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Abstract

Diarrhoea and respiratory infections remain the biggest killers of children under 5 years in developing countries. We
conducted a 5-month household randomised controlled trial among 566 households in rural Rwanda to assess uptake,
compliance and impact on environmental exposures of a combined intervention delivering high-performance water filters
and improved stoves for free. Compliance was measured monthly by self-report and spot-check observations. Semi-
continuous 24-h PM2.5 monitoring of the cooking area was conducted in a random subsample of 121 households to assess
household air pollution, while samples of drinking water from all households were collected monthly to assess the levels of
thermotolerant coliforms. Adoption was generally high, with most householders reporting the filters as their primary source
of drinking water and the intervention stoves as their primary cooking stove. However, some householders continued to
drink untreated water and most continued to cook on traditional stoves. The intervention was associated with a 97.5%
reduction in mean faecal indicator bacteria (Williams means 0.5 vs. 20.2 TTC/100 mL, p,0.001) and a median reduction of
48% of 24-h PM2.5 concentrations in the cooking area (p = 0.005). Further studies to increase compliance should be
undertaken to better inform large-scale interventions.
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Introduction

Environmental contamination at the household level is a major

cause of death and disease, particularly among rural populations in

low-income countries. Unsafe drinking water, together with poor

sanitation, account for an estimated 0.9% of the global burden of

disease and 0.3 million deaths [1]. Much of this disease burden is

associated with diarrhoea, which alone accounts for 10.5% of

deaths in children under 5 years in low-income countries [2].

Household air pollution (HAP) from biomass fuel smoke has been

linked to increased risk of respiratory tract infections, low birth

weight, exacerbations of inflammatory lung conditions, cardiac

events, stroke, eye disease, tuberculosis, cancer and nutritional

deficiencies [3]. The Global Burden of Disease (GBD) 2010

project found HAP from solid fuels to be responsible for 3.5

million premature deaths globally [1]. In this same assessment,

smoke from household cooking fuels was also responsible for

another half a million premature deaths due to contributions to

outdoor air pollution [1]. These environmental hazards are

aggravated among rural inhabitants of sub-Saharan Africa who

are more likely to rely on unsafe water supplies and cook using

biomass fuels on inefficient stoves [4–6].

Inefficient cookstoves also present substantial economic, devel-

opmental and environmental costs. At the household level, poverty

is exacerbated and time spent at school is reduced by the burden of

collecting more fuel for boiling drinking water and cooking [7].

Individuals, households and governments bear the cost of

expenditures for seeking treatment of enteric and respiratory

infections. Cookstove emissions also contribute to greenhouse gas

and black carbon emissions, and in some cases the fuel harvesting

can result in denuding of forests [8,9].

With a population of 10.5 million and a density of 412 persons

per sq. km, Rwanda is the most densely populated country in East

Africa [10]. Eighty per cent of the population of Rwanda lives in

rural areas and is engaged in agriculture [11]. Despite significant

progress over the last decade, 57% of the population is living
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below the poverty line, 37% of them living in extreme poverty

[11]. While a large proportion of the rural population has access to

improved water sources (71.2%), mainly through protected

springs, only 2.2% of rural areas have water on their premises

[12], resulting in an increased risk for drinking water contamina-

tion during transport and storage [13]. Almost all of rural Rwanda

(99.0%) relies on biomass for their cooking needs [12]. Morbidity

and mortality are largely dominated by communicable diseases,

including HIV/AIDS, acute respiratory infections, diarrhoeal

diseases, intestinal parisitoses, and malaria [14]. Among deaths of

children under 5, pneumonia accounts for 20% and diarrhoea for

12% [15].

In an effort to reduce the disease burden in rural Rwanda,

decrease poverty associated with expenditures for fuel, and

minimize the impact of greenhouse gases from inefficient

combustion of biomass in low-efficiency stoves, the Rwanda

Ministry of Health (MiniSante) and the Rwanda Environmental

Management Authority (REMA) have partnered with DelAgua

Health (implementer) to design, deploy and evaluate the impact of

a project that will deliver and promote the use of advanced water

filters and high efficiency cookstoves to lower-income households

in Rwanda. Prior to initiating the full campaign, the implementer

with the Ministry of Health undertook a pilot distribution of filters

and cookstoves to approximately 2200 households in 15 villages in

11 of the country’s 30 districts. We conducted this study in three of

those villages in order to assess the uptake of the intervention and

its impact on drinking water quality and household air pollution.

