continuous simulation realize error control by adaptation, e.g.,

by changing step-size or using a different order method [46].

2.2 Synthetic Problem Solvers
We propose a general structure for an automated composition

of algorithms, which is called synthetic problem solver (SPS). The SPS

contains the logic to orchestrate a set of algorithms. Both the SPS

and the orchestrated algorithms adhere to a problem solver interface.

The interface comprises a single function, solve, which works

iteratively. It may repeatedly request more information about the

problem before generating a final result. The function takes the

current problem iteration (from Pit) and state (from S) to compute

the next state:

solve : Pit|S?S ð1Þ

S contains triplets of the form (as,req,res)[AS|REQ|

RES~S, which hold the actual problem solver state (from AS),

a request to demand more information (from REQ), and a result

for the current problem iteration (from RES). Pit refers to iterated

problems:

Pit~P|H, ð2Þ

comprising the initial problem (from P) and a request history H[H,

which is a sequence H~h1, . . . ,hn with hi[(REQ,ANS), i.e., it is

a list of issued requests from REQ and corresponding answers

from the set of possible answers, ANS, comprising additional

information about the problem (like additional data points of a

time series). Note that the different iterations might be required, as

in many cases not all information are available from the beginning.

Hence, while the final result completely depends on the initial

problem and the following answers, the iterations are required to

request those answers.

In case of steady state estimation, the initial problem is a time

series and the problem solver is a specific estimator. In each

iteration, the estimator tries to estimate the steady state statistic.

To avoid recalculations, it may store runtime information like the

running mean or the variance of the time series in its solver state

as[AS. If more data points are required for an estimate, it requests

them by setting a boolean request variable to true, i.e.,

REQ~ftrue,falseg. In that case it also declares the result to be

undefined (\), otherwise it will be the estimated steady state

statistic, i.e., RES~R|f\g. As long as the request is true,

additional data points are generated, e.g., by simulation, and

added to the time series. Then, the next iteration of the solution

procedure is triggered. This procedure, depicted in Figure S1 of

File S1, is executed by an additional management component. It

continues until the estimator’s request is false and the desired

steady state statistic, e.g., the mean, can be estimated.

A more formal description of the problem solver interface is

provided in Text S1 of File S1. Many sub-tasks of simulation

experiments, e.g., model execution or parameter optimization, are

executed in an iterative manner and could thus be controlled

Composing Problem Solvers

PLOS ONE | www.plosone.org 3 April 2014 | Volume 9 | Issue 4 | e91948

through this interface. The synthetic problem solver (SPS) is a

realization of this interface that supports composition. It is

formally defined in the next section.

2.2.1 Definition. A synthetic problem solver SPS has the

following structure:

SPS~SA,FP,FS,s,kT ð3Þ

i.e., it is defined by a set of problem solvers (A), sets of problem

feature and state feature extractor functions (FP and FS), a

selection function s, and a composition function k. In the

following, we define the different components and their interplay.

As with the discussion of existing schemes for algorithm

composition (see Section 2.1.1), we base our formal definitions

on the notation introduced by Rice [18].

Let A be the set of available problem solvers (algorithms) that

implement the described problem solver interface. To realize a

decision making procedure on problem solvers, a retrieval of

relevant features of those solvers and the problem at hand is

required. For example, during a steady state estimation with

multiple baseline estimators, problem features might characterize

the time series, whereas solver features might represent the results

of the estimators when applied to that time series. Therefore,

departing from Rice’s original definitions, we define two kinds of

feature extraction functions. A problem feature extractor FP : Pit?FP

extracts a solver-independent feature fp[FP from the iterated

problem, whereas a state feature extractor FS : S?FS extracts a

solver-dependent feature fs[Fs from the state s[S of a solver a[A.

For instance, in the case of steady state estimation, a problem

feature extractor extracts variance and range from a request

history that represents the generated time series segments. A state

feature extractor could return a boolean that indicates whether an

estimator detected the end of the warm-up phase. FP denotes the

sets of available problem feature extractors, FS denotes the set of

available state feature extractors.

In some cases, it is not sufficient to just consider the features of

the current iteration. For instance, if a problem solver always

produced bad results during previous iterations, this could be

relevant for decision making. Therefore, we introduce a feature

history HF containing all problem and state features that have been

previously extracted (note that the feature history is different to the

request history of the problem solver interface definition (Equation

2) as it is part of the problem solver state rather than its input). It

can be formally described by:

HF ~h
f
1, . . . ,hf

r , ð4Þ

where h
f
i [Fn

P|Fm
S , with n~DFPD and m~DFS D:DAD. Hence, the

feature history is essentially a list of r tuples, where r is the number

of executed iterations and each tuple contains the problem and

state features that have been extracted during the corresponding

iteration. This allows a decision-making component to consider

the entire history of the ongoing problem solving procedure,

similar in spirit to the history of the AOTA framework [31].

After the features have been extracted, the decision making

process can be executed. Two functions are responsible for this,

realizing base-line solver selection and composition. Both are

defined upon the set of all possible feature histories, HF :

1. A selection function s : HF?2A decides which (non-empty) set of

base-line solvers from A is applied to the current problem

iteration.

2. A composition function k : HF?RES|REQ composes the

overall results of the selected base-line solvers and generates

further requests.

For steady state estimation, a selection function s could select all

estimators that have not yet detected the end of the warm-up

phase. Likewise, a composition function k could request further

data points until the majority of estimators has detected an end of

the warm-up phase, and then average their estimates to calculate

the overall result.

The actual state space (AS) of the synthetic problem solver

consists of the feature history and the base-line solver states, so that

its overall state Ssynth is defined as

Ssynth~f(as,res,req)Das[HF | P
a[A

ASa,res[RES,req[REQg ð5Þ

Each base-line solver could have a similar state, i.e., synthetic

problem solvers can be nested.

2.2.2 Implementation. We can now implement the solve

function of the generic interface (see Equation 1) for a synthetic

problem solver SPS~SA,FP,FS,s,kT. Algorithm 1 in Table 1

shows the pseudo-code. It starts with extracting the set EP of

Table 1. Algorithm 1: Pseudo-code for the solve function of a
synthetic problem solver.

