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Abstract

MOSAIK is a stable, sensitive and open-source program for mapping second and third-generation sequencing reads to a
reference genome. Uniquely among current mapping tools, MOSAIK can align reads generated by all the major sequencing
technologies, including Illumina, Applied Biosystems SOLiD, Roche 454, Ion Torrent and Pacific BioSciences SMRT. Indeed,
MOSAIK was the only aligner to provide consistent mappings for all the generated data (sequencing technologies, low-
coverage and exome) in the 1000 Genomes Project. To provide highly accurate alignments, MOSAIK employs a hash
clustering strategy coupled with the Smith-Waterman algorithm. This method is well-suited to capture mismatches as well
as short insertions and deletions. To support the growing interest in larger structural variant (SV) discovery, MOSAIK
provides explicit support for handling known-sequence SVs, e.g. mobile element insertions (MEIs) as well as generating
outputs tailored to aid in SV discovery. All variant discovery benefits from an accurate description of the read placement
confidence. To this end, MOSAIK uses a neural-network based training scheme to provide well-calibrated mapping quality
scores, demonstrated by a correlation coefficient between MOSAIK assigned and actual mapping qualities greater than 0.98.
In order to ensure that studies of any genome are supported, a training pipeline is provided to ensure optimal mapping
quality scores for the genome under investigation. MOSAIK is multi-threaded, open source, and incorporated into our
command and pipeline launcher system GKNO (http://gkno.me).
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Introduction

The widespread availability of next-generation sequencing

platforms has revolutionized the life sciences through the ever

more accessible ultra-high throughput DNA sequencing efforts

[1]. Next-generation sequencing technologies including Illumina,

Complete Genomics, and Applied Biosystems (AB) SOLiD have

been driving the current market forward, whereas Pacific

Biosciences SMRT [2], Ion Torrent [3], and Nanopores [4] are

leading the development of third-generation sequencing instru-

ments. These technologies bring novel opportunities for many

applications including genetic variant discovery, epigenomic

variant discovery, RNA-Seq and ChIP-Seq, but also provide

complex computational challenges. The short reads generated by

these technologies are generally aligned to a reference genome as

an early step in many of the current analysis workflows and the

alignment quality limits the accuracy of any downstream analysis.

Large sequencing projects often use sequencing machines from

multiple manufacturers for data generation and can also make use

of legacy data. It is desirable that any researcher tasked with

analyzing the available data need not learn the intricacies of

multiple alignment software packages to utilize all of the available

data. This is unnecessary, since, MOSAIK can, uniquely,

accurately align sequencing data from all current and legacy

platforms.

Current sequencing technologies typically generate on the order

of hundreds of millions of short reads (of the order of a few

hundred nucleotides or shorter) on a single run. In order to

analyze all of these reads in a reasonable amount of computational

time, the performance of reference-guided alignment programs is

paramount. The memory footprint of these algorithms must also

be well managed to allow their deployment beyond institutions

with extremely expensive computational infrastructure. These

goals must be met without compromising the accuracy of resulting

alignments. Most existing aligners utilize hashing algorithms or the

Burrows-Wheeler transform [5,6] to search exact matches

(algorithms may be modified to allow few mismatches) as their

first step to achieve high performance and optimize memory

usage. Theoretically, hashing method outperforms BWT method

for DNA database searching [7]. The hash-based aligners, Eland

(AJ Cox, Illumina, San Diego), MAQ [8], mrFAST/mrsFast

[9,10], SHRiMP [11,12], and ZOOM [13,14] hash reads and fit

these hashes to the reference genome, while MOM [15],

MOSAIK, PASS [16], ProbeMatch [17], SOAP [18], SRmapper

[19], and STAMPY [20] hash the reference genome and store this

for comparison with reads. Major Burrows-Wheeler transform

(BWT) based aligners include BWA [21], Bowtie [22,23],

segemehl [24] and SOAP2 [25]. In general, BWT-based aligners

are sensitive but include a slow query operation (each FM-index

query is slower than a hash query [26,27]). In regions with
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genomic variation (e.g. those regions in which the investigator is

usually most interested), maintaining good performance generally

leads to lower sensitivity [19,28]. In addition, the Burrows-

Wheeler transform method is less flexible than hash based

methods. For example, it is more difficult for the Burrows-

Wheeler transform to consider ambiguities by using IUPAC [29]

ambiguity codes representing, for example, known SNPs. The

main drawback of hash-based aligners is that they usually consume

more memory than BWT-based aligners; however, as high-

memory machines become cheaper, this becomes less of a

problem. Currently, MOSAIK can be operated in a low-memory

mode that keeps the memory footprint small (,8Gb for the

human genome), ensuring that even for lower memory machines,

MOSAIK can still be used with confidence.

