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Abstract

Background: Co-infection with tuberculosis (TB) is the leading cause of death in HIV-infected individuals. However,
diagnosis of TB, especially in the presence of an HIV co-infection, can be limiting due to the high inaccuracy associated with
the use of conventional diagnostic methods. Here we report a gene signature that can identify a tuberculosis infection in
patients co-infected with HIV as well as in the absence of HIV.

Methods: We analyzed global gene expression data from peripheral blood mononuclear cell (PBMC) samples of patients
that were either mono-infected with HIV or co-infected with HIV/TB and used support vector machines to identify a gene
signature that can distinguish between the two classes. We then validated our results using publically available gene
expression data from patients mono-infected with TB.

Results: Our analysis successfully identified a 251-gene signature that accurately distinguishes patients co-infected with
HIV/TB from those infected with HIV only, with an overall accuracy of 81.4% (sensitivity = 76.2%, specificity = 86.4%).
Furthermore, we show that our 251-gene signature can also accurately distinguish patients with active TB in the absence of
an HIV infection from both patients with a latent TB infection and healthy controls (88.9–94.7% accuracy; 69.2–90%
sensitivity and 90.3–100% specificity). We also demonstrate that the expression levels of the 251-gene signature diminish as
a correlate of the length of TB treatment.

Conclusions: A 251-gene signature is described to (a) detect TB in the presence or absence of an HIV co-infection, and (b)
assess response to treatment following anti-TB therapy.
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Introduction

Mycobacterium tuberculosis (MTB) (tuberculosis, TB) is the leading

infectious disease cause of mortality and morbidity worldwide [1].

An estimated 30% of the world population is infected with TB [2].

The concurring epidemic of HIV infection in areas endemic for

TB infection has resulted in a high burden of HIV/TB co-

infection, and TB is currently estimated to be the leading cause of

death in HIV-infected patients in these areas [3,4,5,6]. The

weakening of the host’s immune system by HIV increases risk of

de-novo co-infection with TB, or reactivation of latent TB [7,8,9].

The emergence of multidrug-resistant and extensively drug-

resistant (MDR and XDR) TB strains has further taxed the

healthcare systems in high-TB burden countries. The presence of

an HIV infection has been associated with, and may contribute to,

the increase in MDR-TB cases [6,10], highlighting the importance

of research into novel treatments and new diagnostic tools for early

detection of TB infections.

Current diagnostic methods are associated with several limitations

including sample collection issues associated with the automated

sputum based diagnostic test that can identify MTB and resistance to

rifampicin (Xpert MTB/RIF) [11]) or limited sensitivity and

specificity associated with testing for urinary lipoarabinomannan

(LAM) [12,13,14,15]). In addition, while LAM detection methods

have greater sensitivity in advanced disease [16], even a combination

of Xpert MTB/RIF and LAM tests can only detect approximately
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80% of symptomatic patients [17]. The presence of an HIV infection

further limits the sensitivity for the diagnosis of TB as it increases the

number of false negatives detected [18,19]. Failure to detect TB early

in HIV co-infected patients is lethal, and better assays for diagnosing

TB are needed to reduce the high level of mortality caused by TB in

these patients [18].

The interaction of TB with the host immune system induces

changes in host gene expression. Ribonucleic acid (RNA)-based

methods such as messenger RNA microarrays that interrogate the

whole transcriptome have prompted efforts to detect specific host

gene expression signatures correlated with different aspects of

disease [20]. Several recently published gene expression studies

have explored the biological mechanisms of TB infections and

identified biomarkers that may be useful for diagnostic and

prognostic purposes [21,22,23,24,25]. However, to our knowl-

edge, no group has yet described a gene signature able to identify

patients co-infected with HIV and TB. We address this problem in

the present study by analyzing global gene expression in peripheral

blood mononuclear cell (PBMC) samples from a South African

cohort of 43 patients infected with HIV alone or co-infected with

HIV and TB. Our analysis identifies a 251-gene signature that

distinguishes mono-infected HIV patients from HIV patients co-

infected with TB. The accuracy of this signature is 81.4%

(sensitivity = 76.2%, specificity = 86.4%). This signature was vali-

dated on two large publicly available, independent gene expression

datasets of patients infected with TB but not HIV, reported by

Berry et al. [22] and Bloom et al. [26]. Our HIV/TB signature

also accurately distinguished patients mono-infected with TB from

healthy individuals and patients with latent TB. It also

distinguished untreated infected patients from patients undergoing

progressive to successful anti-TB treatment, suggesting the

potential to monitor response to therapy.