1 Given: synthetic problem solver SPS~SA,FP,FS ,s,kT

2 Input: problem pi
it[Pit , input state si[Ssynth (where i is the current iteration)

3 Output: output state siz1[Ssynth

4

5 //extract problem features

6 EP/
S

FP[FP
FP(pi

it)

7

8 //select baseline solvers

9 Sel/s(si :as:Hf ,EP)

10

11 //apply selected baseline solvers and retrieve successor states

12 Suc/fa:solve(pi
it,s

i :as:sa)Da[Selg

13 |fsi :as:sa Da[A\Selg
14

15 //extract state features from successor states

16 ES/
S

FS[FS ,s[Suc FS(s)

17

18 //append current iteration (iz1) to feature history

19 H ’f /(si :as:Hf ,(EP,ES))

20

21 //compose next iteration

22 (res,req)/k(H ’f)

23

24 //construct new algorithm state

25 siz1/((H ’f ,Suc),res,req)

It implements the problem solver interface (see Equation 1).The pseudo-code
assumes that problem and state features, i.e., elements from FP and FS , can be

collected in sets. The dot-notation, as in si:as:Hf (line 9), refers to certain sub-

elements of a tuple, in this case the feature history Hf , which is part of the state

component as (see Equation 5).
doi:10.1371/journal.pone.0091948.t001

Composing Problem Solvers

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e91948

problem features (see line 6, Algorithm 1 in Table 1). Then, the

function s selects suitable problem solvers, based on the extracted

problem features EP and the feature history Hf (line 9).

Afterwards, the solve method of the selected base-line solvers is

applied to retrieve their successor states (line 12), while the states of

the other base-line solvers remain unchanged (line 13). State

features are extracted from the successor states, resulting in the set

ES of extracted state features (line 16). Problem and state features

are appended to the feature history Hf , leading to a successor

feature history H ’f (line 19) that is used for composing the next

result and request of the SPS by applying the composition function

k (line 22). Finally, the successor state s’ is created by combining

feature history, base-line solver states, result, and request (line 25).

Figure 1 shows the data flows during an execution of solve.

2.2.3 An Example SPS for Steady State Estimation. As

mentioned before, simulation-based steady state estimation works

on time series. In each iteration, an additional part of a time series

is created by simulation and investigated by the estimator, i.e.,

Figure 1. The function solve of the SPS. It receives a problem iteration pi
it[Pit (Equation 2) and the current SPS state si[Ssynth (Equation 5). At

first, the problem feature extractors FP[FP extract relevant features from pi
it (cf. line 6 in Table 1). Then, the selection function s selects suitable

problem solvers for the current problem iteration, pi
it (cf. line 9). The selected solvers operate on their previous state s1, . . . ,sk[S and are applied to

pi
it, which results in a successor state s’i[S. The successor states s’1:::,s’k[S are stored in the SPS successor state s’ (l. 25), for the next iteration of solve.

Furthermore, they are forwarded to the state feature extractors FS[FS (l. 16). Note that state feature extractors may only be applicable to certain
problem solver states. For instance, some steady state estimator could store a specific test statistic in its state. A corresponding feature extractor
would first check compatibility, and then either extract the statistic or return no feature. The features of the current iteration are appended to the
feature history HF (cf. l. 19). The updated feature history H ’F is forwarded to the composition function k, which creates a result of the current iteration
(res[RES), and a request for further information about the problem (req[REQ, cf. l. 22). Finally, result and request are stored in the SPS successor
state (cf. l. 25), which is returned and can be used to compute the next iteration of solve.
doi:10.1371/journal.pone.0091948.g001

Composing Problem Solvers

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e91948

Pit~Rn. The result is an estimate of some steady state statistic, in

our case the steady state mean. Therefore, RES~R|f\g and \
again denotes that no steady state mean could be estimated. The

request is a boolean value denoting whether additional data are

required for estimation, hence REQ~ftrue,falseg.
Our sample SPS~SA,FP,FS,s,kT uses two base-line problem

solvers, i.e., A~fa1,a2g, where a1 is the MSER steady state

estimator [10] and a2 is Schruben’s test steady state estimator [8]

(this is a very brief example; we present a more realistic case study

in Section ‘Experiments: A Synthetic Steady State Estinator’). FP
contains two problem feature extractors, one for the standard

deviation and one for the range, i.e., the distance between

minimum and maximum value, of the time series. FS contains a

state feature extractor that retrieves the estimated steady state

mean from the algorithms in A, stored in their states, which may

be \ to denote that none was found yet. The selection function s
is trivial, it always selects both algorithms: s(HF)~fa1,a2g. The

composition function k is based on a decision tree (e.g., [47]),

which is generated from previously collected performance data,

where a1 and a2 have been applied to representative problems.

Figure 2 shows a hypothetical decision tree that could result from

such a training process.

2.3 Integration of Synthetic Problem Solvers in James II
2.3.1 Plugin -based Realization. The process of SPS

creation, deployment, and usage should be automated as much

as possible. Our prototype is based on the open-source modeling

and simulation framework James II [15,48] (See http://jamesII.

org).

We chose James II as base for the implementation of our

concept, as its plugin structure allows a separated and flexible

application of algorithms. Furthermore, James II is based on Java,

a very popular, platform-independent programming language

including a static type-system that is beneficial for the treatment of

different algorithm types by maintaining well-defined interfaces.

However, our concept can be realized for any simulation system or

programming language providing plugins that can be analyzed

and applied by reasoning mechanisms.

In James II, algorithms and data structures that are encapsu-

lated in plugins are managed by a central registry. The registry

distinguishes plugins based on their plugin type, which corresponds

to the functionality they offer. Broadly speaking, plugins of a

certain plugin type provide alternative implementations of a

particular Java interface. James II allows to add new plugins and

new plugin types. Both are declared in XML files, loaded during

start-up, and can be discovered at runtime, by querying the central

registry. This makes it easy for developers to re-use and extend the

functionality of the framework.

The prototype of our synthetic problem solver

SPS~SA,FP,FS,s,kT (see Equation 3) is based on the following

plugins and plugin types:

1. A: a list of problem solver algorithms, i.e., plugins of type

problem solver. The corresponding Java interface declares the

solve function (see Equation 1).

2. FP,FS : lists of problem feature extractors and state feature

extractors, i.e., plugins of type feature extractor. The distinction

between problem and state feature extractors is maintained by

defining the type of object to which an extractor can be

applied.

3. s,k: selection and composition function are implemented by

plugins of type result composer. The two functions are often

related (see Section ‘‘Mapping Synthetic Problem Solvers to

Existing Composition Schemes’’), so we combine them to a

single component that fully determines the composition.