Methods

Study setting
The study was conducted from September 2012 to April 2013

in three rural villages, Nyarutovu and Kabuga located in

Muhanga district, Southern province; and Rubona, located in

Gakenke district, Northern province. These villages were pur-

posely selected from the 15 villages comprising the pilot

distribution phase. The sites were changed from the original

protocol, Karongi and Ngororero districts in Western province, to

accommodate access to better microbiology laboratory facilities in

Kigali.

Study design and sample size
The study employed a parallel, household-randomised, control

trial design with a 1:1 ratio. This trial followed a non-blinded

design because previous attempts to blind an earlier version of the

LifeStraw Family filter in the Democratic Republic of Congo were

unsuccessful [16]. The objectives of the study were to assess (i)

uptake and use of the intervention by the target population when

delivered programmatically, and (ii) the impact of the intervention

on the microbiological quality of household drinking water and air

quality near the self-reported cooking area over the 5-month

follow-up period. Our primary outcomes were (i) to assess levels of

faecal contamination (measured by thermotolerant coliforms,

TTC) in stored water in the home that householders used for

drinking, and (ii) to determine average 24-h concentrations of

PM2.5 in the main cooking area as identified by participants. Our

secondary outcome was to assess use of the intervention filters and

stoves based on self-report and spot-check observations.

The sample size calculation was based on PM2.5 emissions

reductions rather than TTC reductions in drinking water as the

former was determined to require a larger sample. Assuming a

50% reduction in PM2.5 emissions, 80% power, a= 0.05 and a

coefficient of variation (COV) of 1, we estimated a sample size of

63 households per arm.

The protocol of this trial and CONSORT checklist are

available as supporting information; see Text S1 and S2.

Intervention
Each intervention household received one LifeStraw Family 2.0

filter and one EcoZoom Dura improved wood burning stove. The

filter is the second-generation of a gravity-based water purifier that

uses ultrafiltration in the form of a hollow-fibre cartridge to

remove pathogens from drinking water. The first generation

device has been shown in field studies to be highly effective in

improving water quality and to achieve consistent (though not

exclusive) use [16]. The second-generation version used in this

study employs a table-top design and an integrated safe storage

vessel. Untreated water is poured through a 20-mm pre-filter

plastic mesh into a 6.0 L container; over time, gravity forces the

water through the cartridge comprised of hollow-fibres with a 20-

nm pore size. The water then passes into a 5.5 L storage vessel

where it can be dispensed via a plastic tap. The device is cleaned

daily by backwashing the cartridge using a squeeze-pump

mounted on the back of the storage container. The device is

designed to treat 18,000 L of water [17] with a flow rate of

approximately 3 L per hour. In the laboratory, the filter cartridge

was found to meet the USEPA standards for microbiological water

purifiers by reducing bacteria by 6 logs, viruses by 5 logs and

protozoa by 4 logs [18]. The filter meets the ‘‘highly protective’’

World Health Organization (WHO) rating for household water

treatment technologies [19].

The intervention stove is based on the ‘rocket’ concept that uses

an internal ‘chimney’ in the stove that directs air through the

burning fuel (usually biomass), and encourages the mixing of gases

and flame above it. Precise internal stove dimensions are used to

achieve high combustion efficiency and transfer heat to the

cooking pot. Two additional components are included with the

stove, a ‘‘stick support’’ onto which fuel wood is placed to promote

airflow and a ‘‘pot skirt’’ which increases fuel efficiency. A study

comparing cookstoves in Uganda, Kenya and Tanzania reported

that the EcoZoom (aka StoveTec) stove saved 39% to 54% of fuel

compared to open fires, cooked meals faster, and was participants’

most preferred stove during controlled cooking of local dishes [20–

22]. In the intervention group, householders were encouraged to

cook outdoors on the EcoZoom stove and to use dry wood only to

increase the efficiency of the stove. Further details on the

messaging used in the pilot distribution can be found elsewhere

[23].

Houses that were allocated to the intervention group also

received a poster with illustrations and instructions in Kinyarwanda,

the local language, on filter and stove use, maintenance, and

contact names and phone numbers for the implementer. Most

households had easy access to a cellular phone for contacting the

implementer. Intervention households received one-to-one train-

ing on use and maintenance in their homes by community health

workers (CHWs) who were previously trained by trainers who

themselves had been trained by the filter and stove manufacturers

and implementer. Intervention households were then visited

periodically at approximately one-month intervals by CHWs to

refresh health messaging and encourage use. Households allocated

to the control group were instructed to continue usual practices

throughout the study. At the end of the study in April 2013, these

control households received their own filters, stoves, posters and

training.