Methods

Subjects
Study subjects were recruited between September 6, 2007 and

October 16, 2008 at the Themba Lethu Clinic, Johannesburg,

South Africa and included 22 HIV mono-infected patients and

21 HIV/TB co-infected patients (Table 1). Patients were referred

to the Themba Lethu Clinic by the initial practitioners (HIV

cohort) or primary TB clinic (HIV/TB cohort) in the Johannes-

burg catchment area for the initiation of antiretroviral therapy

(ART) according to local guidelines. All patients were receiving

ART at the time of enrollment and all patients co-infected with

TB were receiving treatment for TB. Written informed consent

was obtained for all participants; consent forms and procedures, as

well as study protocol, were approved by the University of the

Witwatersrand’s Ethics Committee and the Wistar Institute

Institutional Review Board. Patients were initially recruited to

study natural killer cell activity in HIV and HIV/TB infected

patients and the results have been published by Conradie et al.

[27]. PBMC were purified on location from peripheral blood using

Ficoll gradient centrifugation, and cryopreserved, then shipped in

a single batch to the Wistar Institute using a certified cold chain

carrier in liquid nitrogen shippers. Samples remained in liquid

nitrogen until the time of RNA extraction.

RNA and Isolation, Amplification & Hybridization
Total RNA was isolated from PBMCs using Sigma Aldrich Tri-

reagent (cat #T9424), as recommended, with the following

modifications: 1 ug of linear acrylamide was added to the sample

before Tri-reagent extraction to ensure more efficient precipitation

of RNA and 1 ul of RNAsin (an RNAse inhibitor) was added to

the Tri-reagent aqueous phase before continuing to the ethanol

precipitation. Following RNA isolation, 100 ng of RNA was

amplified using Epicentre TargetAmp Nano-g Biotin-aRNA

Labeling Kit (cat # TAN07924) to generate amplified cRNA.

Biotinylated, amplified cRNA at 750 ng was hybridized to the

Illumina HumanHT-12 v4 Expression BeadChips. All arrays were

processed in the Wistar Institute Genomics Facility. Gene

expression data is available in the Gene Expression Omnibus

(GEO) under the accession number GSE50834.

Data Preprocessing
Raw gene expression microarray data were quantile normal-

ized. Non-informative probes, which were either expressed at

background level or showed little variation among samples such

that the maximum fold change between any two samples was

,1.2, were removed. Two technical replicates available for one

patient were averaged prior to further analysis. Data preprocessing

was performed in MATLAB R2010a.

Support Vector Machines
The Support Vector Machine with Recursive Feature Elimina-

tion (SVM-RFE [28,29,30]) algorithm was implemented in Perl

and used for the selection of features that can best distinguish

mono-infected HIV patients from co-infected HIV/TB patients.

The SVM classifier was iteratively trained with the current set of

features and the least important features were then removed. The

SVM-RFE parameters were set to 10 fold cross-validation with 10

iterations and 10% of the least informative features were

eliminated at every step as previously described [29,30]. SVM-

RFE produced a ranked list of genes. A gene’s rank in the list

correlates with its contribution to the overall TB signal, such that

genes ranked at the top of the list contribute more to the predictive

value of the classifier. Using the most predictive genes, the SVM

classifier assigned a score to each of the samples in the training set,

where a positive score indicates a prediction of TB and a negative

score indicates a control (no active TB). The smallest number of

genes that results in the highest classification accuracy (in this case

251 genes) makes up the TB signature or classifier. The sensitivity,

specificity and accuracy of the classifier are evaluated at every

recursive elimination step.

Independent Validation Samples
The published external TB associated datasets GSE19435,

GSE19439, GSE19442 and GSE19444 [22], available in the

GEO database, were used to validate and expand our present

Table 1. Patient demographics.

