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Abstract

Objective identification and description of mimicked calls is a primary component of any study on avian vocal mimicry but
few studies have adopted a quantitative approach. We used spectral feature representations commonly used in human
speech analysis in combination with various distance metrics to distinguish between mimicked and non-mimicked calls of
the greater racket-tailed drongo, Dicrurus paradiseus and cross-validated the results with human assessment of spectral
similarity. We found that the automated method and human subjects performed similarly in terms of the overall number of
correct matches of mimicked calls to putative model calls. However, the two methods also misclassified different subsets of
calls and we achieved a maximum accuracy of ninety five per cent only when we combined the results of both the methods.
This study is the first to use Mel-frequency Cepstral Coefficients and Relative Spectral Amplitude - filtered Linear Predictive
Coding coefficients to quantify vocal mimicry. Our findings also suggest that in spite of several advances in automated
methods of song analysis, corresponding cross-validation by humans remains essential.
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Introduction

The fundamental step to any study of vocal mimicry is to

distinguish between mimicked calls and species-specific calls in an

objective manner. This is usually done by listening to available

sound libraries of a number of different species and identifying

model species based on human psychophysical, often qualitative,

perceptions of similarities between calls. This is commonly backed

by visual inspection of spectrograms [1–3]. This method is

qualitative and suffers from listener bias. In addition, sound

libraries rarely include the repertoires of the putative models that a

mimic might hear in the wild.

A more quantitative way of defining mimicry is to compare

spectral features of the mimicked calls with those of the putative

model calls using various statistical measures such as Multivariate

Analysis of Variance [4], Multitaper Spectral Analysis [5],

Discriminant Function Analysis [6,7], Spectral Cross-Correlation

[8–11], and Principal Component Analysis [12]. Tchernichovski

et al. [5] and Cortopassi and Bradbury [8] examined vocal

imitation, i.e. vocal similarity between individuals of the same

species. Putland et al. [6] and Flower [4] quantified the mimicry of

a single model species by their respective mimics (Albert’s

lyrebirds, Menura alberti and fork-tailed drongos, Dicrurus adsimilis,

respectively). Two other studies tested the role of female choice as

a driver for mimetic accuracy and examined vocal resemblance

between the mimic and two model species each [7,9]. Hamao and

Eda-Fujiwara [12] were, however, probably the first to attempt an

objective definition of mimicry in their study of the black-browed

reed warbler (Acrocephalus bistrigiceps). They were also the first to

study mimicry of a relatively large number of model species (eight).

Mimicry, by definition, implies call similarity, both structural

and perceptual, since perceptual similarity must have a structural

basis. It is therefore important to assess structural similarity

between calls in studies of vocal mimicry. In our study we consider

a call to be a mimicked one if it is more similar to the call of a

model species than to: i) other calls of its own species and (ii) calls

of a large number of other species with whom it shares the same

habitat. Recently, Igic and Magrath [11] have used similar criteria

to establish vocal mimicry in the brown thornbill (Acanthiza pusilla).

They used a combination of frequency measurements from

spectrograms and spectral cross-correlation to examine similarity

between brown thornbill calls and those of five different model

species and cross-validated the results by human inspection of call

spectrograms.

In both birds and humans, sounds are produced during

expiration by the flow of air through the vocal system. Even

though the vocal organ in birds is structurally distinct from that of

humans, acoustic output in both is produced by the ‘source-filter’

model [13]. Speech processing and recognition methods are thus

increasingly being used in the automatic recognition of bird calls

[14–16]. However, none of these studies have examined the utility

of feature extraction methods used in human speech for the

definition and quantification of vocal similarity between a non-

human vocal mimic and its models.

The greater racket-tailed drongo, Dicrurus paradiseus, is well

known for its ability to imitate other species [17], but there are
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only a few comprehensive studies on its mimicking behaviour

[1,18]. In this paper, we have attempted to quantify vocal mimicry

by the greater racket-tailed drongo using spectral feature

extraction methods employed in speech processing coupled with

different similarity measures. We compare the results of the

automated methods with human assessment of similarity based on

visual examination of spectrograms.

Methods

Recordings
All recordings of the greater racket-tailed drongo and putative

model species were made at the Biligiri Rangaswamy Temple

Tiger Reserve (77u–77u169E, and 11u479–12u099N), a 540 sq. km

area of forests at the junction of the Western and Eastern Ghats in

southern India. Audio recordings were made at a sampling rate of

48 kHz using a portable Marantz PMD 671 digital recorder and a

Sennheiser ME 66 directional microphone. Spectrograms of the

recordings were generated in RAVEN [19], using a Hann

window, a window length of 256 sampling points and a time grid

overlap of 50 per cent.

Samira Agnihotri (SA) has worked on the calls and songs of bird

species in this area for eight years and identified mimicked calls in

the recordings as a trained listener of bird calls. The phrase

‘mimicked call’ thus refers to notes/calls in the racket-tailed

drongo’s repertoire classified as mimicked based on the aural and

visual perception of a highly trained listener (SA). This classifica-

tion is used as the reference against which other classification

results are compared in this manuscript. Examples of mimicked

calls as classified by SA are shown in Figure 1.

