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Abstract

With the decrease in cost and increase in output of whole-genome shotgun technologies, many metagenomic studies are
utilizing this approach in lieu of the more traditional 16S rRNA amplicon technique. Due to the large number of relatively
short reads output from whole-genome shotgun technologies, there is a need for fast and accurate short-read OTU
classifiers. While there are relatively fast and accurate algorithms available, such as MetaPhlAn, MetaPhyler, PhyloPythiaS,
and PhymmBL, these algorithms still classify samples in a read-by-read fashion and so execution times can range from hours
to days on large datasets. We introduce WGSQuikr, a reconstruction method which can compute a vector of taxonomic
assignments and their proportions in the sample with remarkable speed and accuracy. We demonstrate on simulated data
that WGSQuikr is typically more accurate and up to an order of magnitude faster than the aforementioned classification
algorithms. We also verify the utility of WGSQuikr on real biological data in the form of a mock community. WGSQuikr is a
Whole-Genome Shotgun QUadratic, Iterative, K-mer based Reconstruction method which extends the previously
introduced 16S rRNA-based algorithm Quikr. A MATLAB implementation of WGSQuikr is available at: http://sourceforge.net/
projects/wgsquikr.
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Introduction

While 16S rRNA amplicon sequencing is a popular approach to

reconstructing the taxonomic composition of a bacterial commu-

nity, there are some limitations to this approach. For example,

multiple copies of 16S rRNA genes in a single organism and nearly

identical 16S rRNA genes in other species can both lead to mis-

estimates of bacterial compositions [1]. These and other consid-

erations have contributed to an increased usage of whole-genome

shotgun (WGS) sequencing to analyze microbial communities.

However, the large amount of short reads resulting from WGS

methods (ranging from 70 million 200 bp-length reads for Ion

Torrent’s Proton Torrent sequencer, to 3 billion 100 bp-length

reads for Illumina’s HiSeq, to 15 million 36 bp-length reads for

Illumina’s MiSeq) necessitates fast and accurate algorithms to

process these large amounts of data. Current methods, while

relatively accurate, can still take from 8 hours (MetaPhyler [2]) to

4 days (PhymmBL [3]) to analyze a relatively small dataset of 70

thousand 300 bp reads [2].

We introduce a method that extends the previously introduced

16SrRNA-based algorithm Quikr [4], allowing for the accurate

analysis of very large whole-genome shotgun datasets (billions of

reads) on a laptop computer in under an hour. This is facilitated

by leveraging ideas from compressive sensing to reconstruct all

taxonomic relative abundances of a bacterial community simul-

taneously (as opposed to read-by-read classification). Beyond

significant speed improvements, we demonstrate on simulated

data that this method has, on average, better reconstruction

fidelity than any other technique to date, even down to the genus

level.

Briefly, our method first measures the frequency of k-mers (for a

fixed k*7) in a database of known bacterial genomes, calculates

the frequency of k-mers in a given sample, and then reconstructs

the concentrations of the bacteria in the sample by solving a

system of linear equations under a sparsity assumption. To solve

this system, we employ MATLAB’s [5] iterative implementation of

nonnegative least squares and hence we refer to this method as

WGSQuikr: Whole-Genome Shotgun QUadratic, Iterative, K-mer

based Reconstruction. We point out that WGSQuikr has not yet

been optimized for performance but still demonstrates a significant

speed improvement over existing methods.

Methods

2.1. k-mer Training Matrix
The training step consists of converting an input database of

whole bacterial genomic sequences (with their associated plasmid

sequences) into a k-mer training matrix. For a fixed k-mer size, we

calculate the frequency of each k-mer in each database sequence.

Hence, given a database of genome sequences D~fd1, . . . ,dMg,
the (i,j)th entry of the k-mer training matrix A(k) is the frequency

of the ith k-mer (in lexicographic order) in the jth sequence dj .

Herein, we consider a single, manually curated database D

consisting of 1,401 bacterial genomes and 1,082 plasmids,

resulting in 2,483 unique sequences, which along with their
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taxonomic information, were retrieved from NCBI [6] in October,

2012. The bacterial sequences in this database cover 1,109 species

and 614 genera.

2.2. Sample k-mer Frequencies
Given a sample dataset of WGS reads, we orient all the reads in

the forward direction, and then calculate the frequency of all k-

mers in the entire sample. We refer to this vector s(k) as the sample

k-mer frequency vector.