HIV HIV/TB

Number of Patients 22 21

Age{ 33.5 [31–38.75] 31 [30–35]

Gender: Male (Female) 6 (16) 10 (11)

Observed CD4 Counts at
Time of Visit{

215 [127.75–339] 101 [78–180]

ART Treatments 3TC+D4T+EFV (21) 3TC+D4T+EFV (21)

3TC+D4T+NVP (1)

Length of ART Treatment
(months){

37 [28–56] 42 [28–56]

{Numbers are shown as median [first and third quartiles]. 3TC: Lamivudine, D4T:
Stavudine, EFV: Efavirenz, and NVP: Nevirapine.
doi:10.1371/journal.pone.0089925.t001

Detecting TB in HIV/TB Co-Infected Patients
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study. In this published study [22], RNA from whole blood was

hybridized to the Illumina HumanHT-12 v3 BeadChip Arrays.

Since our study uses the more recent v4 arrays only the 13,880

probes that had passed the filtering criteria and were common to

both Illumina’s v3 and v4 platforms were considered in any

analyses. We normalized the data obtained from [22] by first

calculating the average expression per probe across samples in

each dataset separately and then across all samples from the 4

datasets. The difference between the average of a dataset and the

overall average was determined and the expression level for each

probe within a sample was adjusted by the difference. Data later

obtained from GSE40553 [26] also using RNA from whole blood

was first normalized using median quantile normalization. The

data was then normalized with respect to the other 4 datasets by

again adjusting each sample to the difference between the average

expression for the dataset and the average across all 4 datasets.

None of the samples used for validation were from HIV infected

individuals.

Dataset GSE19435 [22] was used for feature selection and

validation of our HIV/TB classifier. This dataset included 33

samples; 12 healthy controls and 7 TB patients with the TB

samples taken before treatment, after 2 months of treatment and

again after 12 months of treatment (7 samples for each time point,

total 21). For the purpose of this analysis the dataset was divided

into two test sets: Test Set 1 (TS1) containing data from TB

patients after 2 months of treatment and healthy controls (Table 2),

and Test Set 2 (TS2) containing data from TB patients before

treatment and after 12 months of treatment (Table 2). TS1 was

chosen to resemble the data used in our present study. TS2 was

tested to confirm the presence of the HIV/TB signature in patients

prior to treatment and to examine the expression of those genes

after treatment.

The signature was further validated in four additional datasets

from the same study [22]. Test Set 3 (TS3) contained data on 42

samples including 13 active TB patients, 17 latent TB patients and

12 controls. Test Set 4 (TS4) contained data on 21 active TB

patients, 21 latent TB cases, and 12 controls. Test Set 5 (TS5)

contained 51 samples, with data available from 20 active TB

patients and 31 latent TB patients. And Test Set 6 (TS6) contained

data on 29 active TB patients and 38 latent TB cases (Table 2). All

controls and patients in Test Sets 1–6 were not infected with HIV

[22,26]. Each sample in the six training sets received an SVM

score to indicate whether the classifier predicts the presence

(positive score) or absence (negative score) of active TB.

Results

Identification of a 251-gene Signature that
Accurately Distinguishes HIV/TB Co-infected from HIV
Mono-infected Patients

We analyzed global gene expression in PBMC derived from

mono and co-infected HIV patients to identify a gene signature

that could distinguish these two classes of patients. We identified a

251-gene signature that accurately distinguishes mono and co-

infected patients (Table 3, Table S1) with an overall diagnostic

accuracy of 81.4%. The 251 gene signature correctly classified 16

of the 21 HIV/TB patients (sensitivity = 76.2%) and 19 of the

22 HIV patients (specificity = 86.4%) (Table 4, Figure 1A). Hier-

archical clustering analysis of the diagnostic gene signature was

performed to further compare the differential expression between

the two groups. The heatmap shows the separation of samples into

two main clusters, with the left cluster including patients infected

with HIV only and the right cluster representing HIV/TB co-

infected patients (Figure 1B).