Figure 2. Example decision tree representing the function k. It is traversed from top to bottom until a leaf is reached, and works on both
problem and state features. At first, the (relative) range is considered: if it is below or equal to 0:6, the left sub-tree is selected, otherwise the right
one. In the left sub-tree, a decision is made depending on the state feature of estimator a1 , by determining whether it could estimate a steady state
mean, stored in its state, i.e., s1:res=\. In the right sub-tree, the standard deviation is requested. If the deviation falls below 0:1, the state feature of
estimator a1 is considered, otherwise that of estimator a2 is used. The leaves of the tree denote result and request of the SPS instance. Depending on
problem and state features, k either requests more data points from the simulation or returns the result of the algorithm that is considered more
suitable for trajectories with the given features (see line 22 in Table 1).
doi:10.1371/journal.pone.0091948.g002

Composing Problem Solvers

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e91948

http://jamesII.org
http://jamesII.org

A, FP, and FS contain predefined plugins, but the composition

logic depends on the characteristics of the problems to be solved

(see Section 2.1.1). Hence, users should be able to (re-)generate s
and k automatically. This is described in the following.

2.3.2 Automatic Generation of Selection and Composition

Functions. The functions s and k of an SPS instance can

realize various kinds of composition (see Section ‘‘Mapping

Synthetic Problem Solvers to Existing Composition Schemes’’).

They are typically generated from empirical data, by considering

the performance of base-line solvers on previously encountered

problems. We assume that a set of such training problems is available.

Figure 3 shows an overview of the automatic generation process.

At first, the base-line problem solvers in A are applied individually

to the given training problems. Both problem features and state

features are recorded during this evaluation. State features can

also include performance measurements, such as memory

consumption or execution time. The features are extracted

automatically and written to a dedicated performance database

[49], which is integrated into the experimentation layer of James II

[16]. This makes it easy to conduct large-scale performance

evaluations with various experiment designs, so that even large sets

of training problems can be analyzed conveniently.

Often, an additional data aggregation step is required. For

example, generating a k function for an algorithm ensemble

requires to aggregate the data tuples of all individual problem

solvers (see Section 2.4.3). Aggregation may also be necessary if

either algorithm performances or training problems are stochastic.

Given the aggregated data, we can now generate different

representations of the s and k functions. This ‘Data Analysis’ step

(see Figure 3) is handled by plugins. For example, one plugin could

implement a machine learning algorithm to create decision trees

like the one shown in Figure 2. Several machine learning

algorithms are already available as plugins, e.g., implementations

from the WEKA toolkit [50].

Then, the representations of s and k are evaluated on

previously unseen problems. This step ensures, for example, that

a learning method is indeed suitable to the domain at hand, e.g.,

by estimating its prediction error on previously unseen problems.

Like the data analysis step, this procedure is fully customizable via

plugins. In a final step, the best-performing representations of s
and k are incorporated in a new SPS instance. We describe its

deployment to James II in the next section.

2.3.3 Deployment to the James II Registry. The result of

the process depicted in Figure 3 is an instance of the synthetic

problem solver, which needs to be deployed as a new plugin to the

James II registry. However, the way in which James II plugins are

created and loaded is rather static. Typically, plugins are declared

in XML files that contain relevant Java class names and some pre-

defined meta-data, e.g., regarding parameters [15]. An SPS

instance, however, is not defined by a class, but instead by specific

instances of its base-line problem solvers (A), its feature extractors

(FP and FS), and its selection and composition functions (s and

k). Therefore, we extend the registry to support a more flexible

definition of plugins.

SPS instances are wrapped in so-called synthetic plugins, which are

handled by an additional management component. Synthetic

plugins are stored to a local file, which is read during start-up.

While they are kept in a dedicated data structure, i.e., separated

from the other James II plugins, queries to discover a plugin of a

certain type now also consider all synthetic plugins of that type.

This process is transparent to application code, i.e., an SPS

instance can be applied throughout James II without code

changes.

After an SPS has been trained and deployed (typically, by an

expert for the problem domain or the algorithms at hand), users do

not have to care about selecting the best suited algorithm for a

problem, or how to apply trained compositions. Instead, they

simply use the deployed synthetic plugin, which returns an SPS

instance comprising the composition. Synthetic plugin and SPS

instance are thus used similarly to the standard plugins and

algorithms offered by James II.

Synthetic plugins may provide additional meta-data that is

important for selecting between them. In case of steady state

estimation, this could include the statistical properties of the time

series used for training.

2.4 Mapping Synthetic Problem Solvers to Existing
Composition Schemes

We now elaborate how the SPS can be configured to realize the

composition approaches discussed in Section 2.1.1. The simplicity

of these mappings makes us confident that this approach could be

useful for many other problems encountered in computational

systems biology.

2.4.1 Algorithm Selection Problem. The first element of an

SPS~SA,FP,FS,s,kT, A, corresponds to the set of algorithms A

in the algorithm selection problem (see Section 2.1.1). However,

each algorithm in A has to comply with the problem solver

interface (see Equation 1). The problem feature extractors in FP

are analogous to feature extractors in the ASP, but FP would also

include a problem feature extractor that returns user criteria. The

set of state feature extractors, FS , contains a single extractor that

retrieves the overall results from the state of the selected base-line

problem solver. As only one base-line problem solver shall be

selected and used, the selection function s picks a single element

from A and thus realizes a selection mapping for the ASP.

Typically, s is generated by analyzing algorithm performance on

training problems. This analysis relies, at least implicitly, on some

measure of performance, which is explicitly considered by the ASP

Figure 3. Scheme for the generation. A multi-step procedure allows to automatically generate suitable representations of the s and k functions.
The procedure involves simulation experiments, data recording, data aggregation, and data analysis. Then, potential representations of s and k, e.g.,
decision trees of various forms, are evaluated against new data, with methods like cross-validation. Finally, the best-performing representations of s
and k are deployed into an SPS instance.
doi:10.1371/journal.pone.0091948.g003

Composing Problem Solvers

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e91948

but has no direct counterpart in the SPS. The composition

function k returns the results extracted from the state of the

selected base-line problem solver.

As a sample setup, consider a set A of stochastic simulation

algorithms (SSAs) for chemical reaction networks [51]. SSA

performance strongly depends on the given model, so that

automatically selecting a suitable algorithm can considerably

improve execution time [12]. The problem space Pit contains all

chemical reaction networks that can be simulated with SSAs.

Problem feature extractors in FP may retrieve the number of

distinct species and reactions from a model, or a measure of its

stiffness. An additional user criterion could, for example, account

for approximative SSA variants and specify an acceptable trade-off

between execution speed and accuracy. The state feature extractor

in FS would retrieve the generated simulation trajectory from an

SSA state, and the selection function s could be generated via

supervised learning on previously recorded execution times. A

similar approach was pursued in [52] for spatial SSAs. The

composition function k would return the generated simulation

trajectory to the user.