2.3. Sparsity Promoting Quadratic Optimization
We assume that the given environmental sample only contains

bacteria that exist in the database D~fd1, . . . ,dMg being utilized.

Hence we can represent the composition of the sample as a vector

x[RM with nonnegative entries summing to one (i.e. a probability

vector) where xi is the concentration of the organism with genome

di. However, as will be demonstrated in subsection 3.10,

WGSQuikr still performs adequately when the sample does contain

novel bacteria not in the database being utilized.

The problem at hand is then to reconstruct the bacterial

concentrations x by solving the linear system (2.1)

A(k)x~s(k):

Equation (2.1) is solved by using a sparsity-promoting optimi-

zation procedure motivated by techniques used in the compressive

sensing literature. Sparsity is emphasized since it is reasonable to

assume that relatively few bacteria from the database D are

actually present in the given sample. We use a variant of

nonnegative basis pursuit denoising [7,8] which reduces to a

nonnegative least squares problem. Unlike the 16S rRNA version

of Quikr [4], WGSQuikr experiences no convergence issues

thanks to the inclusion of an adaptive choice of a regularization

parameter which is calculated individually for each dataset. The

details regarding this procedure are contained in Appendix S1.

2.4. Reconstruction Metrics
We denote the actual and predicted concentrations of the bacteria

as probability vectors x and x� respectively. The reconstruction

metric primarily employed herein is the ‘1 distance between x and

x�: jjx{x�jj‘1
. This quantity takes values between 0 and 2 (with

perfect reconstruction being jjx{x�jj‘1
~0) and is commonly

referred to as ‘‘total error’’ (as it is the total of the absolute errors).

The term reconstruction fidelity will be used to communicate

generically how well x� approximates x. We will mainly be

concerned with reconstruction fidelity down to the genus level

since the assumption given in subsection 2.3 indicates that

WGSQuikr is applicable in situations where the given metage-

nomic sample does not contain (too distantly related) novel

taxonomic units absent from the training database. This is more

likely to be the case at the genus level than at the species or strain

level.

2.5. Simulated Data
To test the performance of the WGSQuikr method, the shotgun

read simulator Grinder [9] was used to generate 720 simulated

WGS datasets totaling over 1 billion reads. These datasets have a

wide range of differing characteristics designed to replicate a range

of technologies in a variety of conditions (for example: differing

species abundances, read coverages, read lengths, error models,

abundance models, etc.). The particular parameter values can be

found in Appendix S1. We verified that our results do not depend

on the randomly chosen bacterial species in each dataset by re-

running each simulation 5 times and observing that the results in

section 3.6 do not change.

2.6. Mock Communities
To benchmark the Quikr method on real biological data, we

examined the ‘‘even’’ mock microbial community (NCBI

SRR172902) developed by the Human Microbiome Project

[10]. This community contains known concentrations of bacteria

from 21 different organisms that span a diverse range of properties

(GC content, genome size, etc.).

Results

There are many whole-genome shotgun metagenomic classifiers

that WGSQuikr can be compared to. A selection includes NBC

[11,12], Phymm [3], PhymmBl [3,13], MetaPhyler [2], RITA

[14], PhyloPythiaS [15], MetaPhlAn [16], Genometa [17] and

MetaID [18].Typically, these algorithms classify a sample in a

read-by-read fashion against a known database. Briefly, NBC

accomplishes this in a Bayesian framework utilizing k-mer counts.

Phymm and PhymmBL use interpolated Markov models to

characterize variable-length oligonucleotides. MetaPhyler and

MetaPhlAn use clade-identifying marker genes. Genometa and

RITA are BLAST-based techniques, and MetaID uses large

common and unique k-mers to classify reads. It has been shown

[2,16,17] that the methods roughly rank in terms of increasing

execution time as: MetaPhlAn, MetaPhyler, PhyloPythiaS,

Figure 1. Log-log plot of number of reads versus execution
time (seconds) for WGSQuikr, MetaPhyler and MetaPhlAn.
doi:10.1371/journal.pone.0091784.g001

Figure 2. Box-and-whisker plot of execution time (in minutes)
on the simulated experiments for WGSQuikr, MetaPhyler, and
MetaPhlAn. The boxes demarcate 75% quantiles, whiskers demarcate
range, and the vertical black bars are drawn at the mean.
doi:10.1371/journal.pone.0091784.g002
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Phymm, PhymmBL, NBC, Genometa, and RITA (MetaID [18]

details no run-time data).