The 251-gene HIV/TB Signature also Accurately Detects
Active TB in the Absence of HIV Infection

To further validate our 251-gene signature and to determine its

specificity for the presence of TB, we used five independent,

previously published TB datasets available in GEO (Methods,

Table 2) [22,26]. These datasets also allowed us to test the

accuracy of the signature in classifying TB infections in the

absence of an HIV infection, as none of the patients were infected

with HIV. The TB patients in the TS1 dataset (Table 2) most

closely resemble those used in our HIV/TB study as all HIV/TB

patients were being treated for TB at the time they were sampled.

The 251-gene signature yielded a remarkable accuracy of 94.7%

on the TS1 dataset, with only one TB patient misclassified as a

control, and an area under the ROC curve of 1 (Table 4,

Figure 2A, Figure S1B). The high accuracy of the signature in this

independent test set indicates that our gene signature is TB-

specific and can accurately distinguish TB infected patients from

uninfected controls even in the absence of HIV even though the

TS1 data was collected from whole blood RNA rather than

PBMC.

The 251-gene HIV/TB Signature Correlates with the
Presence of a TB Infection

To further test the performance of the 251-gene signature we

applied our classifier to Test Set 2 (TS2). TS2 contained the

Table 2. Test Set Summary.

Controls Active TB

Dataset Location Test Set Healthy Latent TB No Treatment
2 Months
Treatment

12 Months
Treatment

GSE19435 UK TS1 12 – – 7{ –

TS2 – – 7{ – 7{

GSE19439 UK TS3 12 17 13 – –

GSE19444 UK TS4 12 21 21 – –

GSE19442 South Africa TS5 – 31 20 – –

GSE40553 South Africa TS6 – 38 29 – –

Sample details of the six test sets.
{repeated sampling of the same patients.
doi:10.1371/journal.pone.0089925.t002

Detecting TB in HIV/TB Co-Infected Patients
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microarray data only from mono-infected TB patients before any

treatment and after 12 months of treatment, when they were

presumably cured (Table 2). TS2 allowed us to determine whether

a TB signature could be detected in patients prior to any treatment

with similar accuracy as in TS1. Comparable results to TS1 were

observed with the TS2 data (no treatment vs. complete treatment)

with an accuracy of 92.9% achieved and only one TB patient

being misclassified (Table 4, Figure 2B). It should be noted that the

TB samples misclassified in TS1 and TS2 were from the same

patient. The ability of the signature to correctly classify the pre-

treatment TB samples as having TB signifies that the signature is

associated with the presence of an active TB infection and not

primarily due to the effect of the treatment. This is further

supported by the observation that the overall expression of the TB

signature in the samples obtained after 12 months of successful

treatment resembles the gene profiles of the uninfected controls. A

heatmap of the 251 genes in these four groups shows gene

expression between the TB patients before and after 2 months of

Figure 1. Classification of the training set samples. A) Support vector machine (SVM) scores based on the 251-gene signature assigned to HIV/
TB (white) and HIV (grey) samples, where a positive score corresponds to an HIV/TB prediction and a negative score to a control, and B) Hierarchical
clustering using the 251 probes clearly separate the samples into two arms, with mono-infected HIV patients (grey) clustering to the left and co-
infected HIV/TB patients (orange) clustering to the right.
doi:10.1371/journal.pone.0089925.g001

Detecting TB in HIV/TB Co-Infected Patients
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treatment to be quite similar, while expression of these genes in

patients 12 months after treatment are more similar to the gene

expression levels in the uninfected controls (Figure S2).

The strong correlation of the signature with the presence of a

TB infection can be further seen in the principal components

analysis plot (Figure S3). The expression of these 251 genes clusters

the data across the first principal component in a sequential

manner with samples more to less infected clustering from right to

left. Samples from TB infected patients prior to treatment cluster

furthest to the right, while samples from the early treatment cluster

in the middle/right area of the plot closer to the pre-treatment

samples. Samples from TB patients taken after 12 months of

treatment cluster in the middle/left area of the plot and finally,

controls, with and without HIV, cluster to the far left. This

progressive relation is also evident in the tracking of the time-series

samples for each of the individual patients, represented by the

colored lines in the figure. For each of the seven patients the

pattern of pre-treatment, 2 months treatment and 12 months

treatment samples always move from right to left indicating a

change in state from infected to uninfected (Figure S3).