2.4.2 Algorithm Portfolios. If an SPS~SA,FP,FS,s,kT
realizes an algorithm portfolio, the portfolio elements correspond

to the algorithm set A. Problem features are typically neglected for

portfolio construction, so FP would be empty. FS would contain

at least two state feature extractors: one to retrieve the current

solution from a base-line problem solver state, and one to retrieve

its requests. The selection function s would select all portfolio

members for execution, whereas the composition function k would

aggregate the base-line problem solver’s results and requests based

on their predefined portfolio weights.

Algorithm portfolios can be applied, for example, to solve hard

optimization problems [24] in systems biology [53]. In case of

simulation-based optimization, each base-line problem solver

could be an optimization approach that requests new points in a

model’s parameter space to be evaluated. The k function could

aggregate all requests based on portfolio weights, e.g., to let more

promising optimization algorithms evaluate more data points.

Dynamic portfolios, where algorithm weights are adapted during

iterations, can be mapped to an online adaptation scheme (see

Section 2.4.4).

2.4.3 Algorithm Ensembles. The realization of ensembles

by the SPS is quite similar to algorithm portfolios. The only

difference is that the composition function k now realizes an

ensemble function that takes into account all base-line problem

solver results. This may also require that the original problem p[P

is stored as a problem feature, so that it can be accessed by k.

Our SPS setup described in Section 3.1 is a concrete example of

such an approach. Machine learning approaches can be improved

in similar ways [27,29], and can be applied to various problems in

systems biology (e.g., see [54]).

2.4.4 Online Adaptation. All of the above schemes can be

adapted to work in an online fashion, leading to dynamic

algorithm selection, dynamic algorithm portfolios, and dynamic

algorithm ensembles. In general, adaptive behavior in the SPS can

be realized by defining problem and state feature extractors that

extract metrics regarding the solution progress. Such data is then

stored to the feature history Hf , so that the s and k functions can

access them. Data to be accessed by the solvers itself can be added

to the answer-request history by the composition function k, so

that it becomes part of the next problem iteration p[Pit.

For example, an adaptation scheme like AOTA (see Section

2.1.1) can be realized this way. AOTA’s history corresponds to the

feature history HF . The composition function k could conduct

solver-specific performance predictions and could then store the

results. During the next iteration, the base-line problem solvers

can access those results, now part of the iterated problem p[Pit,

and use computing resources accordingly.

Approaches that adaptively reconfigure a simulator at runtime

(e.g., [33,42]) can be mapped to this scheme as well. The selection

function s would realize the online learning algorithm and select

the most suitable simulator for the next part of the simulation task,

while the composition function k would simply store the last model

state (extracted from the selected base-line problem solver) to the

answer-request history, so that it can be accessed by the next base-

line problem solver.

Experiments: A Synthetic Steady State Estimator

To illuminate the effectiveness of the developed SPS infrastruc-

ture for supporting simulation studies in systems biology, we apply

it to steady state estimation [55, p. 96], i.e., we aim at estimating

the mean of a time series after its warm-up phase (also called initial

transient or initialization bias) is finished. This application area is

of particular interest for a composition of base-line problem

solvers, as Assmussen et. al. [57] proved that no universal solution

exists for finding the end of the warm-up phase, i.e., no solution

always yields correct results (independently of specific trajectory

features). Hoad et. al. [56] affirmed this finding for practical

applications, which conforms to our experience when conducting

experiments with different steady state estimators (Section Text S2

of File S1). Hence, even an expert for steady state estimation

cannot easily predict which steady state estimator performs best on

a given problem. The expert can, however, provide the required

information for generating an SPS instance that performs well on

the given problem’s features, and can be easily applied by a non-

expert user.

We evaluate our approach by composing ten steady state

estimators to an SPS instance and then testing it with time series

generated by several biochemical models. Performance measures

focus on accuracy and robustness of the estimators. Time

efficiency is not considered to be an issue, as the bottleneck in

simulation experiments usually resides in the model execution that

generates the time series and not in their analysis. However, as the

generation of time series is costly, we also investigate the data

efficiency of the tested estimators.

3.1 Experiment Setup
We describe the elements of the SPS~SA,FP,FS,s,kT that

have been realized for creating a synthetic steady state estimator.

3.1.1 Base-line Problem Solvers (A). We implemented the

following steady state estimators as base-line problem solvers:

1. MSER: identifies the warm-up phase’s end by deleting initial

observations to the point that provides the minimal MSER

statistic [10].

2. Euclidean Distance: divides a time series into vectors and

normalizes them. If all vectors of a sequence are close enough

to the unit vector, the end of the warm-up phase has been

detected [11].

3. Goodness of Fit: divides a time series into batches, counts the

amount of values below and above the mean for each batch,

and performs a Chi-Square test on the resulting histograms to

identify the warm-up phase [58].

4. Balancing Mean: counts the amount of values above and

below the mean of a time series. If the difference between both

counts is below a given threshold, the end of the warm-up

phase has been detected [6].

Composing Problem Solvers

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e91948

5. Running Mean: assumes the end of the warm-up phase as

soon as the change in the running mean falls below a given

threshold [58].

6. Batch Mean: divides a time series into batches and the batches

into two groups. Assumes the end of the warm-up phase as

soon as the distributions of the variances for the two groups are

close enough [9].

7. Crossing Mean: counts the crosses of a time series and its

running mean. As soon as a given amount of crosses occurred,

the end of the warm-up phase is assumed [7].

8. Stop Crossing Mean: counts the crosses of time series and

running mean. As soon as no crosses happened for a given

length, the end of the warm-up phase is assumed.

9. Schruben’s Test: estimates the stationarity of a time series to

identify its warm-up phase [8].

10.Moving Windows: moves a window through a time series and

updates the mean according to the values inside the window. If

the standard deviation falls below a given threshold, the warm-

up phase has been detected [59].

Methods 1–3 have been proposed by [57] for automated

experimentation, as they do not require a careful configuration.

The others have been proposed during the last four decades and

are still in use, which illustrates the difficulty of selecting a suitable

steady state estimator for a given problem. We realized all

methods as plugins of James II, and use them with their default

parameters. The result of each problem solver is the estimated

steady state mean, or \ if no steady state mean could be

estimated. Hence, RES~R|f\g. The request is a boolean value

denoting whether additional data points are required for

estimation, hence REQ~ftrue,falseg.
3.1.2 Problem Feature Extractors (FP). The feature

extractors shall characterize two key aspects of steady state mean

estimation on a time series : the amount of noise and the shape of

the initialization bias. We implemented the following time series

feature extractors in James II:

1. Count of values above sample mean, to measure the amount of

values increasing the positive bias.