Here, we introduce a reference-guided aligner, MOSAIK, that

is highly sensitive, stable and flexible, whose utility on a range of

different sequencing technologies has been demonstrated in the

context of the 1000 Genomes Project [30,31]. In addition to

MOSAIK’s ability to map data from all major sequencing

technologies, it has been developed to address many of the issues

currently facing genome researchers. These developments are

outlined here. The primary goal of any mapping software is to

minimize alignment artefacts and increase alignment sensitivity

and accuracy. To achieve this, MOSAIK uses a Smith-Waterman

algorithm and is able to align reads to a genome using IUPAC

ambiguity codes, ensuring that alignments against known single-

nucleotide polymorphisms (SNPs) are not penalized. Using this method,

MOSAIK achieves positive predictive values (PPVs) of 99.5% for

all alignments and 100.0% for high confidence alignments (those

with a mapping qualities larger than 20) in experiments on

simulated data. In addition to providing the genomic coordinates

of the read mapping, it also important to provide a measure of the

confidence in this coordinate. For this purpose, MOSAIK uses a

neural-network based training scheme to provide well-calibrated

mapping quality scores. In our experiments, the correlation

coefficient between the quality scores assigned by MOSAIK and

the actual scores is 0.97. To ensure that studies of any genome are

supported, MOSAIK provides a training pipeline to ensure

optimal mapping quality scores for the genome under investiga-

tion. A major area of active investigation is the study of structural

variation (SV). MOSAIK has been designed to aid and simplify

the discovery of such variants. In particular, known-insertion

sequences, for example, mobile element insertions (MEIs), can be

included as part of the reference genome. This helps to minimize

alignment artefacts, but MOSAIK also provides a host of valuable

information to user on the paired-end reads that map to one of

these sequences. When requested, MOSAIK also outputs all

possible mapping locations for every read in a separate BAM file.

This is essential for determining the mappability of the genome

under study. The most recent versions of BWA, BOWTIE and

MOSAIK are comparable in their run times, and STAMPY is

approximately six times slower. Finally, MOSAIK is implemented

in C++ as a modular suite of programs that is dual licensed under

the GNU General Public License and MIT License. It is multi-

threaded, open source, and incorporated into our command and

pipeline launcher system GKNO (http://gkno.me).

Results

Alignments from all sequencing technologies
All of the available sequencing technologies use different

techniques for library preparation, paired-end read protocols and

DNA sequencing, resulting in a range of read lengths, fragment

lengths, base quality assignments, as well as different error profiles.

Additionally, not all technologies report their sequencing reads in

the conventional basespace (strings of the A, G, C and T

nucleotides) format. Notably, AB SOLiD uses a di-base encoding

scheme known as colorspace and single-molecule sequencing

technologies use dark bases [32] for bases not registered by the

instrument. These facts mean that all of the currently available

aligners are tailored for use on data from one, or a small number of

the available technologies. MOSAIK is the only aligner that can be

used in a consistent manner across most of these technologies.

In addition to the second-generation technologies, Illumina,

Roche 454 and AB SOLiD, MOSAIK can also be deployed on

third-generation technologies, in particular, Pacific Biosciences

and Ion Torrent reads. MOSAIK uses the same algorithmic

approach for all sequencing technologies, however, since the

characteristics of each technology are different, the resultant

alignment rates vary, as shown in Table 1. These alignment rates

were generated using Illumina paired-end (PE), single-end (SE)

and Roche 454 SE reads generated using the MASON read

simulator (http://www.seqan.de/projects/mason/) as well as

Illumina and AB SOLiD reads from the Han Chinese in Beijing

(CHB) population from the 1000 Genomes Project. For the third-

generation technologies, we used E. coli reads provided by Ion

Torrent (http://www.iontorrent.com/applications-pgm-accuracy/)

and V. cholerae reads provided by Pacific Biosciences (ftp://

ftp.ncbi.nlm.nih.gov/sra/Submissions/SRA026/SRA026766/pro

visional/SRX032454/SRR075103/).

In general, sequencing reads containing fewer sequencing errors

have higher alignment rates, e.g. Illumina reads, and longer or

paired-end reads require more time to align. That paired-end

reads take additional time is not unexpected. If one of the reads in

a pair cannot be mapped unambiguously, additional searches are

performed guided by the mapped mate in the pair. The additional

processing time results in more accurate alignments as well as a

lower fraction of unaligned reads. AB SOLiD reads are aligned in

colorspace (converting to basespace prior to alignment loses all of

the benefits of colorspace), but additional processing is required

due to the required conversion of the alignments into basespace

post-alignment. These experiments show that MOSAIK works

well for existing sequencing technologies.

Highly accurate alignments on simulated data
To investigate the accuracy of reads aligned using MOSAIK,

we simulated a total of 12 million Illumina paired-end reads from

chromosome 20 of the Hg19 human genome using the MASON

read simulator. Reads of length 76 and 100 basepairs were

simulated with a haplotype SNP rate of 0.1%. The reads were

aligned against the entire human genome using BWA-0.5.9,

BOWTIE-2.0-beta5, STAMPY-1.0.13, and MOSAIK-2.1.78.

The default parameter settings were used for all of the aligners.

The positive predictive value of each aligner was then calculated as

the number of correctly placed reads (the genomic coordinate of

the mapped read agreed with the known location of the read from

MASON) divided by the total number of mapped reads. Notice

that an alignment is considered incorrect as the aligned position is

out the 20 bp tolerant window and thus alignments with more

than 20 bp unmapped bases may be considered as incorrect. We

choose 20 bp as the tolerant window since on the dataset most of

alignments contain fewer than 20 bp clipped bases (see supple-

mental Figure S1).