The 251-gene HIV/TB Signature Distinguishes between
Active and Latent TB

We also tested the 251-gene signature’s performance on four

additional datasets: TS3 (GSE19439), TS4 (GSE19444), TS5

(GSE19442) and TS6 (GSE40553) to determine whether our

signature could also distinguish between untreated active and

latent TB infections. Our signature correctly differentiated

Table 3. Top 20 genes from the 251-gene TB-signature identified using SVM-RFE.

Rank Accession Symbol Gene Name
Fold Change (HIV+TB)/
HIV

1 NM_021004 DHRS4 dehydrogenase/reductase (SDR family) member 4 1.402

2 NM_001990 EYA3 eyes absent homolog 3 (Drosophila) 1.172

3 NM_030629 CMIP c-Maf-inducing protein 1.248

4 NM_014233 UBTF upstream binding transcription factor, RNA polymerase I 21.260

5 NM_032227 TMEM164 transmembrane protein 164 1.492

6 NM_078487 CDKN2B cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) 1.422

7 NM_005607 PTK2 PTK2 protein tyrosine kinase 2 1.374

8 XM_939593 LOC648605 PREDICTED: similar to Trimethyllysine dioxygenase, mitochondrial
precursor

1.256

9 CR621233 NaN full-length cDNA clone CS0DI057YA22 of Placenta Cot
25-normalized of (human)

1.441

10 NM_003501 ACOX3 acyl-Coenzyme A oxidase 3, pristanoyl 1.336

11 XM_001126647 MLKL PREDICTED: mixed lineage kinase domain-like 1.454

12 NM_007100 ATP5I ATP synthase, H+ transporting, mitochondrial F0 complex, subunit E 1.102

13 NM_005819 STX6 syntaxin 6 1.255

14 NM_152858 WTAP Wilms tumor 1 associated protein 21.586

15 NM_001531 MR1 major histocompatibility complex, class I-related 1.421

16 XM_045290 LOC151579 PREDICTED: similar to basic leucine zipper and W2 domains 1 21.234

17 NM_025164 SIK3 SIK family kinase 3 1.131

18 XM_036729 USP41 PREDICTED: ubiquitin specific peptidase 41 1.253

19 NM_145172 WDR63 WD repeat domain 63 23.149

20 NM_023015 INTS3 integrator complex subunit 3 1.275

Genes are listed according to the support vector machine (SVM) rank. A positive fold change indicates higher expression in HIV/TB compared to HIV and negative values
indicate lower expression of the gene in HIV/TB compared to HIV. A full list of the 251 genes can be found in Table S1. SVM-RFE: support vector machine with recursive
feature elimination. HIV: Human immunodeficiency virus. TB: Tuberculosis.
doi:10.1371/journal.pone.0089925.t003

Figure 2. Performance of SVM signature in the testing sets. The
classification scores assigned by the SVM based on the 251-gene
signature to classify active TB (positive score) and controls (negative
scores) in the absence of an HIV infection for A) Test Set 1 classifying TB
patients after 2 months of treatment (white) and controls (grey), and B)
Test Set 2 classifying TB active patients before treatment (white) and
after 12 months of treatment (grey).
doi:10.1371/journal.pone.0089925.g002
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between active and latent TB infections as well as controls with

sensitivities of 69.2% and 76.2% in TS3 and TS4, respectively, less

accurately than in the previous analyses (Table 4, Figure S4A–B).

Most of the misclassified patients were borderline and two patients

were within a 0.001 SVM score from the cutoff. Analysis of a

larger cohort should allow us to refine our signature so that we can

classify these borderline patients more accurately. However, the

76.2% sensitivity achieved in TS4 significantly improves the

61.7% sensitivity previously reported for the 393-transcript

signature identified by Berry et al [22]. Moreover, our classifier

had a 100% specificity in TS3 and a 97% specificity in TS4,

correctly identifying 20 out of the 21 (95.2%) latent TB samples as

not having active TB. In addition, the signature correctly

identified 18 out of 20 and 25 out of 29 active TB patients (90%

and 86.2% sensitivities) and had 90.3% and 92.1% specificities in

the TS5 and TS6 South African test sets, respectively (Table 4,

Figure S4C–D). The accuracy of our signature in distinguishing

between active TB and both healthy and latent TB controls is

further reinforced by the area under the ROC curve for the four

test sets, which ranges between 0.893 and 0.967 (Table 4, Figure

S1D–F).