2. Count of values below sample mean, to measure the amount of

values increasing the negative bias.

3. Count of values below sample mean subtracted from those

above sample mean, to measure whether positive or negative

values dominate the time series.

4. Maximum positive distance to sample mean, to measure the

impact of values increasing the positive bias.

5. Minimum negative distance to sample mean, to measure the

impact of values increasing the negative bias.

6. Maximum absolute distance to sample mean, to measure the

overall bias.

7. Portmanteau Test [60], to get a measure for the autocorrela-

tion, and therefore an indication whether patterns in the curve

are repeated.

Features 1–6 characterize the type of bias (mainly positive or

negative) in the time series, feature 7 gives an idea about the noise.

We normalized the features in order to scale with different time

series sizes. Features 1–3 are divided by the size of the time series

and features 4–7 by its value range.

For a better characterization of the initialization bias in the

presence of noise, we implemented additional extractors that

calculate the above features from a smoothed trend curve of the

time series. We used an exponential smoothing algorithm [61] for

creating the trend curve.

Previous experiments showed that feature 6 extracted from the

time series (not on the trend curve) biased the learning process of

the composition function (see Section 3.1.5), leading to overfitted

results. Hence, we leave this particular feature extractor out in our

experiments, so that we extract 6z7~13 problem features

overall.

3.1.3 State Feature Extractors (FS). Regarding state

features, we are particularly interested in the detection result of a

steady state estimator, i.e., whether it found the end of the warm-

up phase in a time series or not. This detection result is retrieved

by a state feature extractor fd .

The extractor fd returns 1 if the request element of the given

state equals false, i.e., the end of the warm-up phase has been

detected, so that a steady state can now be estimated and no

further data is required. Otherwise, fd returns 0 if more data is

requested, i.e., the end of the warm-up phase has not been

detected yet:

fd (s)~
1, if s:req~false

0, otherwise

�
ð6Þ

3.1.4 Selection Function (s). As no selection of base-line

solvers is considered, the selection function returns all given base-

line solvers:

s(HF ,A)~A ð7Þ

3.1.5 Composition Function (k). We generate a composi-

tion function with a wrapper for WEKA’s J48, which is an

implementation of the C4.5 decision tree algorithm [62]. The

basic idea behind decision trees is to identify those attributes (i.e.,

features) of training set instances that contain most information

regarding the class attribute (i.e., end of warm-up phase detected

or not). This attribute selection is done recursively, to construct a

tree of nodes representing decisions on attributes. However, the

used tree differs from the example tree of Figure 2, as it decides on

the end of the problem time series ’ warm-up phase, instead of

deciding on the steady state estimator that shall be used for

creating estimation results. This approach offers further opportu-

nities for composition, as the results of different steady state

estimators can be combined after the end of the warm-up phase

has been found. In the present example, they have been combined

by using an equally weighted portfolio of the base-line problem

solvers.

To generate training data for the J48, we use a problem

generator that creates sample problems. It follows the evaluation

approaches of [9], [63], [64], and [57] that generate time series

over several successive steps, instead of using an M/M/1 queue as,

e.g., [65], [66], and [67] do. The reason for this decision is its

straightforward parametrization, which allows for a direct control

of several key features (see below). The problem generator has the

following structure:

G~St,s,lb,lo,n,cT ð8Þ

It generates time series with bias of length lb, trend t, and shape s.

The noise of the time series is induced by a random number

generator and varies between {n and zn. The series is of size lo
and the numbers are cross correlated with factor c.

10.

Composing Problem Solvers

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | e91948

We selected trend and shape to cover the most relevant types of

time series, orienting our selection towards previous studies

[9,57,63,64]. We pursued a more fine-grained investigation of

bias during the warm-up phase, by distinguishing between two

dimensions. The first dimension is bias trend t which includes two

variants: constant and quadratic. The second dimension is bias

shape s, where three variants are considered: a straight line shape,

an oscillating shape, and a random shape. By combining the

shapes and trends, six types of bias can be created. For instance, a

quadratic trend with an oscillating shape means that during the

warm-up phase, the time series initial bias oscillates with a

quadratically decreasing amplitude, as shown in Figure 4.

In addition to bias, three other factors have been varied in our

experiments: noise, cross-correlation, and bias length. We tested

bias lengths from 0 to 150 percent of the time series length. Bias

length of more than 100 percent allows to investigate the ability of

an estimator to handle heavily biased time series. Furthermore, as

stochasticity plays a role in steady state estimation, we tested

different noise levels to investigate the robustness of the estimators

against them. The noise levels range from 0 to 10 percent, where,

e.g., 10 percent noise means that a random value between {10
and 10 percent is added to each value of the time series. The noise

has been generated with an auto-correlation factor of 0:5 to get

more realistic random numbers that are not independent and

identically distributed. Finally the length of the time series has

been varied between 1,000 and 10,000 time points.

We generated 8,640 problem definitions, each being used to

randomly generate 10 time series to tackle stochastic bias. Hence,

each of the used steady state estimators has been applied to 86,400
time series.

3.1.6 Problem Solver Evaluation. For simplicity, the steady

state estimators used in this study are considered as monolithic

entities, i.e., each tested steady state estimator is given with a fixed

(default) parametrization. Hence, a distinct consideration of the

influence of different parameter settings is not done, but should be

the subject of follow-up studies.

We compare the performance of the created SPS instance to

those of the base-line problem solvers, by applying them to real

simulation data. To do so, we execute five p-Calculus models [68]

that produce time series as input for the steady state estimators.

The models are examples models for the Stochastic Pi Machine

(SPiM) [17]:

N MgCl2: representing the behavior of a MgCl2 solution. The

time series contains the counts of the Mg particles over time.

N NaCl: representing the behavior of a NaCl solution. The time

series contains the counts of the Naz particles over time.

N KNa2Cl: representing the behavior of a KNa2Cl solution. The

time series contains the counts of the Naz particles over time.

N HCl: representing the behavior of a HCl solution. The time

series contains the counts of bound H particles over time.

N rNHCOR: representing the synthesis reaction of an rNHCOR

amide. The time series contains the counts of the rNHCOR
particles over time.

N MAPK: representing a simplified MAPK cascade. The time

series contains the counts of the KBP cells over time.