WGSQuikr differs from all of these methods as it classifies an

entire dataset simultaneously rather than in a read-by-read

fashion. Furthermore, the other k-mer based techniques typically

use k-mers for k§12, whereas WGSQuikr uses k*7. As

WGSQuikr is intended to be used as a fast classification method

at a taxonomic level in which few novel taxa appear, we choose to

compare to the two fastest methods available: MetaPhlAn and

MetaPhyler. WGSQuikr and these two algorithms will be

evaluated on all simulated data and the mock community using

the default parameters.

3.7. Speed Comparison
Throughout the following, we fixed the k-mer size at k~7. We

observed the general trend that the algorithm execution time

increased exponentially as a function of k, while the ‘1-error

decreased roughly linearly. We chose k~7 as this provided a

reasonable tradeoff between fast execution time and low recon-

struction error. Figure 1 shows a log-log plot of the execution time

for WGSQuikr, MetaPhyler, and MetaPhlAn on datasets ranging

from 100 reads to 10 million reads of 75 bp in length. Figure 1

includes the time required to form the sample k-mer frequency

vector for the WGSQuikr algorithm. As k~7 is relatively

small, the time required to form this vector is negligible (e.g.

for a sample with 1 M 75 bp reads, it takes less than 5 seconds

to form the sample 7-mer frequency vector). The execution time is

nearly constant for WGSQuikr to solve (2.1) via the algorithm

detailed in Appendix S1. This is due to the algorithm taking as

input the k-mer frequency vector, whose size depends only on k,

not the size of the given dataset. This also explains the reason for

the significant speed improvement of WGSQuikr: the entire

sample is classified simultaneously, as opposed to in a read-by-read

fashion such as with MetaPhyler or MetaPhlAn.

Figure 2 shows a box-and-whisker plot of the execution time for

WGSQuikr, MetaPhyler, and MetaPhlAn on the simulated

datasets described in subsection 2.5. Note the significant

improvement in speed: the average execution time of WGSQuikr

is over 6 times faster than the average MetaPhyler execution time.

For the larger datasets (5 M reads), WGSQuikr is on average 27

times faster than MetaPhyler and 5 times faster than MetaPhlAn.

3.8. Simulated Data Results
3. .1. Reconstruction Error. We evaluated the ‘1-error at

the genus level on the simulated datasets and summarize the mean

‘1-error at the genus level in table 1. The histogram in figure 3

shows the ‘1-error versus fraction of the simulated datasets for

WGSQuikr, MetaPhyler, and MetaPhlAn. Also included is a

smooth kernel distribution approximation of each of the

histograms (shown as lines in figure 3) to emphasize how

WGSQuikr typically has less error than MetaPhyler and

MetaPhlAn.

We hypothesize that the reason WGSQuikr demonstrates such

an improvement in ‘1-error over MetaPhyler and MetaPhlan is

WGSQuikr’s ability to very accurately reconstruct the frequency

of the most abundant organisms in a sample. Indeed, at the genus

level, the mean ‘1-error decreased by 31% when focusing on only

the top 10 most abundant genera. See subsection 3.9 for further

supporting evidence.

3. .2. Reconstruction Fidelity vs Simulation Parameters. In

order to investigate what properties of a given dataset influence the

reconstruction error of WGSQuikr, we grouped the simulated datasets

by each simulation parameter (number of reads, read length,

abundance model, or diversity). Figure 4 summarizes the mean error

of WGSQuikr as a function of each one of these parameters, and

includes the results for MetaPhyler and MetaPhlAn for comparison.

Figure 3. Histogram of ‘1-error versus fraction of simulated experiments at the genus level for WGSQuikr, MetaPhyler, and
MetaPhlAn.
doi:10.1371/journal.pone.0091784.g003

Table 1. Comparison of mean ‘1-errors at the genus level
(smaller values are better).