Figure 1 shows the positive predictive value (PPV, the number

of correctly mapped reads divided by the total number of mapped

reads) of the aligners as a function of mapping quality cutoffs

(complete information is shown in Figure S2). At a mapping

quality cutoff of twenty, for example, the PPV is calculated using

MOSAIK: An Accurate NGS Short-Read Mapper
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only those reads with mapping quality values greater than or equal

to twenty. It can be seen that the PPVs of BWA and MOSAIK are

comparable and are significantly better than those achieved by

BOWTIE and STAMPY. For mapping quality cutoffs smaller

than five, BWA is more accurate (fewer incorrect alignments

among total mapped alignments) than MOSAIK, however,

MOSAIK is the most accurate as the mapping quality cutoff is

increased. For a mapping quality cutoff of twenty (a common

cutoff employed by downstream analysis tools that only wish to

consider confidently aligned reads), the PPVs of MOSAIK, BWA,

BOWTIE and STAMPY are 100.00%, 99.99%, 99.79% and

99.63% respectively. These results are summarized in Table 2.

Figure 2 shows receiver operating characteristic (ROC) curves

for the same data. The total number of mapped reads (x axis) is

plotted against the number of incorrectly mapped reads (y axis).

Each point on the curve represents the number of alignments

whose mapping qualities are greater than or equal to the indicated

value. MOSAIK has a relatively smooth curve, ensuring that

downstream tools that employ mapping quality cutoffs (i.e.

ignoring all reads with mapping qualities less than the cutoff) do

not incur extremely large changes in the number of reads while

progressively increasing the cutoff. Conversely, the other aligners

do not share this property. For example, consider the BWA

alignments. By decreasing the mapping quality cutoff from 30 to

29, the number of incorrectly mapped reads increases by 308.56%

while for MOSAIK, the increase is a much more modest 6.25%.

Downstream analysis tools require a useful mapping quality scale,

so that excluding lower quality reads improves the specificity of the

analysis results. The dynamic range demonstrated by MOSAIK is

therefore a very valuable result for these tools.

Mapping quality calibration
The Phred mapping quality score present in the standard

SAM/BAM format represents the probability that the read was

mapped incorrectly and is defined as:

Q~{10log10P, ðEquation Þ

where Q is the Phred score and P is the probability that the read

was misaligned. For example, a read assigned a Phred mapping

quality score of 30 has a 1 in 1000 chance of being misaligned.

Table 1. Summary of the alignment accuracies achieved by MOSAIK for reads generated from different sequencing technologies.

Technologies Aligned (%) Speed (reads/second) Read lengths [min;max] Reference genome Dataset

Illumina; PE 99.98 83.95 100; 50 Human hg19 MASON simulated

Illumina; SE 99.75 153.98 100; 76; 50 Human hg19 MASON simulated

Illumina; PE/SE 91.48 147.42 81; 76; 51; 45; 41 Human hg19 CHB population in 1000G

454; SE 99.42 8.018 400.673 [266;529] Human hg19 MASON simulated

Ion Torrent 77.02 20.85 223.99 [59;398] E. coli strain 536 Ion Torrent released

SOLiD 55.64 126.81 50 Human hg19 CHB population in 1000G

Pacific Biosciences* 85.79 0.69 698.61 [48;6084] V. cholerae 4,033,464 bp. Pacific Biosciences released

*The parameter set ‘‘-hs 10 -mmp 0.5 -act 15’’ was used as opposed to the default values ‘‘-hs 15 -mmp 0.15 -act 55’’.
With the exception of the Pacific Biosciences data, all alignments were generated using MOSAIK’s default parameters.
doi:10.1371/journal.pone.0090581.t001

Figure 1. The positive predictive value of aligners (the number of correctly mapped reads divided by the total number of mapped
reads) as a function of mapping quality threshold. Datasets in (A) 100 bp and (B) 76 bp read lengths. PPV, TP, and FP stand for positive
predictive value, true positive and false positive, respectively.
doi:10.1371/journal.pone.0090581.g001
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MOSAIK’s mapping qualities are obtained using a neural

network that approximates the error function when provided with

features such as best and second best Smith-Waterman alignment

scores, read entropy, number of potential mapping locations and

hashes. For paired-end reads, the fragment length of mapped

paired end reads is also used in the neural network to produce

more precise mapping quality calculations. MOSAIK embeds the

Fast Artificial Neural Network (FANN) library (http://leenissen.

dk/fann/wp/), which implements multilayer artificial neural

networks in C, supporting both fully connected and sparsely

connected networks, to calculate Phred score for each alignment.

The default neural network provided with MOSAIK was

generated by training on the human genome. The first step

involves simulating reads and then aligning them to the human

reference genome to obtain MOSAIK’s behaviour such as best

and second best Smith-Waterman scores, and numbers of

obtained mappings and hashes. Then, the neural network was

trained based on MOSAIK’s behaviour.

Figures 3(A) and 3(B) compare the actual (calculated using

Equation (1)) and the assigned mapping quality scores. Both,

BOWTIE and MOSAIK produce very accurate Phred score

mapping qualities across the whole quality score spectrum. The

Pearson correlation coefficients between the assigned and actual

quality scores are shown in Table 3. MOSAIK has an average

(across all read lengths investigated) correlation coefficient of

0.9698, compared with 0.9061, 0.9207, and 0.8652 for BWA,

BOWTIE, and STAMPY respectively.

Retraining Mapping-Quality Neural Network for E. coli
Alignment

The genomes of different species differ in many respects

including sequence content (base composition as well as relative

frequency of repeat or low-complexity sequence) as well as the size

of the genome. Most aligners, including MOSAIK, are general

programs that can operate on any given reference genome,

however, in general, the properties of the genome under

investigation are ignored. MOSAIK provides a retrainable

mapping-quality pipeline to generate applicable neural networks

for different genomes or sequencing technologies. This means that

the calibration of the mapping quality scores remains of a very

high quality, regardless of reference genomes.