A published 393-gene TB Signature does not Identify TB
in Patients Co-infected with HIV

We then tested the performance of the published 393-transcript

TB signature [22] on our HIV/TB gene expression data. The

393-gene signature was shown to distinguish patients with active

TB from both healthy controls and latent TB patients with 91.7%

sensitivity and 96.6% specificity, as reported by Berry et al. [22].

Because of slight differences between Illumina’s HumanHT-12v3

microarrays used for the Berry study and the v4 arrays used for

ours, we used the 387 probes from their signature that were

common to both arrays to assess whether this gene signature

would effectively classify our HIV/TB patients as TB infected. We

first applied the k-nearest neighbor (KNN) method similar to that

described in [22] using data from the TS3 dataset as a training set.

Testing on our data resulted in the correct classification of only 7

out of 21 of our HIV/TB patients (33% sensitivity), indicating that

this signature does not perform well on HIV co-infected samples.

We also applied the SVM analysis used for our studies as a second

approach for testing the performance of the 387 signature. Data

from the 387 probes in the TS3 dataset were used to train the

model that was then applied to our data. The 387-probe signature

was not able to distinguish our two patient classes and classified

both mono-infected and co-infected patients as having active TB

(0% specificity). Similarly, the 86-gene signature that distinguishes

between TB and other inflammatory and infectious diseases [22]

could not classify the two groups in our dataset (0% sensitivity) and

only had four probes in common with our signature.

Discussion

There is currently no ‘‘gold standard’’ for TB diagnosis in

mono-infected patients or patients co-infected with HIV. While

several tests exist for diagnosing TB, the sensitivities for these

methods vary largely in the different publications (Table 5). In this

study we used SVM-RFE to identify a 251-gene signature that

achieved an overall accuracy of 81.4% in distinguishing mono-

infected from co-infected HIV/TB patients. The classifier

correctly classified 16 out of 21 HIV/TB co-infected patients

and 19 out of 22 HIV patients. This signature was similarly

accurate when applied to independent data from two large studies

of patients mono-infected with TB [22].

The overall accuracy of the 251-gene SVM signature was

94.7% when applied to a dataset including healthy controls and

TB-infected individuals being treated for 2 months, similar to the

treatment of our HIV/TB patients. Remarkably, only one TB

patient was misclassified in this study, despite the fact that our data

was collected on purified PBMC samples and the mono-infection

study was performed on whole blood (Tempus Blood RNA Tubes,

Applied Biosystems). These results highlight the robustness of our

signature to detect TB both in the presence and absence of an

HIV infection and in whole blood samples as well as purified

PBMC. We also validated the signature’s ability to distinguish

Table 5. Summary of TB Diagnostic Tests.

Test Sensitivity References

Sputum Tests 28.2% [33]

LAM 28.2–67% [33,34]

Xpert MTB/RIF 57–76% [33,35]

Sensitivities of currently used TB diagnostic tests.
doi:10.1371/journal.pone.0089925.t005

Table 4. Performance of classifier.

Sensitivity Specificity Accuracy AUC

Dataset Description SVM KNN SVM KNN SVM SVM

HIV/TB HIV/TB vs. HIV 76.2 NA 86.4 NA 81.4 0.864

TS1 TB (2 mo) vs. Controls 85.7 NR 100 NR 94.7 1.000

TS2 TB vs. TB (12 mo) 85.7 NR 100 NR 92.9 0.980

TS3 TB vs. Controls/
Latent TB

69.2 91.7 100 96.6 90.5 0.936

TS4 TB vs. Controls/
Latent TB

76.2 61.7 97.0 93.8 88.9 0.893

TS5 TB vs. Latent TB 90.0 94.1 90.3 96.7 90.2 0.924

TS6 TB vs. Latent TB 86.2 NA 92.1 NA 89.6 0.967

Sensitivity, specificity, accuracy and the area under the curve of the 251-gene signature for the training set (HIV/TB) and the 6 different test sets (SVM). Sensitivities and
specificities reported in [22] using the K-nearest neighbor (KNN) method are also reported where applicable. AUC: Area under the curve. NA: not applicable and NR not
reported.
doi:10.1371/journal.pone.0089925.t004
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untreated TB samples from samples taken 12 months after