In addition to these ‘toy’ models we test the steady state

estimators with output generated by an ML-rules implementation

[69] of the T cell receptor (TCR) signaling model by Lipniacki et.

al. [3]. The model has been designed to investigate the stochastic

influences and bistability in TCR dynamics. It is focused on the

MAP kinase ERK, the amounts of which are converted into a time

series and used as input for the steady state estimators.

For assessing the steady state estimators, we focus on accuracy,

robustness, and data efficiency. Efficiency with respect to required

computational resources (computation time, memory, etc.) is of

less importance compared to the time effort that is required to

generate time series by simulation (each simulation run took at

least five minutes, whereas any estimator application took less than

a second, in our example experiment). We investigate two

performance measures that are of practical relevance for applying

steady state estimators, i.e., the ability to find the end of the warm-

up phase and the deviation between estimated and real steady

state mean.

The investigation of additional measures could be of interest for

certain applications, e.g., the ability to cope with different noise

levels in the time series. A comparative analysis of additional

performance aspects, e.g., via principal component analysis [70], is

subject to future work.

Each time series of the test models is processed by the problem

solvers in maximal 15 iterations, i.e., the time series are divided

into 10 chunks. The first 5 chunks comprise the first time points of

the time series, until the ideal truncation point (The ideal truncation

point is calculated according to the mean squared error (MSE) based

algorithm proposed by Wilson and Pritsker [67]) is reached, i.e.,

the warm-up phase is equally divided into the first 5 chunks. The

following 10 chunks comprise the next 10 segments of the time

series (after the truncation point).

Figure 4. Successive generation of problem time series.
doi:10.1371/journal.pone.0091948.g004

Composing Problem Solvers

PLOS ONE | www.plosone.org 10 April 2014 | Volume 9 | Issue 4 | e91948

This kind of input data allows us to investigate the accuracy,

robustness, and data efficiency of steady state estimators. We

measure accuracy by calculating the distance between the real

steady state mean and the mean estimated by the steady state

estimator. For measuring the amount of required data, we count

the amount of chunks until the estimator produces a result, where

estimators are considered robust if they detect the end of the

warm-up phase after the first 5 chunks (where the warm-up phase

actually has ended), and data efficient if they detect it soon after

the 5th chunk.

Figure 5. The accuracy of the steady state estimators. It is measured as relative distance between real and estimated steady state on the time
series produced by the evaluation models. Note that the deviation axis is scaled logarithmically.
doi:10.1371/journal.pone.0091948.g005

Figure 6. The number of required iterations the steady state estimators needed. for producing an estimate on the time series produced by
the evaluation models. Negative values correspond to chunks of data points before the ideal truncation point. Positive values correspond to chunks
of data points after the ideal truncation point.
doi:10.1371/journal.pone.0091948.g006

Composing Problem Solvers

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e91948

Each evaluation run (i.e., application of a problem solver onto a

set of time series chunks) has been repeated 100 times to gain

reliable results.

3.2 Evaluation Results
The accuracy of problem solvers is depicted in Figure 5. From

the base-line problem solvers, we only present the results of the

Moving Window, Batch Means, and Schruben’s Test steady state

estimators, as they performed best among the 10 tested base-line

steady state estimators during the evaluation experiment. The

results of the remaining estimators is depicted in Table S1 of File

S1. The results of the rNHCOR model are not discussed, as none

of the executed estimators was able to estimate a steady state on 15
time series chunks generated by this model.

The SPS instance is the most accurate estimator on all time

series but those generated by the HCl model (where it is the second

best). On time series generated by this model, all estimators

produce very accurate results with less than 1 percent deviation

from the real steady state mean. Hence, the worse performance of

the SPS instance could be explained by statistical fluctuations

resulting from the closeness of the different estimates.

Figure 6 shows the required chunks of data points until a steady

state could be estimated. Negative values correspond to the first 5
chunks of the time series (25 being the first chunk, {4 the second

etc.), i.e., the corresponding problem solver gave a steady state

estimate on time series data before the warm-up phase was

finished. Hence, negative values indicate that the problem solver is

less robust, as it returns biased results. On the other hand, positive

values correspond to the next 10 chunks of the time series (1 being

the first chunk after the truncation point, 2 the second etc.), i.e.,

high positive values indicate that the estimator requires many data

points after the ideal truncation points to give an estimate, making

it less efficient.

The SPS instance is the only estimator where the number of

required chunks is higher than 0 for all models, which shows its

robustness. While estimators exist that require less chunks after the

ideal truncation point, the SPS is at least the second best estimator

in this regard, and hence moderately efficient.

Altogether, the generated SPS instance is the most accurate

steady state estimator in our evaluation. It outperforms the other

estimators when applied to input data created by all but one

model. In addition, it is the most reliable estimator and its

efficiency (i.e., required data chunks) is acceptable. While the run

time of the SPS instance might be higher than that of a base-line

steady state estimator, the impact on overall experiment duration

is usually negligible. This is because the generation of time series

by simulation typically requires much more computing time than

their analysis.

Conclusion

We presented a generic scheme to compose simulation software

components for improved performance, and exemplified our

approach by composing a steady state estimator that is tuned to

the simulation of biochemical models. Our composition approach

is based on the notion of a synthetic problem solver, which

iteratively applies sub-algorithms to a problem and aggregates

their results. SPS instances can be trained on representative

sample problems from a given problem domain. With the SPS,

users are released from a manual selection of the best suited

algorithm for their problems.

The aggregation logic is highly customizable and can be

generated automatically, e.g., via machine learning. We imple-

mented an SPS prototype for the simulation framework James II

and automated its configuration and deployment, and showed

how other composition schemes can be realized as synthetic

problem solvers. In our case study, we generated and evaluated an

SPS instance for the steady state estimation of biological models.

While we developed all necessary tools for the automatic

creation of an SPS, a more intuitive and user-friendly workflow is

still work in progress. For this, we are going to rely on the

workflow management system WorMS [71]. We also plan to apply

our approach to other problem domains, such as cycle detection in

time series or simulation-based optimization.

Supporting Information

File S1 Supporting figures and tables. Text S1. A Problem

Solver Interface. Figure S1. Sequence diagram depicting the

iterated communication between answer function and a problem

solver. Figure S2. Example scheme for managing the commu-

nication between a simulator producing time series for a steady

state estimator. Text S2. Base-Line Steady State Estimator

Results on the Training Data. Figure S3. Mean deviation and

success rate of the tested steady state estimators applied on

problem data. Figure S4. Mean deviation and success rates of the

tested steady state estimators applied on time series with different

amounts of noise. Table S1. Steady State Estimator Evaluation

Results on Simulation Data.