Use of Water Filters and Improved Stoves in Rwanda
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Enrolment, baseline survey, randomisation and
deployment of devices

Households were eligible to participate in the study if (i) they

were registered as being members of the village, (ii) the head of the

household was over 18 years, and (iii) no members of the

household worked as a CHW. The last criterion was included after

the original protocol was drafted as at the time of the design the

researchers were not aware that the CHW that would deliver the

intervention resided in the villages selected for the study. It was

explained that while all participating households would receive

filters and stoves, half would receive them at the outset of the study

and the balance at the conclusion of the 5-month follow-up period.

After obtaining consent from the heads of participating house-

holds, a baseline survey was undertaken in September-November

2012 to collect information on demographics, socio-economic

characteristics, water, hygiene and sanitation practices as well as

fuel and cooking practices. Data collection tools were translated

into Kinyarwanda and piloted before use.

Following the baseline survey, a public lottery was organised by

the implementer and research teams during a village meeting to

randomly allocate an approximately equal number of households

from each village to intervention or control groups. Local

authorities and village chiefs were extensively engaged to assess

the suitability of this randomisation approach. After the lottery,

members of control households were invited to leave the venue

while those of intervention households attended a demonstration

on the use and maintenance of the filter and stove, collected their

devices, and carried them to their homes.

Outcome assessment
Compliance. Monthly cross-sectional surveys were conduct-

ed by trained field investigators (the evaluation team) working

independently of the implementation team at unannounced visits

among each household. At each visit participants were asked to

identify the main drinking water container in the household,

whether it was the intervention filter or another container; the

surveyor also recorded whether the filter contained water at the

time of the visit, a possible objective indicator of filter use. The

field investigators also observed the cookstove and if cooking was

taking place at the time of the unannounced visit, recorded where

and whether such cooking was on the intervention stove or the

traditional stove. If no cooking was taking place, field investigators

noted the presence of smoke marks on the intervention stove, a

possible objective indicator of use. Reported measures of stove use

were also collected by asking participants what stove had been

used the last time cooking took place in their home.

Independent to our study, the implementers undertook a

separate survey, conducted by Environmental Health Officers

(EHOs), to assess use and acceptability of the intervention for their

own monitoring and evaluation purposes. The details of this

assessment have been presented elsewhere [23].

Additionally, to assess use of the intervention in a more

objective manner, remotely reporting electronic sensors were

mounted onto 23 intervention filters and 27 intervention stoves

and deployed in a randomly selected sub-sample of intervention

households for a two-week period. The details of the implemen-

tation of this nested study, data handling and analysis, and results

are presented elsewhere [24].

Water quality. During each of the five monthly visits, field

investigators took a sample from the water container identified by

the householder as being used mainly for drinking by children

under 5 years of age, or adults if no under 5 s resided in the

household. If this was other than directly from the intervention

filter, a second sample was taken directly from the filter if it

contained water. All water samples were collected in sterile Whirl-

Pak bags (Nasco, Fort Atkinson, WI) containing a tablet of sodium

thiosulphate to neutralize any halogen disinfectant. Samples were

placed on ice and processed within 6 h of collection to assess levels

of TTC. Microbiological assessment was performed using the

membrane filtration technique [25] on membrane lauryl sulphate

medium (Oxoid Limited, Basingstoke, Hampshire, UK) using a

DelAgua field incubator (Robens Institute, University of Surrey,

Guilford, Surrey, UK).

Household air pollution. Monitoring of particulate matter

with an aerodynamic diameter ,2.5 mm (PM2.5) in the main

cooking area took place between November 2012 and March

2013. 126 households (63 control and 63 intervention households)

were randomly selected for semi-continuous 24-h PM2.5 monitor-

ing. Households were numbered and selected by using a

computerised random number generator. Upon arrival at the

participant’s home, the family member mainly responsible for

cooking was identified and a short survey was employed to identify

the area in the household where cooking primarily took place.