To demonstrate the merit of the retrainable mapping-quality

pipeline, we used 6 million simulated paired-end reads from the E.

coli genome to train a neural network (see supplemental method

(A): Retraining Mapping Quality Neural Network). An additional

independent set of 6 million simulated E. coli paired-end reads

were then generated and aligned to the E. coli genome using

multiple aligners. The assigned and actual mapping quality scores

are plotted for all aligners in Figure 3(C). There are two sets of

Table 2. The positive predictive values (the number of correctly mapped reads divided by the total number of mapped reads) in
terms of mapping quality cutoffs.

MQ cutoffs 30 20 10 0

Read lengths 100 76 100 76 100 76 100 76

BWA 1 1 0.9998 0.9997 0.9996 0.9995 0.9971 0.9959

BOWTIE 0.9998 0.9992 0.9982 0.9976 0.9980 0.9972 0.9823 0.9819

STAMPY 0.9961 0.9986 0.9945 0.9982 0.9897 0.9954 0.9813 0.9909

MOSAIK 1 1 1 1 0.9999 0.9999 0.9962 0.9947

doi:10.1371/journal.pone.0090581.t002

Figure 2. The receiver operating characteristic (ROC) curves; Datasets in (A) 100 bp and (B) 76 bp read lengths. Each point represents
the total numbers of alignments whose mapping qualities are greater than the indicated value. MOSAIK has a relatively smooth curve, ensuring that
downstream tools that employ mapping quality cutoffs (i.e. ignoring all reads with mapping qualities less than the cutoff) do not incur extremely
large changes in the number of reads while progressively increasing the cutoff.
doi:10.1371/journal.pone.0090581.g002
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data for MOSAIK: the first (red crosses) is generated using the

default neural network trained on the human genome, and the

second (dark red diamond) uses the neural network retrained on

the E. coli genome. It is clear that the mapping qualities generated

by the retrained neural network for MOSAIK are the best

calibrated, although the data using the human genome trained

neural network is still of a high quality. Also of note, Figures 3(A)

and 3(B) show that BOWTIE has quite well calibrated mapping

qualities for mapping to the human genome, however, when

applied to E. coli, the calibration is noticeably worse.

MOSAIK accurately accounts for short INDELs
MOSAIK uses a Smith-Waterman (SW) algorithm as the final

polishing step to produce pairwise read alignments, which is the

preferred choice for aligning gapped (short INDELs) sequences

since it seeks all possible frames of alignment with all possible gaps.

To assess the sensitivity of different aligners to short INDELs, we

simulated Illumina paired-end reads containing 1-14 bp INDEL

events that are generated by a genome simulator, MUTATRIX

(https://github.com/ekg/mutatrix). For each INDEL length, we

introduced an average of 100 events, with approximately 800

spanning reads (see supplemental Figure S4).

Figures 4(A) and 4(B) plot the sensitivity (number of correctly

mapped reads divided by the total number of simulated reads) as a

function of the INDEL length. An alignment is considered correct

when it is mapped to the correct position as well as contains the

simulated variant. Alignments containing the correct variants can

facilitate downstream variant detectors detecting variants depend-

ing on alignments and need no any realignment step which is

timing consuming. MOSAIK is the most sensitive aligner

considered here when considering deletions. When considering

insertions, MOSAIK’s sensitivity is comparable to, but slightly

worse than those of STAMPY and BOWTIE. It is clear from

Figures 4(A) and 4(B) that MOSAIK is the only mapper

considered here that is highly sensitive to both insertion and

deletion polymorphisms. We understand that some aligners tend

to report partial alignments that may not contain variants but are

mapped to right places. Those alignments still provide values for

variant detections. We thus change the criteria of correct

alignments used in Figures 4(A) and 4(B). In figures 4(C) and

4(D), an alignment is considered a correct mapping when it is

entirely or partially mapped to the correct positions. The four

aligners achieve 96% sensitivity based on the criteria.

Effect of mapping errors on SNP studies
Aligners provide information on where reads map in the human

genome along with information on the confidence of the mapping,

however, they do not themselves weigh evidence for genetic

variants in the genome being studied. Dedicated variant callers use

the information provided by mapper in statistical models to

determine if there is enough evidence to report a difference with

respect to the reference genome. To determine the effect of the

mapping on single nucleotide polymorphism (SNP) discovery, we

simulated 1,486 SNPs on the human genome chromosome 20

using MUTATRIX. We then used MASON to generate 12

million reads (with read lengths of 76 and 100 basepairs) from this

mutated chromosome generated by MUTATRIX. The same four

aligners were then used to align these reads back to the entire

human reference genome and the variant callers FREEBAYES

[33] and SAMTOOLS [34] were used to call SNPs. Figure 5

shows the variant callers sensitivity to SNPs as a function of the

false discovery rate (FDR) (the complete information is shown in

Figure S3). The points on the curves are generated by only

considering SNP calls with variant quality scores (provided by the

variant caller) greater than a specific cutoff. Moving from lower-

left to upper-right, SNP calls with lower quality scores are

cumulatively being included. Both FREEBAYES and SAM-

TOOLS produce lower sensitivity calls on the BOWTIE

alignments and have a lower FDR on BWA and MOSAIK

alignments. It is clear from both Figures 5(A) and 5(B) that the

Figure 3. The correlations between the aligners’ assigned and actual mapping qualities. Phred score scheme. (A) and (B) simulated
datasets in 100 bp and 76 bp read lengths. (C) E. coli simulated dataset in which ‘‘MOSAIK’’ is MOSAIK’s default mapping-quality network trained by
human genome while ‘‘MOSAIK-retrained’’ is the retrained mapping-quality network by using E. coli simulation and E. coli genome. The detailed
numbers of the Pearson’s correlation coefficients are given in Table 3.
doi:10.1371/journal.pone.0090581.g003

Table 3. Pearson’s correlation coefficients of mapping
qualities.