treatment when the infection is presumed to be eliminated. While

patients only treated for 2 months remain classified as TB-positive,

those treated for 12 months are classified as controls. The time

course study suggests that our gene signature can assess the

efficacy of treatment over time as we find that untreated, 2 months

treated and 12 months treated samples from individual patients

exhibited a diminished TB signature (score) as a consequence of

the treatment. This suggests that the 251-gene signature may be

useful in differentiating between patients who respond successfully

to treatment (TB eradication) and subjects with poor response who

need more aggressive treatment, or with treatment-resistant

infections. Larger time-series studies will be needed to evaluate

the usefulness of this assessment but Molecular Distance to Health

and Temporal Molecular Response scores based on recent data

from Bloom et al. [26] support this possibility, as scores for our

251-gene signature are demonstrated to change significantly after

two weeks of treatment (Figure S5, Methods and Results S1).

While our training set did not include patients with a latent TB

infection, our classifier also accurately distinguished between an

active TB infection and a latent infection in the four external

datasets tested (TS3-6). Our 251-gene signature correctly identi-

fied all 17 patients with latent TB in TS3 (100% sensitivity). In

addition, it also classified 20 out of 21 (95.2%), 28 out of 31

(90.3%) and 35 out of 38 (92.1%) patients with a latent TB

infection as controls in TS4, TS5 and TS6, respectively.

The recently published 393-gene signature of Berry et al. [22]

did not perform well on our HIV-infected samples while our

PBMC signature performed accurately on their data. This is likely

due to two factors. Berry et al. [22] analyzed gene expression

patterns in whole blood specimens collected using Tempus tubes

whereas our study used cryopreserved PBMC. Tempus collection

tubes capture the neutrophil RNA not captured in the PBMC

samples as most of the granulocytes are removed by the PBMC

purification.. The other key difference in the two datasets is that

the sample population used for the selection of our 251 gene

signature was composed entirely of HIV-positive individuals,

whereas HIV infection was specifically excluded in Berry’s study.

HIV co-infection may obscure the expression of certain genes that

would otherwise be related to a TB infection that were detected in

the Berry study. Although both signatures clearly demonstrate

specificity for the presence of TB, only 16 probes, corresponding to

15 genes, were common to both signatures (TMEM51, APOL6,

STAT2, STAT1, LOC653610, GK, DHRS9, TRAFD1,

UBE2L6, GBP2, LPCAT2, AK026751, ASPHD2, BRSK1, and

FLVCR2). The 393-gene signature [22], has demonstrated

excellent sensitivity and specificity in the detection of TB in the

absence of HIV while our 251-gene signature could be used for

diagnosing the presence of active TB, both in patients with and

patients without HIV.

Although 251 genes is a relatively small number for such an

analysis, we used Ingenuity (Ingenuity Systems, www.ingenuity.

com) to identify pathways and gene functions that might be

represented in our 251 gene list. While the list did include genes

involved in Immunological Disease (9 genes), Infectious Disease

(33 genes) and Inflammatory Disease (7 genes), we did not find any

pathways or functions to be significantly enriched after applying

the Benjamini–Hochberg procedure for multiple-test correction of

p-values (0.05) in the 251 gene list, (Methods and Results S1). In

addition to gene expression, we also examined changes in DNA

methylation, however, the changes we found were very small and

uninformative in our study, likely because they are associated with

only a specific cell type in the PBMC mixture of cells. The DNA

methylation data are also available in GEO under the accession

number GSE50835 (Figure S6; Methods and Results S1).