‘‘Stacking’’ of stoves (using different stoves, often in different

locations) [26] was a common scenario, both in control and

intervention households, though more common in the latter. In

cases where the participant reported cooking equally in two

locations or with two or more stoves, we sampled from indoor

rather than outdoor locations and from traditional rather than

intervention stove. UCB-PATS PM2.5 monitors (described below)

were placed 1.5 m above the ground and 1 m away from the stove

and, whenever possible, at least 1.5 m from windows and doors by

suspending the monitors from the roof beams. When cooking was

reported to take place outdoors, the PM2.5 monitor was mounted

onto a vertical wooden stand and placed at the same distance and

height from the stove. The location of the stand was marked on the

floor and participants were advised not to touch or move the

equipment.

PM2.5 was measured using the University of California,

Berkeley Particle and Temperature Sensor (UCB-PATSTM),

(Berkeley Air Monitoring Group, USA), a semicontinuous (1-min

averages), light-scattering nephelometer [27,28]. Laboratory and

field validations of the UCB-PATS have been described previously

[27–30]. To take into account that nephelometer sensitivity is a

function of an aerosol’s specific optical properties such as size,

colour, and shape [31], calibration of the UCB response with the

target aerosol was undertaken by conducting 24-h PM2.5

gravimetric co-location measurements in a sub-sample of homes

(n = 30). Five field blanks were obtained, resulting in an

adjustment of subtracting 5 mg to the final filter masses (,1% of

the mean mass deposition). The UCB-PATS response was then

linearly regressed against the gravimetric samples (n = 27,

R2 = 0.86), with the resulting equation then used to adjust the

UCB-PATS response to the gravimetric measures (Figure S1 of

supporting information). Three gravimetric samples were omitted

due to incomplete sampling durations.

Gravimetric PM2.5 samples were collected using standard air

sampling pumps (PXR8, SKC Inc., USA) with PM2.5 cyclones

(SCC 1.062, BGI, USA) using a flow rate of 1.5 L/min. Flow rates

were measured before and after installation of the sampling

equipment in the home with a rotameter (Matheson Trigas,

Montgomeryville, PA, USA) that had been calibrated using a TSI

Flow Calibrator 4146 (TSI, Inc., USA). PM2.5 was collected on 37-

mm Teflon filters (Pall, USA). Filters were stored at 4uC until

shipment to Berkeley Air Monitoring Group in California, USA

for weighing. Filters were equilibrated for 24 h at 2263uC and

4065% relative humidity before being weighed on a 0.1

Use of Water Filters and Improved Stoves in Rwanda
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microgram resolution electro microbalance (XP2U, Mettler

Toledo, USA).

Data analysis
All data were analysed using Stata 12 (Stata Corporation,

College Station, TX, USA). Because both PM2.5 concentrations

and TTC counts in drinking water followed non-normal

distributions, medians, geometric means and Williams means are

presented together with arithmetic means. The Williams mean is

calculated by adding 1 to all the data values, then taking the

geometric mean, then subtracting 1 again [32]. Categorical data

were compared using a Chi square or a Fisher’s exact test where

appropriate. The non-parametric Wilcoxon rank sum test was

used to compare PM2.5 concentrations in the main cooking area

between intervention and control groups. To assess the effect of

the intervention on water quality, TTC counts during follow-up

were compared using random effects negative binomial regression

as describe elsewhere [33] to account for (i) repeated observations

within households and, (ii) the skewed distribution of the TTC

counts. Model comparison was assessed by using the Bayesian

information criterion (BIC), which is a well-established measure of

goodness of fit that also applies to non-nested models [33,34]. For

the purpose of analysis, plates that yielded coliform forming units

(CFUs) that were too numerous to count (TNTC) were assigned a

value of 300 TTC/100 mL. Data were analysed in an intention-

to-treat basis in order to estimate the effect of the intervention

regardless of compliance. Only those households with complete

follow-up data were analysed.

Ethics
The study was reviewed and approved by the ethics committee

at the London School of Hygiene and Tropical Medicine

(No. 6239, as amended) and the Rwanda National Ethics

Committee (No. 328 RNEC/2012). Written informed consent to

participate in the research was obtained from the male or female

head or the wife of each participating household.

Results

Study population
The three villages participating in the study comprised 585

households, all of which were screened to participate in the study,

16 (2.7%) were ineligible and 3 (0.5%) refused to participate

(Figure 1). A total of 566 households with 2429 individuals were

enrolled in the study. Of those 281 (49.7%) were assigned to the

control group and 285 (50.4%) were assigned to receive the

intervention filter and cookstove. Household loss-to-follow-up was

2.8%, primarily due to participants moving out of the study area.