Read lengths 100 76 E. coli

BWA 0.8987 0.8625 0.8936

BOWTIE 0.9027 0.9449 0.6989

STAMPY 0.8317 0.8818 0.5262

MOSAIK 0.9609 0.9497 0.8881

MOSAIK-retrained – – 0.9749

doi:10.1371/journal.pone.0090581.t003
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most sensitive SNP calls are produced when using the MOSAIK

alignments, although the BWA alignments are also of a high

quality. It is also worth noting that the SNP calls produced by

FREEBAYES are more sensitive than those produced by

SAMTOOLS regardless of the mapper used.

Support for mobile element insertion
Detecting structural variations using NGS data is a more

complex task than detection of short variants and often requires or

would benefit from information over and above that ordinarily

required for small variant detection. An increasing number of SV

detection algorithms are being developed and, in order to increase

the effectiveness of these algorithms, MOSAIK has been

developed to provide as much relevant and useful information as

possible.

There are many genetic sequences that can be considered

distinct from the standard set of chromosomes in the genome

under investigation. These can include repetitive sequences such

as mobile elements [35], viruses (e.g. human endogenous

retroviruses [36]), known novel insertions [37,38] or bacterial

contaminants [39] amongst others. MOSAIK provides support for

an additional reference genome file containing any genetic

sequences provided by the investigator. The advantages of this

are two-fold: a) reads originating from contaminants will map to

the additional sequences, rather than a lower quality mapping to

the best location in the standard reference genome. These

sequences essentially act as a sink to catch all the reads that do

not originate from the standard reference, reducing the number of

mismapped reads that variant detectors have to contend with. b)

Reads mapping to repetitive elements (e.g. ALU or LINE

elements) are identified as mapping to the additional reference

sequence. MOSAIK reports the coordinates of the best mapping

in reference genome coordinates, but also includes an additional

tag in the BAM file (appearing as ZA in the BAM file), indicating

that the read maps to one of the additional reference sequences.

Our MEI detector, TANGRAM (https://github.com/jiantao/

Tangram) looks for read pairs with one mate uniquely aligned to

the genome and the other mate falls within a mobile element

Figure 4. The sensitivities of simulated reads spanning INDELs, which is defined as the number of correct mapped reads divided by
the number of simulated reads for each INDEL length. In (A) and (B), the alignments are considered correct as they cross INDELs, while in (C)
and (D), the alignments are considered correct as they are entirely or partially mapped to the correct positions. TP and FN are ‘‘true positive’’ and
‘‘false negative’’ respectively.
doi:10.1371/journal.pone.0090581.g004
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reference sequence. Only relying on this information provided by

MOSAIK, the sensitivity of MEI detection can achieve 84%.

Applications
SNP and INDEL Analyses in the 1000 Genomes

Project. The 1000 Genomes Project is in the process of using

second-generation sequencing instruments to study human genetic

variation at the population level. The Phase I [31] release, based

on a population of 1,092 sample individuals in 14 populations

includes approximately 38 million SNPs, 1.4 million bi-allelic

INDELs and 14,000 large deletions. These calls were generated

from approximately 966 billion reads and 64 trillion base pairs of

human DNA and were sequenced using Illumina, AB SOLiD and

Roche 454 for both low-coverage whole-genome and exome

targeted sequencing data. A collaborative effort between Boston

College and the National Center for Biotechnology Information

(NCBI) used MOSAIK to align all of the reads from all of these

machines, and served as the official primary alignment set for the

exome sequencing data [40] and an alternative alignment set for

the low-coverage.

Based on the MOSAIK alignments, SNP, MNP (multi-

nucleotide polymorphism) and INDEL calls were generated using

the FREEBAYES Bayesian variant calling software. 33,324,407

SNPs were detected in the autosomes of the 1,092 samples, of

which, only 23.8% were previously known sites (contained in

dbSNP). The transition/transversion (ts/tv) ratio for these sites was

2.12 (2.1 for novel sites and 2.17 for known sites). The Illumina

exome data yielded 344,781 SNPs with a ts/tv ratio of 3.18 (3.09

for the novel sites and 3.52 for the known sites) and 22.1% of the

exome sites were previously known. The SOLiD exome data

yielded 176,637 SNPs with a ts/tv ratio of 3.34 (3.22 for novel sites

and 3.58 for known sites). The ts/tv ratios are in accordance with

expectations for both the low-coverage and the exome SNPs.

Other SNP Studies. In addition to the 1000 Genomes

Project, MOSAIK is widely used for other human clinical genome

studies, such as human cancer studies [41–46]. MOSAIK is also

used for other species genome studies including model species

[47,48], HIV [49–52], parasites [53–55], plants [56–58], and

other animals [59,60].