(PDF)

Acknowledgments

We thank James Faeder, who suggested the TCR model for evaluating

steady state estimators, and Tobias Helms, who implemented the ML-

Rules version of this model.

Author Contributions

Conceived and designed the experiments: SL RE. Performed the

experiments: SL RE. Analyzed the data: SL RE. Contributed reagents/

materials/analysis tools: SL RE. Wrote the paper: SL RE AMU. Software

Implementation: SL RE.

References

1. Woods YL, Lane D (2003) Exploiting the p53 pathway for cancer diagnosis and
therapy. The Hematology Journal 4: 233–247.

2. Garg A, Xenarios I, Mendoza L, Micheli GD (2007) An efficient method for

dynamic analysis of gene regulatory networks and in silico gene perturbation
experiments. In: Proceedings of the International Conference on Research in

Computational Molecular Biology (RECOMB).

3. Lipniacki T, Hat B, Faeder JR, Hlavacek WS (2008) Stochastic effects and
bistability in T cell receptor signaling. Journal of theoretical Biology 254: 110–

122.

4. Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle
sequence of fission yeast. PLoS ONE 3: e1672.

5. Ay F, Xu F, Kahveci T (2009) Scalable steady state analysis of boolean biological

regulatory networks. PLoS ONE 4: e7992.

6. Emshoff JR, Sisson RL (1970) Design and use of computer simulation models.
The MacMillan Company.

7. Wilson JR, Pritsker AAB (1978) A survey of research on the simulation startup

problem. Simula-tion 31: 55–58.
8. Schruben LW (1982) Detecting initialization bias in simulation output.

Operations Research 30: 151–153.

9. Cash CR, Dippold DG, Long JM, Nelson BL (1992) Evaluation of tests for
initial-condition bias. In: Proceddings of the Winter Simulation Conference. pp.

577–585.

10. White Jr KP (1997) An effective truncation heuristic for bias reduction in
simulation output. Simulation 69: 323–334.

11. Lee YH, Kyung KH, Jung CS (1997) On-line determination of steady state in

simulation outputs. Computers Industrial Engineering 33: 805–808.

Composing Problem Solvers

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e91948

12. Ewald R (2011) Automatic algorithm selection for complex simulation problems.

Vieweg+Teub-ner. URL http://dx.doi.org/10.1007/978-3-8348-8151-9.
doi:10.1007/978-3-8348-8151-9

13. Leye S, Uhrmacher AM (2010) A exible and extensible architecture for

experimental model val-idation. In: Proceddings of the International Conference
on Simulation Tools and Techniques (SIMUTools).

14. Ghosh S, Matsuoka Y, Asai Y, Hsin KY, Kitano H (2011) Software for systems
biology: from tools to integrated platforms. Nature Reviews Genetics 12: 821–

832.

15. Himmelspach J, Uhrmacher AM (2007) Plug’n simulate. In: Proceedings of the
Annual Simulation Symposium. pp. 137–143.

16. Ewald R, Himmelspach J, Jeschke M, Leye S, Uhrmacher AM (2010) Flexible
experimentation in the modeling and simulation framework JAMES II –

implications for computational systems biology. Briefings in Bioinformatics 11:
290–300.

17. Phillips A. Examples in SPiM. Http://research.microsoft.com/en-us/projects/

spim/examples.pdf. Accessed 2013 July.
18. Rice JR (1976) The algorithm selection problem. Advances in Computers 15:

65–118.
19. Kaddi C, Quo CF, Wang MD (2008) Quantitative metrics for bio-modeling

algorithm selection. In: International Conference on Engineering in Medicine

and Biology Society. pp. 4613–4616.
20. Houstis EN, Catlin A, Rice J, Verykios V, Ramakrishnan N, et al. (2000)

PYTHIA II: a knowl-edge/database system for managing performance data and
recommending scientific software. ACM Transactions on Mathematical

Software 26: 227–253.
21. Markowitz H (1952) Portfolio selection. The Journal of Finance 7: 77–91.

22. Xu L, Hutter F, Hoos HH, Leyton-Brown K (2008) SATzilla: Portfolio-based

algorithm selection for SAT. Journal of Artificial Intelligence Research 32: 565–
606.

23. Huberman BA, Lukose RM, Hogg T (1997) An economics approach to hard
computational prob-lems. Science 275: 51–54.

24. Gomes CP, Selman B (2001) Algorithm portfolios. Artificial Intelligence 126:

43–62.
25. Figge F (2004) Bio-folio: applying portfolio theory to biodiversity. Biodiversity &

Conservation 13: 827–849.
26. Kitano H (2010) Violations of robustness trade-offs. Molecular Systems Biology

6.
27. Rokach L (2010) Ensemble-based classifiers. Artificial Intelligence Review 33 (1–

2): 1–39.

28. Yang P, Yang YH, Zhou BB, Zomaya AY (2010) A review of ensemble methods
in bioinformatics. Current Bioinformatics 5.

29. Smith-Miles KA (2008) Cross-disciplinary perspectives on meta-learning for
algorithm selection. ACM Computing Surveys 41: 1–25.

30. Gagliolo M, Zhumatiy V, Schmidhuber J (2004) Adaptive online time allocation

to search algo-rithms. Technical report, Istituto Dalle Molle di studi
sull’intelligenza artificiale.

31. Gagliolo M, Schmidhuber J (2006) Dynamic algorithm portfolios. In:
Proceedings of the Interna-tional Symposium on Artificial Intelligence and

Mathematics.
32. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT

Press.

33. Helms T, Ewald R, Rybacki S, Uhrmacher AM (2013) A generic adaptive
simulation algorithm for component-based simulation systems. In: Proceedings

of the Conference on Principles of Advanced Discrete Simulation (PADS). pp.
11–22. URL http://dx.doi.org/10.1145/2486092.2486095. doi:10.1145/

2486092.2486095

34. Norvig P, Cohn D (1997) Adaptive software. PC AI 11: 27–30.
35. Mckinley PK, Sadjadi SM, Kasten EP, Cheng BHC (2004) Composing adaptive

software. Computer 37: 56–64.
36. IBM (2001). Autonomic computing: IBM’s perspective on the state of

information technology. URL http://www.research.ibm.com/autonomic/

manifesto/. www.research.ibm.com/autonomic/manifesto/autonomic_
computing.pdf, Accessed 2013 July.