A total of 2737 household-visits were completed during the follow-

Figure 1. CONSORT diagram showing the flow of participants through the trial.
doi:10.1371/journal.pone.0091011.g001
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up period (96.7%) and data on one of the primary outcomes (water

quality) was collected for 2637 households-visits (93.2%).

Baseline characteristics
Baseline characteristics were distributed evenly between the trial

arms, with the exception of availability of soap among households

with a designated hand washing area and boiling or chlorination of

drinking water (see Table S1 of supporting information). At

baseline, drinking water samples were obtained from 551 (97.3%)

households. The median and Williams mean of drinking water was

14 and 20.2 TTC/100 mL (95% CI: 15.0–27.0 TTC/100 mL)

and 22 and 30.3 TTC/100 mL (95% CI: 22.8–40.2 TTC/

100 mL) for control and intervention groups, respectively.

Filter and improved stove use and compliance
Most households used the filter throughout the study period

(Table 1). Intervention households identified the filter as the main

drinking source in 89.2% of all household visits where drinking

water was available. Visual inspection at the time of the

unannounced visit was consistent with reported use, with 99% of

the filters containing water. Of the 10.8% of intervention

households that stored their drinking water elsewhere, overall

only 39.0% of them reported that the water had been treated with

the intervention filter. Over the course of the study, however, only

62.9% of intervention households identified the filter as the main

drinking water storage container in all five follow-up visits with

available water (n = 240, 84.2%). Of the remainder, 11.2%

reported treating it and storing it elsewhere at least once during

the 5-month follow-up, 25.0% reported drinking untreated water

at least once during follow-up and 0.8% did not know the status of

their water in at least one of the visits. During the last follow-up

visit, the major reasons for not having filtered water at the time of

the visit were (i) forgetting to fill the filter (48.1%), (ii) drinking

mainly locally produced beer instead of water (22.2%), or (iii)

having a broken or not properly functioning filter (18.5%).

The intervention stoves were also used throughout the study,

though most householders also continued to use their traditional

stoves. Field investigators observed actual cooking on about a

quarter (26.9%) of their unannounced visits. Of these, 54.3% were

cooking only with the intervention stove and 4.3% were using both

the intervention and traditional stoves (Table 1). Reported use was

higher, with householders claiming they last cooked solely on the

intervention stove on 78.0% of visits. Use of the intervention stove

was not consistent, with 47.5% of intervention households

reporting to have used the intervention stove during the last

cooking event at all three home visits (data not collected during

initial phases of follow-up). Likewise, of the households that were

cooking at all three unannounced visits (n = 8), or at two of the

Table 1. Filter and stove use among intervention households: Evaluator’s survey.

All visits

N %

Filter use1

Reported drinking container

Intervention filter 1210 89.2

Other container 146 10.8

Water stored in other container treated 57 39.0

Method of treatment: Intervention filter 56 98.2

No water in intervention filter among households identifying filter as drinking container 12 1.0

No water in intervention filter among households not identifying filter as drinking container 83 56.8

Stove use2

Observation data on use

Intervention household cooking at time of visit 280 26.9

Stove in current use

Intervention stove only 152 54.3

Both stoves simultaneously 12 4.3

Traditional stove only 116 41.4

Currently cooking outdoors 59 21.1

Intervention stove users cooking outdoors3 49 32.2

Reported data on use

Reported last stove used4

Intervention stove only 593 78.0

Both stoves simultaneously 15 19.3

Traditional stove only 147 2.0

Reported using intervention stove in last three follow-up visits 130 47.5

1Based on households that completed the visits and allowed enumerators to observe the container, 1356/1393 = 97.3%.
2Data only available from mid follow-up 2 onwards (1040/1393 = 74.7%).
3Among those households cooking only on the intervention stove.
4Excludes those households cooking at time of home visit.
doi:10.1371/journal.pone.0091011.t001
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three unannounced visits (n = 52), only 50.0% and 34.6% were

using the intervention stove at all three or two visits, respectively.

During the last follow-up visit, the major reasons for not using the

intervention stove during the last cooking event were (i) having no

time to tend the fire (34.1%), (ii) not having dry (30.7%) or the

right-size wood (10.2%) or, (iii) cooking beans for which a

traditional stoves was regarded most appropriate (10.2%).