Human Mobile Element Insertion Discovery
In addition to short variants, the 1000 Genomes Project aims to

characterize larger structural variations present in the human

population. By augmenting the reference genome with known

mobile element insertions (MEI), the MOSAIK alignments were

able to provide a host of information about their distribution in the

human population. As part of the pilot phase of the project, 7,380

MEI polymorphisms were detected using the whole-genome

sequencing data [61]. This sample set included 60 samples of

European origin (CEU), 59 African (YRI) and 60 Asian samples

from Japan and China (CHB/JPT). The FDRs for Alu, L1, and

SVA insertions were 2%, 17%, and 27% respectively.

Discussion

MOSAIK is a highly sensitive, stable and flexible reference-

guided read mapper which supports most existing sequencing

technologies. While MOSAIK is extremely accurate (positive

predictive values achieve 99.5% for all alignments and 100.0% for

alignments whose mapping qualities are larger than 20 on

simulated data), not all reads are aligned with equal confidence.

The mapping qualities that MOSAIK provides are generated

using a retrainable neural network and are a very good

representation of the probability of the alignment being incorrect.

In fact, the correlation coefficient between MOSAIK assigned and

the actual mapping qualities is 0.97. The retraining pipeline

ensures optimized mapping quality score schemes for any genome

being studied. For example, when considering aligning against the

E. coli genome, the correlation coefficient increases from 0.89 to

0.97 when using the human and the E. coli neural nets respectively.

By using the Smith-Waterman algorithm, MOSAIK is very

effective at mapping reads containing short INDELs and the

experiments demonstrate that the sensitivity of INDEL mappings

is greater than 90%. Additionally, MOSAIK provides explicit

support for SV detections.

Most SV detectors make extensive use of information from

paired end reads [62–64]. If the two mates in a pair map to greatly

separated locations (often the case when the read pair spans or falls

within a structural variant), multiple searches through the BAM

files are required to assemble all of the information about both

Figure 5. The receiver operating characteristic (ROC) curves of SNPs called by FREEBAYES and SAMTOOLS. The points on the curves
are sorted by called qualities and the points closer to the upper-right corner have higher called qualities. The true positive (TP), false positive (FP), and
false negative (FN) are calculated by intersecting SNPs called on each aligner’s alignments and gold SNPs called on the simulated alignments.
doi:10.1371/journal.pone.0090581.g005
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mates. This can be a lengthy task, severely impacting the

performance of SV detectors. The ZA tag provides a host of

information about the reads mate, including the location, mapping

quality, number of mappings for the mate, which ensures that

these searches are not required, created vast increases in the

efficiency of the SV detectors using this information.

The other utility for SV detections is reporting all possible

mappings. Many genomes contain regions that are considered

unmappable, usually due to the presence of low complexity DNA.

Depending on the algorithms employed, NGS reads can still map

to these regions; however, it is often prudent to omit these reads

from variant detection. Instead of discarding reads mapping to

multiple locations or picking the best quality alignment, MOSAIK

records all locations to which a read maps (given the constraints

imposed by the selected parameters) and records them in a

separate BAM file. Since the number reads mapping to multiple

locations as well as the number of entries for each multiply aligned

read can be extremely large, the resulting BAM file has the

potential to be excessively large. By default, MOSAIK omits much

of the read specific information (e.g. read name, sequence and

error information), allowing for effective compression of the file

after positional sorting, resulting in very small BAM files. The

information contained in these BAM files allows easy identification

of genomic regions where many individual reads are aligning.

These regions are those that can be considered unmappable, since

reads hitting these regions are also able to align to other genomic

regions. Thus they provide a guide to the mappable genome which

can greatly aid in variant discovery.

The default parameters used by MOSAIK were optimized

using simulated Illumina datasets from the human genome. They

were generated to provide a balance between mismatches and

gaps in the alignments, leading to balanced calling of SNPs and

INDELs by variant callers. For the experimenter only interested in

a specific variant type, it is possible to modify the parameters to

provide alignments more sensitive for the variant type of interest.

For example, if INDEL discovery is paramount, reducing the

Smith-Waterman penalty for the creation and extension of gaps in

alignments will lead to a greater likelihood that INDELs will be

discovered.

MOSAIKs memory footprint depends on the size of the

reference hash-table which, in turn, depends on the hash (k-mer)

size as well as the length of the reference sequence. For the human

genome using the default value of k = 15, MOSAIK requires

approximately 20Gb of memory. For machines with less available

RAM, MOSAIK can be run in a low-memory mode that performs

alignments chromosome by chromosome. This reduces the

required memory to 7Gb, which makes MOSAIK accessible to

most machines.

Improvements in the computational performance can be

achieved at the expense of decreased sensitivity, but ongoing

development (including replacing the traditional Smith-Waterman

algorithm with a single-instruction-multiple-data (SIMD) Smith-

Waterman algorithm [65,66]) provides significant performance

improvements. Initial testing of the SIMD Smith-Waterman

algorithm demonstrate a twofold speed up [65]. Further improve-

ment is achieved by reducing the number of applications of the

Smith-Waterman algorithm for each read. Reads that originate in

highly repetitive sequence can produce tens of thousands of

candidate loci (see supplemental Figure S6) in the genome and the

Smith-Waterman algorithm is applied to each one of these regions.