37. Beckman B (2012) Why LINQ matters: cloud composability guaranteed.
Communications of the ACM 55: 38–44.

38. Seacord RC, Mundie D, Boonsiri S (2001) K-BACEE: knowledge-based
automated component ensemble evaluation. In: Euromicro Conference. pp. 56–

62.

39. Ostertag E, Hendler J, Dı́az RP, Braun C (1992) Computing similarity in a reuse
library system: an ai-based approach. ACM Transactions on Software

Engineering Methodology 1: 205–228.
40. Ferscha A (1995) Probabilistic adaptive direct optimism control in time warp. In:

Proceedings of the Workshop on Parallel and Distributed Simulation (PADS).

Washington, DC, USA: IEEE Computer Society, pp. 120–129. URL http://dx.
doi.org/10.1145/214282.214320. doi:10.1145/214282.214320

41. Das SR (1996) Adaptive protocols for parallel discrete event simulation.

Proceddings of the Winter Simulation Conference : 186–193.
42. Meraji S, Tropper C, Zang W (2010) A multi-state q-learning approach for the

dynamic load balancing of time warp. Proceedings of the International

Workshop on Principles of Advanced and Distributes Simulation (PADS) : 1–8.
43. Boukerche A (2001) An adaptive partitioning algorithm for conservative parallel

simulation. In: IPDPS.
44. Minson R, Theodoropoulos G (2007) Adaptive support of range queries via

push-pull algorithms. In: Proceedings of the International Workshop on

Principles of Advanced and Distributed Simu-lation (PADS). pp. 53–60.
45. Vitali R, Pellegrini A, Quaglia F (2010) Autonomic Log/Restore for advanced

optimistic simulation systems. In: Proceedings of the International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication

Systems. MASCOTS ’10, pp. 319–327.
46. Higman DJ (1993) Error control for initial value problems with discontinuities

and delays. Applied Numerical Mathematics 12: 315–330.

47. Quinlan JR (1986) Induction of decision trees. Machine learning 1: 81–106.
48. Himmelspach J, Ewald R, Uhrmacher AM (2008) A exible and scalable

experimentation layer. In: Proceedings of the Winter Simulation Conference
(WSC). pp. 827–835.

49. Ewald R, Uhrmacher AM, Saha K (2009) Data mining for simulation algorithm

selection. In: Proceedings of the International Conference on Simulation Tools
and Techniques. ICST.

50. Machine Learning Group at the University of Waikato. http://www.cs.waikato.
ac.nz/ml/weka/.

51. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions.
Journal of Physical Chemistry 81: 2340–2361.

52. Jeschke M, Ewald R, Uhrmacher AM (2011) Exploring the performance of

spatial stochastic sim-ulation algorithms. Journal of Computational Physics 230:
2562–2574.

53. Banga J (2008) Optimization in computational systems biology. BMC Systems
Biology 2: 47+.

54. Muggleton SH (2005) Machine learning for systems biology. In: Kramer S,

Pfahringer B, edi-tors, Inductive Logic Programming, Springer Berlin Heidel-
berg, volume 3625 of Lecture Notes in Computer Science. pp. 416–423. URL

http://dx.doi.org/10.1007/11536314_27. doi:10.1007/11536314_27
55. Asmussen S, Glynn PW (2007) Stochastic simulation. Springer.

56. Asmussen S, Glynn PW, Thorisson H (1992) Stationarity detection in the initial
transient problem. ACM Transactions on Modeling and Computer Simulation

(TOMACS) 2: 130–157.

57. Hoad K, Robinson S, Davies R (2008) Automating warm-up length estimation.
In: Proceedings of the Winter Simulation Conference (WSC). pp. 532–540.

58. Pawlikowski K (1990) Steady-state simulation of queueing processes: A survey of
problems and solutions. Computing Surveys 122: 123–170.

59. Kima M, Yoonb SH, Domanskib PA, Payneb WV (2007) Design of a steady-

state detector for fault detection and diagnosis of a residential air conditioner.
International Journal of Refrigeration 31: 791–792.

60. Box GEP, Pierce DA (1970) Distribution of residual correlations in
autoregressive-integrated mov-ing average time series models. Journal of the

American Statistical Association 65: 1509–1526.
61. Goodwin P (2010) The Holt-Winters approach to exponential smoothing: 50

years old and going strong. Foresight: The International Journal of Applied

Forecasting.
62. Quinlan JR (1992) C4.5: programs for machine learning. Morgan Kaufmann, 1

edition.
63. Spratt SC (1998) An evaluation of contemporary heuristics for the startup

problem. Master’s thesis, University of Virginia.

64. White Jr KP, Cobb MJ, Spratt SC (2000) A comparison of five steady-state
truncation heuristics for simulation. In: Proceedings of the Winter Simulation

Conference (WSC). pp. 755–760.
65. Gafarian AV, Ancker CJ, Morisaku T (1976) The problem of the initial transient

in digital computer simulation. In: Proceddings of the Winter Simulation

Conference (WSC). pp. 49–51.
66. Gafarian AV, Ancker CJ, Morisaku T (1978) Evaluation of commonly used rules

for detecting steady state. Computer Simulation 25: 511–529.
67. Wilson JR, Pritsker AAB (1978) Evaluation of startup policies in simulation

experiments. Simu-lation 31: 79–89.
68. Milner R, Parrow J, Walker D (1992) A calculus of mobile processes, part i and

ii. Information and Computation: 1–40, 41–77.

69. Maus C, Rybacki S, Uhrmacher AM (2011) Rule-based multi-level modeling of
cell biological sys-tems. BMC Systems Biology 5: 77–91.

70. Jolliffe IT (2002) Principal Component Analysis. Springer Series in Statistics.
Springer, 2nd edi-tion.

71. Rybacki S, Himmelspach J, Haack F, Uhrmacher AM (2011) WorMS - a

framework to support workows in M&S. In: Proceedings of the Winter
Simulation Conference (WSC). pp. 716–727.

Composing Problem Solvers

PLOS ONE | www.plosone.org 13 April 2014 | Volume 9 | Issue 4 | e91948

http://dx.doi.org/10.1007/978-3-8348-8151-9
Http://research.microsoft.com/en-us/projects/spim/examples.pdf
Http://research.microsoft.com/en-us/projects/spim/examples.pdf
http://dx.doi.org/10.1145/2486092.2486095
http://www.research.ibm.com/autonomic/manifesto/
http://www.research.ibm.com/autonomic/manifesto/
www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
http://dx.doi.org/10.1145/214282.214320
http://dx.doi.org/10.1145/214282.214320
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://dx.doi.org/10.1007/11536314_27