Data on use of the intervention from the implementer’s survey

was very similar to our assessment (Table 2). A similar percentage

of intervention households (27.7%) were cooking at the time of the

visit. Of these, just over two thirds (64.1%) were exclusively

cooking on the intervention stove, but only 17.2% of these were

cooking outdoors, a figure just slightly lower than the one observed

on our independent follow-up. Data from the implementer’s more

extensive survey confirmed the stacking of stoves in intervention

households, with 76.4% of intervention households reporting to

continue using their traditional stoves. Of these, 26.7% reported

using it $7 times per week. Of interest was the fact that 83.8% of

intervention households identifying the intervention stove as their

primary cookstove reported that the intervention stove required

more active tending of the fire as compared to the traditional

stove.

In the last round of our follow-up, 5.4% and 5.1% of

intervention households reported having problems with their filter

or stove at the time of the visit, respectively. Data collected from

the implementer’s repair team indicates that 24.9% of filters and

6.7% of stoves had to be repaired during the study. No devices had

to be fully replaced, though some repairs involved the replacement

of individual components. The main reasons for filters being

repaired were (i) filters being clogged (48.6%) and, (ii) tubes being

damaged by rodents (27.0%). The main reasons for the

intervention stoves being repaired included (i) pot skirts melting

(65%), and (ii) stick supports breaking (10%).

Overall, only 1.0% of water samples collected from control

households were reported to have been treated with a neighbour’s

intervention filter, showing low levels of cross-contamination

between groups.

Water quality
The microbiological quality of the stored drinking water was

significantly higher in intervention households than control

households (Williams means 0.5 vs. 20.2 TTC/100 mL, respec-

tively, p,0.001). Overall, 86.8% (95% CI: 84.9%–88.6%) of

drinking water samples from intervention households were free of

TTC compared to 22.4% (95% CI: 20.1%–24.6%) of control

household samples (p,0.001) (Figure 2). The proportion of

samples that had .100 TTC/100 mL was 3.6% (95% CI:

2.6%–4.6%) for intervention households and 31.9% (95% CI:

29.4%–34.5%) for control households. Overall, 96.6% of drinking

water samples collected directly from filters were free of TTC. In

intervention households, water quality was significantly higher in

water samples collected directly from the filter (Williams mean

0.14 TTC/100 mL; 95% CI: 0.10–0.18) than water stored in

another container (Williams mean 13.8 TTC/100 mL; 95% CI:

9.0–20.7) (see Table S2 of supporting information). The quality of

the drinking water stored in other containers did not differ

significantly between control and intervention households

(p = 0.07). However, among intervention households, water that

was stored in another container and was reportedly treated with

the intervention filter was significantly of higher quality than

reportedly non-treated stored water (Williams means 5.4 vs.

23.2 TTC/100 mL, respectively, p,0.001). Throughout the

duration of the study, only 2.5% of control households had

drinking water free of TTC on all follow-up visits as opposed to

56.5% of intervention households. Overall 15.2% of samples from

control households and 5.1% of samples from intervention

households yielded plates that were TNTC.

Air quality
A total of 121 households (60 intervention and 61 control)

completed the 24-h PM2.5 monitoring of the main cooking area.

66.7% of intervention households identified the intervention stove

as their main cooking stove. However, only 23.3% of intervention

households reported that their main cooking area was outdoors as

promoted by the intervention. Of these, all households reported

cooking with the intervention stove. Among the control house-

holds, the three stone fire was identified as the main cooking stove

in 65.6% of cases, followed by the locally made rondereza stove

(24.6%). Only one control household reported cooking outdoors.

Table 3 shows the PM2.5 concentrations of the main cooking

area for control and intervention households on an aggregate level

and stratified by reported main area of cooking. Overall, mean

and median 24-h PM2.5 concentrations in intervention households

were 0.485 mg/m3 and 0.267 mg/m3, respectively, compared to

Table 2. Filter and stove use among intervention households:
Implementer’s survey.

N %

Filter use

Filter presence confirmed in households1 283 99.7

Tap accessible to ,5 s 267 94.4

Water present in filter 269 95.1

Stove use

Observation data on use

Intervention household cooking at time of visit2 78 27.7

Stove in current use

Intervention stove only 50 64.1

Both stoves simultaneously 4 5.1

Traditional stove only 24 30.8

Currently cooking outdoors 30 38.5

Intervention stove users cooking outdoors3 28 17.2

Reported data on use

Reported last stove used4

Intervention stove only 163 79.9

Both stoves simultaneously 2 1.0

Traditional stove only 39 19.1

Primary stove in current use is intervention stove4 253 89.1

Use intervention stove $7/week 236 93.3

Use intervention stove $14/week 137 54.2

Continue using traditional stove 217 76.4

Use traditional stove $7/week 58 26.7

Reported cooking less indoors 175 61.6

Reported main cooking is outdoors 163 57.4

Tend more the fire with the intervention stove5 212 83.8

1Observation not allowed in one household.
2Of those households that allowed the observation (n = 282, 99.3%).
3Among those households cooking only on the intervention stove.
4Excludes those households cooking at time of home visit.
5Among those households identifying intervention stove as main cooking
stove.
doi:10.1371/journal.pone.0091011.t002
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0.905 mg/m3 and 0.509 mg/m3 for control households. This