The size of the cohort used to obtain our 251-gene signature

was relatively small, as the collection of the samples analyzed was

part of a study that was focused on defining cytokine expression

differences between patients infected only with HIV and those co-

infected with TB [27]. Thus, we did not enroll TB mono-infected

patients or healthy donors. However, the datasets used to validate

our TB signature do represent those populations, and the excellent

performance of our signature on these large independent datasets

strongly supports the validity and robustness of our 251 gene

signature. It is possible that this signature could be further reduced

with a larger training set, if necessary.

We realize this is only a first step in addressing a difficult area of

TB diagnostics and that the major need for such diagnostics are in

resource limited settings. We have shown that we could develop a

251 gene signature that improved on the previously described 393

gene signature with the possibility of further improving this

signature. While array based assays used to develop this signature

remain costly, we and others [31,32] have successfully moved

array developed diagnostics to PCR based platforms which are less

costly and less technically demanding. The successful application

of our signature to the samples collected in Tempus RNA

stabilization tubes as well as to purified PBMC supports the

feasibility of collecting samples in field settings and shipping them

to a central processing center for analysis. Although much more

work is needed these results provide reason for optimism that such

diagnostic platforms can be developed.

In conclusion, we report a 251-gene signature that accurately

identifies HIV patients that are co-infected with TB. In addition,

we show that this signature has broad applicability as it also

identifies TB in the absence of an HIV infection. TB infection

presents a number of diagnostic challenges, and this is particularly

problematic when its association with HIV infection masks its

more typical clinical and laboratory presentations. We believe that

our signature represents a significant advance, and warrants

further testing aimed at determining its impact as a diagnostic tool

and/or a means to monitor response to antibacterial treatment.

Supporting Information

Figure S1 Receiver operating characteristic curves.
ROC curves depicting the performance of the 251 gene classifier

on A) the training set and B–G) the 6 test sets. The area under the

curve (AUC) is show in the bottom right corner of each plot.

(TIF)

Figure S2 Heatmap of the 251 probes in the time series
data. The expression of the 251 probes selected as a classifier

through SVM-RFE in TB samples before treatment (left), TB after

2 months of treatment (middle/left), TB samples after 12 months

of treatment (middle/right) and controls (right).

(TIF)

Figure S3 Principal component analysis based on
251 gene signature. The first principal component shows a

progressive pattern from right to left corresponding to TB before

treatment (far right) and control (far left) with patients after 12

months of treatment clustering closer to controls. The second

principal component reflects the variation due to the presence

(bottom) and absence (top) of an HIV infection. Each of the 7

patients is represented by a different color and samples from the

different time-points of each patient are connected together.

(TIF)
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Figure S4 Performance of SVM signature in additional
testing sets. Classification scores assigned by the SVM based on

the 251 gene signature to classify active TB (positive scores) and

controls (negative scores) in A-B) Test Sets 3 and 4 (UK) classifying

TB patients (white), latent TB (black) and controls (grey); and C-D)

Test Sets 5 and 6 (South Africa) classifying TB patients (white) and

latent TB (black). The inserts in each figure show zoomed-in

regions of the samples between the dashed vertical lines.

(TIF)

Figure S5 Changes in expression of the 251 gene
associated with treatment. Significant changes in the

expression of the 251 gene signature occur within 2 weeks of

treatment as shown by changes in A) Molecular Distance to

Health in the South African cohort (median and interquartile

range), B) Temporal Molecular Response in the South African

cohort (mean and 95% confidence interval) and C) Temporal

Molecular Response in the UK cohort (mean and 95% confidence

interval). *** = p,0.001, ** = p,0.01 and * = p,0.05.

(TIF)

Figure S6 Changes in DNA Methylation Levels. Distribu-

tion of genes based on the change in the percent methylation

observed between samples from HIV/TB and HIV patients. The

287 genes are those that are both differentially expressed and

methylated between the two patient groups. White bars represent

genes that are more methylated in HIV/TB than in HIV. Grey

bars represent genes that are less methylated in HIV/TB than in

HIV.

(TIF)

Table S1 List of the 251 gene TB-signature identified
using SVM-RFE. Genes are listed according to SVM rank.

(DOCX)

Methods and Results S1.

(DOC)
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