This is extremely computationally intensive with very little benefit

to the alignment sensitivity. As a result, if there are greater than a

preset number (the default is 200) of potential mapping loci,

MOSAIK only invokes the Smith-Waterman algorithm on the top

200 loci. MOSAIK then reports the most confident alignment

from all of the regions in which the Smith-Waterman algorithm

was applied. Supplemental Table S1 demonstrates that MOSAIK

2.2.3 (with these modifications) is of the order of five times faster

than version 2.1.78 (without the modifications). Importantly, these

modifications do not adversely impact the sensitivity of MOSAIK.

Methods

Overview
MOSAIK is a hash-based aligner and it hashes reference

sequences as its first step. MOSAIK splits the reference sequences

into overlapping contiguous k-mers (hashes) and stores the

positions of each hash in a hash table data structure that

guarantees O(1) lookups. Then, MOSAIK hashes each read in

the same hash size and looks hashes up in the hash table to obtain

the genomic positions of the hashes of a read. Next, nearby hash

positions are consolidated as a hash region (hashes of a read may

be clustered as several hash regions) where a Smith-Waterman

algorithm is applied to align the read to the local region of a

genome reference sequence as a final ‘‘polishing’’ step. For paired-

end reads, each end-mate of a read is mapped separately. For

some cases, that may be one end-mate aligned well and the other

one failing to be aligned. The well-aligned mate can be used to try

and rescue the unaligned mate using knowledge of the approx-

imate fragment length used in the paired-end read generation.

Processing Reference Sequences
MOSAIK can handle a nearly unlimited number of reference

sequences, however, the maximum aggregated reference length is

four billion bases. Alignments to the human transcriptome using

more than 95,000 individual reference sequences are easily

handled. The available hash sizes are 4–32.

MOSAIK supports the full set of IUPAC ambiguous nucleotide

characters. This allows users to use reference sequences that have

been masked by confirmed dbSNP (http://www.ncbi.nlm.nih.

gov/projects/SNP/) calls. The ambiguity codes minimize the

alignment bias that might be caused when aligning to reference

sequences containing SNPs. For considering IUPAC, MOSAIK

substitutes ambiguous codes with all of the alternative bases

represented by the ambiguity code and stores the resulting hashes

in the hash table. In order to avoid increasing the size of the jump

database dramatically, the ambiguity codes N and X are not

considered when hashing the reference sequences.

Clustering Hashes
MOSAIK supports various read formats (SRF, FASTA,

FASTQ, Bustard, and Gerald). In each case, the reads are split

into a set of overlapping hashes and the genomic positions of each

hash are queried from the stored reference hash table. A modified

AVL tree [67] is employed to handle and cluster nearby hash

positions to form a hash region. The clustering algorithm considers

sequencing errors, SNPs and single base INDELs. For example,

consider a 35 bases read split into hashes of 15 bases. The first

hash consists of the first 15 bases in the read. The second hash

consists of bases 2–16 in the read and so on. The read consists of

22 individual hashes, each of which is associated with positions

within the reference genome. If the read can be aligned perfectly

to the somewhere in the reference genome (i.e. there are no

sequencing errors or variations), each of the 22 hashes will have a

reference genome position offset by a single base (i.e. if the first

hash in the read is associated with the reference position x, the

second hash with the reference position x+1 etc.). The AVL tree

will consolidate those hits into a single alignment candidate region
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(see Supplemental Figure S5(A)). The presence of a single

sequencing error will ensure that 15 of the hashes (each hash

overlapping the error), will not be associated with the correct

genomic coordinate. Since the clustering algorithm considers

sequencing errors, however, an alignment candidate region is still

present in the AVL tree (see Supplemental Figure S5(B)).

Applying Smith-Waterman Algorithm
After identifying alignment candidate regions, MOSAIK

employs a Smith-Waterman algorithm to align reads to the

alignment candidate regions. The Smith-Waterman algorithm,

which was invented over 30 years ago, is still regarded as the most

accurate pairwise alignment algorithm and the preferred choice

for aligning gapped sequences since it seeks all possible frames of

alignment with all possible gaps. Specifically, the alignments are

performed using the Smith-Waterman-Gotoh alignment algorithm

[68,69].

The time complexity of the Smith-Waterman algorithm is O(n2),

which may render the mapper useless due to poor performance.

To address this, a banded Smith-Waterman algorithm [70] has

been implemented to improve the performance. According to our

experiments, the runtimes for aligning Illumina and Roche 454

data are reduced by approximately 36 and 86 respectively. The

further development of using SIMD SW promises significant

performance improvements.

Rescuing Paired-End Mates
Each mate in a paired-end read is initially aligned individually.

There are various factors that lead to some reads failing to be

aligned to the reference. In the case of paired-end reads, the

aligned mate can be used to try and rescue the unaligned mate

using knowledge of the approximate fragment length used in the

paired-end read generation. A local alignment search algorithm

has been implemented which performs a Smith-Waterman

algorithm in the region proximal to the aligned mate. If the read

exhibits the expected strand, orientation, and fragment length, the

read is considered rescued. Even if both mates in the pair are

successfully aligned, the local alignment search may still be

triggered, if the alignments are inconsistent with the expected

fragment length.

The number of mates rescued by the local alignment search

depends largely on the read lengths considered. With increasing

read length, the aligner is less likely to miss a potential alignment

and therefore fewer alignments are rescued.