represents a 48% reduction in median 24-h concentrations

(p = 0.005). Compared to control households that predominantly

cooked indoors, intervention homes that reported indoor cooking

showed a reduction in median concentrations of 37%, which was

only borderline significant, possibly due to the smaller sample size

(p = 0.08). Outdoor cooking in the intervention was associated with

a median reduction of 73% when compared to control households

(p,0.001) and 57% reduction when compared to indoor-cooking

intervention homes (p = 0.02).

Discussion

We report on a randomised controlled trial to independently

evaluate a pilot implementation program distributing free water

filters and improved cooking stoves to rural homes in Rwanda. We

found high reported use of the intervention filter, which was

associated with significantly higher microbiological quality of

drinking water when consumed directly from the filter. Neverthe-

less, such use was not exclusive; a sizable proportion of

householders continued to drink untreated water. We also found

improved household air quality among intervention households

despite continued use of the traditional stove.

Filter uptake among the intervention population was high, with

filters being reportedly used in 89.2% of all household visits. Similar

levels of uptake of filter-based interventions have been reported

elsewhere [16,35,36]. Nevertheless, we found that 25% of

intervention householders were reporting untreated water in at

least one of the five follow-up visits. The nested study within this

RCT using remotely reporting electronic sensors that collected

objective data on use of the intervention devices (mainly times and

volumes of water filtered for the intervention filter and times and

duration of use for the intervention stove) corroborated our findings,

showing that the filters and stoves were not used in a consistent and

exclusive manner [24]. Epidemiological modelling based on

quantitative microbial risk assessment suggests that even occasional

consumption of untreated water can vitiate the health benefits

associated with improved water quality interventions [37–39].

However, the intervention did significantly improve the microbio-

logical quality of the drinking water when the filter was used as the

main storage container. Since 96.6% of drinking water samples

collected directly from filters were free of TTC, the conditions for

achieving health gains may be achieved with better messaging.

Exclusive use was more problematic for the intervention stove.

Only half of the intervention households reported that the last

Figure 2. Percentage of water samples by level of contamination (TTC/100 mL).
doi:10.1371/journal.pone.0091011.g002

Table 3. Summary statistics for 24-h PM2.5 concentrations in the reported main cooking area.

PM2.5 (mg/m3) N Mean SD Min Median Max
Geometric
mean

% Mean
reduction

% Median
reduction

Wilcoxon
RST1 p-value

Control 61 0.905 1.05 0.06 0.509 4.69 0.51 - -

Intervention 60 0.485 0.53 0.04 0.267 2.28 0.28 46% 48% 0.005

Reported cooking location

Control- Indoor cooking 60 0.910 1.06 0.06 0.506 4.69 0.51 - -

Intervention- Indoor cooking 46 0.558 0.56 0.04 0.321 2.28 0.33 39% 37% 0.08

Intervention- Outdoor cooking 14 0.243 0.34 0.05 0.139 1.40 0.16 73% 73% ,0.001

1Wilcoxon rank-sum (Mann-Whitney) test

doi:10.1371/journal.pone.0091011.t003
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cooking event was performed with the intervention stove in the last

three monthly follow-up visits. Likewise, only a third of those

households that were visited twice at times that cooking was taking

place were using the intervention stove at both instances, showing

that among the intervention arm, households continued to rely on

their traditional stove. Results from the implementers’ survey

showed similar results, with 76.4% of households reporting the

continued use of their traditional stove, 26.7% of them using it more

than 7 times per week. This is consistent with other studies that have

shown that the introduction of a new stove often results in

‘‘stacking’’ rather than an immediate complete substitution [40–43].

Households reported continuing the use of their traditional

stove because the intervention stove required more tending,

unavailability of the adequate fuel or personal preferences for

cooking traditional dishes. Context-specific issues regarding a

community’s cooking needs and preferences have been commonly

cited in the literature as reasons for not achieving higher uptake

and/or exclusive sustained use of improved cookstoves [42,44].