Method Mean ‘1-error

WGSQuikr 0.644

MetaPhyler 1.006

MetaPhlAn 0.984

doi:10.1371/journal.pone.0091784.t001
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It is interesting to note that WGSQuikr runs particularly well on

short read data. Indeed, WGSQuikr gave reasonable results when

the read length was as short as 35 bp or 50 bp long, whereas

MetaPhyler and MetaPhlAn both failed to return results in such

cases. Furthermore, WGSQuikr exhibits roughly half as much ‘1-

error (0.52) as MetaPhyler (0.97) and MetaPhlAn (0.99) for

datasets consisting of reads normally distributed around 150 bp.

Given a larger number of reads, a lower diversity, and an

abundance model closer to exponential, all three methods

experienced improvement in reconstruction fidelity. Interestingly,

longer read lengths seemed to negatively impact all three methods.

3.9. Mock Community Results
To show that WGSQuikr can allow for fast, high-level analysis

of large datasets on a laptop computer, we analyzed the mock

Figure 4. Mean ‘1-error at the genus level as a function of simulated dataset parameters for each method. MetaPhyler and MetaPhlAn
failed to run on the datasets where reads were 35 bp or 50 bp in length.
doi:10.1371/journal.pone.0091784.g004

Figure 5. Relative abundances at the phylum level for reconstructions of organisms in the mock community.
doi:10.1371/journal.pone.0091784.g005
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community described in subsection 2.6 using a 2013 Macbook Air.

The dataset consists of over 6 M reads of 75 bp in length and is

over 900 MB in size. Using this laptop, which was equipped with a

dual-core 1.3 GHz Intel i5 processor, WGSQuikr completed

analyzing the mock community in less than 8 minutes and used no

more than 2 GB of RAM. In contrast, using a much more

powerful hexa-core 2.66 GHz Intel Xeon X5650, MetaPhyler

took 5.5 hours and MetaPhlAn took 2.9 hours.

The relative abundances of the organisms in the mock

community are shown in figure 5 along with their predicted

abundance for all three methods. Eukaryota where not included in

the training databases of any of the methods, hence its absence in

figure 5.

As figure 5 indicates, out of all three methods, WGSQuikr

recreates the relative abundance of the most frequently occurring

phyla most accurately, at the expense of less accurate abundance

estimation of the more rare phyla. This behavior was also observed

at the genus level. This indicates that WGSQuikr is an effective

tool for rapidly determining the predominant structure of a given

metagenomic sample, at the expense of less accurate reconstruc-

tion of rare taxa.

3.10. Cross Validation
To gauge how well the WGSQuikr method will perform when

the given sample contains bacteria not in the database (simulating

novelty), we performed a 10-fold cross-validation. Throughout the

cross-validation, the k-mer size was fixed at k~7. The database D

was partitioned into 10 disjoint sets and 1=10th was set aside as

testing data with the remaining 9=10ths used to form a new k-mer

matrix. Grinder [9] parameters were then chosen to generate a

test sample from the testing data. In particular, these parameters

were chosen as follows: read lengths normally distributed with a

mean of 150 bp and a standard deviation of 5 bp, 1 M total reads,

a power law abundance model, a diversity of 10 species, and the

homopolymer error model as in [19]. The mean ‘1-error was then

taken over the choice of which 1=10th was the testing data. Lastly,

an average was taken over 100 iterates of this procedure.

Table 2 summarizes the results of this procedure. The small

mean and variance indicates that WGSQuikr performs well at the

phylum level, even if a significant portion (10%) of the sample

contains sequences not present in the database. At the genus level,

the reconstruction was less accurate (compare to figure 3),

indicating that WGSQuikr will benefit from the inclusion of as

many bacterial genomes as possible. Hence, WGSQuikr performs

best at a taxonomic rank that minimizes the number of novel taxa.

Conclusion

WGSQuikr represents a new class of metagenomics algorithms,

one in which the taxonomic assignments of an entire WGS

metagenome are computed, instead of performing the assignment

in a read-by-read fashion. This allows for nearly constant

execution time and low memory usage, and so is particularly well

suited for analyzing very large datasets on a standard laptop

computer. In contrast to current methods such as MetaPhyler and

MetaPhlAn, WGSQuikr can be used to analyze metagenomes

consisting of very short reads (such as the 35-50 bp datasets

generated by Illumina’s MiSeq) in less than a few hours. As

Illumina’s advertised quality scores for such short read datasets are

typically much higher than for longer read datasets, this may allow

for more accurate analysis of metagenomes in unprecedentedly

short time frames.

Supporting Information
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(PDF)
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