Handling AB SOLiD reads
AB SOLiD reads are represented in the colorspace rather than

in the more conventional basespace. Most downstream applica-

tions do not support colorspace and thus alignments require

conversion to basespace for maximum utility. MOSAIK is

equipped to align colorspace reads against a colorspace reference

and then convert the resulting alignments into basespace. The di-

base quality conversion algorithm uses the minimum of the two

qualities that overlap a nucleotide in basespace. This approach

allows users to specify parameters, such as the maximum number

of mismatches. Additionally, it enables users to merge aligned

SOLiD datasets with datasets from other sequencing technologies.

Known-Sequence Insertion Detections
MOSAIK is aware of user-specified insertion sequences, e.g.

mobile element insertions. When the insertion sequences are

provided, the reference hashes are prioritized such that alignment

to the given insertion sequences are attempted prior to alignment

to the genome reference. An additional tag in the BAM file (the

ZA tag) then indicates any alignments of a read hitting the given

insertion sequences. Since MEIs are repetitive elements, a read

from an MEI can be mapped to several locations within the

genome (potentially hundreds of locations). The ZA tag then

populated with valuable information about the reads mate,

including location, mapping quality and number of mapping

locations for the mate. This information ensures that multiple

BAM search operations (which can be lengthy for large BAM files)

can be avoided. The downstream MEI detector can detect MEI by

using ZA tag easily.

Supporting Information

Figure S1 The distributions of alignments’ softclips.

(TIF)

Figure S2 The complete information of Figure 1. The

positive predictive value of aligners (the number of correctly

mapped reads divided by the total number of mapped reads) as a

function of mapping quality threshold. Datasets in (A) 100 bp and

(B) 76 bp read lengths. PPV, TP, and FP stand for positive

predictive value, true positive, and false positive, respectively.

(TIF)

Figure S3 The complete information of Figure 5. The

receiver operating characteristic (ROC) curves of SNPs called by

FREEBAYES and SAMTOOLS. The points on the curves are

sorted by called qualities and the points closer to the upper-right

corner have higher called qualities. The true positive (TP), false

positive (FP), and false negative (FN) are calculated by intersecting

SNPs called on each aligner’s alignments and gold SNPs called on

the simulated alignments.

(TIF)

Figure S4 The short INDELs that are inserted for
investigating the aligners’ abilities for them, and the
read coverage for each length INDEL.

(TIF)

Figure S5 MOSAIK hash clustering. (A) The read uniquely

aligns perfectly to the references, all hashes will succeed in finding

the adjacent reference locations and the AVL tree will consolidate

those hashes into one alignment candidate region. (B) However, if

only one hash succeeds in finding the proper reference location

because of sequencing errors, an alignment candidate region is still

present in the AVL tree.

(TIF)

Figure S6 The distribution of candidate loci in the
genome of reads. MOSAIK applies a Smith-Waterman

algorithm to each candidate locus of a read to generate an

alignment. Therefore, the number of candidate loci is equal to the

number of executed the Smith-Waterman algorithm. The mhp of

MOSAIK is the maximum number of investigated hash positions

per 15-mer.

(TIF)

Method S1 The methods of (A) Retraining Mapping
Quality Neural Network and (B) Detecting Specified
Insertion Sequences.

(PDF)

Table S1 The runtime of each mapper for aligning six
million 100 bp reads. The version without ‘*’ are the exact

version of each mapper for which we report performance

comparisons. For up to date information, we also report speed

for the current version (indicated by ‘*’) of each software.
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STAMPY is a single-threaded program and thus the runtime of

using 4 cpus is not available.

(PDF)
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61. Stewart C, Kural D, Strömberg MP, Walker JA, Konkel MK, et al. (2011) A

Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans.
PLoS Genet 7: 1.

62. Tae H, McMahon KW, Settlage RE, Bavarva JH, Garner HR (2013)
ReviSTER: an automated pipeline to revise misaligned reads to simple tandem

repeats. Bioinformatics 29: 1734–1741. doi:10.1093/bioinformatics/btt277.

63. David M, Mustafa H, Brudno M (2013) Detecting Alu insertions from high-
throughput sequencing data. Nucleic Acids Res: gkt612–. doi:10.1093/nar/

gkt612.
64. Xing J, Witherspoon DJ, Jorde LB (2013) Mobile element biology: new

possibilities with high-throughput sequencing. Trends Genet 29: 280–289.
doi:10.1016/j.tig.2012.12.002.

65. Zhao M, Lee W-P, Garrison EP, Marth GT (2013) SSW Library: An SIMD

Smith-Waterman C/C++ Library for Use in Genomic Applications. PLoS One
8: e82138. doi:10.1371/journal.pone.0082138.

66. Farrar M (2007) Striped Smith-Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics 23: 156–161. doi:10.1093/

bioinformatics/btl582.

67. Adel’son-Vel’skii GM, Landis EM (1962) An algorithm for the organization of
information. Sov Math Dokl 3: 263–266.

68. Smith TF, Waterman MS (1981) Indentification of common molecular
subsequences. J Mol Biol 147: 195–197.

69. Gotoh O (1982) An improved algorithm for matching biological sequences. J Mol
Biol 162: 705–708.

70. Chao KM, Pearson WR, Miller W (1992) Aligning two sequences within a

specified diagonal band. Comput Appl Biosci 8: 481–487.

MOSAIK: An Accurate NGS Short-Read Mapper

PLOS ONE | www.plosone.org 11 March 2014 | Volume 9 | Issue 3 | e90581