Thus re-considerations of the promoted stove or more active

messaging addressing each of the main barriers may be required if

a switching of the stove as opposed to an addition of the

intervention stove to the current cooking system is to be achieved.

This is not only going to affect the potential health impact of the

intervention but also its environmental impact.

The assessment of HAP among control and intervention

households showed an overall reduction of 48% of 24-h PM2.5

among intervention households, which was comparable to

reductions in household air pollution for rocket stove interventions

in Ghana (52%) and Kenya (33%) [22,45]. Indoor cooking with

the intervention stoves as opposed to the traditional stove was

associated with a 37% reduction in 24-h PM2.5, which was of

borderline significance. However, we cannot rule out that this

association may be due to residual bias by comparing sub-groups.

Likewise, cooking outdoors, as recommended by the implementer,

doubled the reduction in 24-h PM2.5 from 37% to 73% as

compared to indoor cooking on traditional stoves. Future studies,

randomising participants not only to stove technology but also to

cooking location (indoors vs. outdoors) would be advisable. More

effective messaging may increase the levels of outdoor cooking

expected by the intervention, as only 57.4% of households

reported that their main cooking area was outdoors. Nevertheless,

both the indoor and outdoor concentrations in the cooking area

were well over even the initial interim 24-h WHO target for PM2.5

(75 mg/m3) [46]. At the same time, it will be important to monitor

personal exposure directly, as most householders that identified

the intervention stove as their primary cooking stove (83.8%)

reported that the intervention stove required more tending than

their traditional one, which could mitigate some of the impact

from the household level reductions in PM2.5. Indeed, many

studies have found that reductions in personal exposure tend to be

lower than reductions of emissions in the cooking area [47,48].

Given that a recent RCT study suggested that personal exposure

reductions exceeding 50% may be required to achieve meaningful

health impacts [47], further assessments of the intervention stove

maybe be needed to determine whether the use of the intervention

stove translates into meaningful health benefits.

This study has certain limitations. First, the villages included in

the RCT were not selected randomly and should not be viewed as

representative of any larger population. Second, we cannot rule

out the potential for reactivity due to repeated monthly follow-up

visits [49]. Third, while we attempted to collect objective

indicators of use, by both undertaking visual observations of the

filter and stoves and cooking events, the study relied heavily on

reported data, which is susceptible to reporting bias. Furthermore,

in this study we failed to collect data on reported supplementation

of treated water with untreated water, which would have further

implications for the health impact of the study. Previous studies

with the earlier version of the LifeStraw Family filter have found

quite varied results. A study in the Democratic Republic of Congo

showed substantial supplementation despite high levels of filter use

[16]. On the other hand, a study among HIV-positive mothers,

who may be more aware of their health and their children’s health,

reported almost no supplementation [36]. However, in the latter

storage containers were provided. Fourth, budget constraints

allowed only the main cooking area, as identified by the

participant, to be monitored for HAP. Given the potential for

reporting bias and that stacking was commonly reported among

the study population, it is very likely that cooking events may have

taken place during the monitoring period in areas other than the

one being monitored, thus giving a misleading and probable

underestimate of the actual total HAP. Likewise, budget

constraints did not permit personal PM2.5 assessment, a more

reliable metric for exposures associated with health outcomes [50].

Fifth, we did not collect any self-reported or other measures of

diarrhoea or respiratory infections in our study communities.

Finally, the follow-up period of this evaluation was limited to 5

months. This represents under a fraction of the lifespan of both the

filter and stove and provided little opportunity to assess the impact

of seasonal variations that are common in water quality and HAP.

It also provided no opportunity to assess long-term patterns of use,

which have been shown to diminish or vary over time for both

water filters and improved cookstoves [35,43]. We are endeav-

ouring to address some of these shortcomings in a longer-term

follow-up study, currently underway, that will focus on health

outcomes and sustained use.

Notwithstanding these limitations, this study suggests that a

combined filter/stove intervention accompanied by consistent

follow-up to promote use has the potential to significantly improve

drinking water quality and household air pollution among a

vulnerable population in Rwanda. If the longer-term follow-up

study demonstrates sustained use with more exclusive reliance on

the intervention hardware and lower personal exposure to HAP,

then a large-scale roll out in Rwanda could significantly reduce

exposures linked to much of the country’s disease burden.
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