All necessary permits were obtained for the described field

studies from the Karnataka State Forest Department.

Human assessment
We asked 105 volunteers to assess similarity between mimicked

and model calls by showing them spectrogram images of the same.

Typically, cross-validation by humans involves psychophysical

methods where one or more individuals are first trained to

recognise and distinguish between sounds or are already familiar

with them, and then asked to identify similarity by listening to a

range of sounds in an experimental setup. We believe that inter-

individual variability is high in untrained listeners and tried to

reduce this by opting for visual inspection of spectrograms, which

are accurate time-frequency representations of the time-varying

audio components of such sounds.

We created spectrogram libraries of four types:

i. Mimicked calls - (21)

ii. Putative heterospecific model calls (‘‘models’’) - (21);

iii. Putative heterospecific non-model calls (‘‘other species’’) -

(20)

iv. Racket-tailed drongo putative non-mimicked calls (‘‘species-

specific’’) - (20)

Spectrograms of the sounds in these libraries were saved as

JPEG files at a uniform resolution (3.75 s/line; 24 kHz/line) and

numbers on the axes were removed digitally. We randomly picked

3 notes each from the ‘‘mimicked calls’’ (see Table 1 for the

contents of this library), ‘‘other species’’ and ‘‘species-specific’’

libraries to create 105 sets of 9 notes each. We then added a

mimicked call and its putative model to every set such that each

mimicked call was represented in five sets. Thus, we had a total of

105 sets of 11 spectrograms each. All sets were shuffled and their

contents numbered sequentially in order to remove any biases in

the arrangement of the spectrogram images.

During the experiment, a person was shown the test spectro-

gram (‘mimicked’) and asked to identify and rank the two most

similar spectrograms from the remaining 10 in the set. Each set

was shown to a different person. All subjects were students from

electrical engineering and biology departments who were familiar

with signal processing methods and spectrograms but naive to the

purpose of this study. No time limit was set for the task, but most

individuals completed within five minutes.

All participants gave informed verbal consent to participate in

the study. Their names and institutional affiliations were recorded

with their consent but are kept confidential. Approval for this

component of the study, including the consent procedure, was

obtained from the Institutional Human Ethics Committee of the

Indian Institute of Science, Bangalore (IHEC No. 16/2013).

Computer-based methods
We used the following methods commonly used in human

speech analysis to extract spectral feature vectors and calculate

similarity between mimicked and putative model calls.

The critical aspect in a feature vector derivation is that it should

be a smooth representation of the underlying short-time spectrum

of the signal. Some important representations that have become

successful in speech recognition, which are relevant to the problem

at hand are the following:

i. Mel-Frequency Cepstral Coefficients (MFCC), [20]: The procedure

for extracting short-time MFCC features is shown in Figure 2.

The sampling frequency of the input call is 48 kHz. A

Hamming window of duration 25 milliseconds is used in the

computation of the short-time spectrum. This corresponds to

a sample size of 1200. The overlap between consecutive

frames is 480 samples. The short-time spectrum of each

frame is computed and the spectral magnitudes are squared

to obtain the corresponding power spectrum. The spectrum is

then averaged on the mel-scale using triangular filters. The

result is an array of short-time energies, one per band. The

energies are then subject to a logarithmic transformation,

which essentially performs dynamic range compression in

agreement with intensity compression performed in the

auditory system. The 32 log energies constitute a smooth

representation of the spectrum, with high resolution at low

frequencies and low resolution at high frequencies. The

variable auditory resolution is based on psychoacoustic

masking experiments carried out on human subjects.

Knudsen and Gentner [21] showed that songbird audition

is in many ways similar to human audition. Specifically, the

properties related to frequency range, spectral sensitivity,

temporal sensitivity and masking are quite similar across

songbirds and humans, although there are minor differences

in the detection thresholds. Based on these findings, we infer

that the MFCC method, which is primarily based on the

properties of human audition, should also be well suited for

bird audition.

i. The log power spectrum thus obtained is subject to a discrete

cosine transform (DCT), which results in what is known as

the mel cepstrum. Typically, the first few coefficients are

significant and following speech/speaker recognition exper-

iments, the first 13 coefficients are used to constitute a mel-

frequency cepstral coefficient (MFCC) feature vector. In

addition to the static coefficients, dynamic velocity and

acceleration parameters [22] are also computed and
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appended to form a 39 dimensional feature vector. The 39

dimensional vector is used for matching calls. The MFCC

computations in this paper were made by using the Voicebox

toolbox software available at http://www.ee.ic.ac.uk/hp/

staff/dmb/voicebox/voicebox.html

ii. Line spectral frequencies (LSF), [23]: The LSF parameterization

is a discrete representation of the spectrum in the sense that it

is a collection of spectral indices about the short-time spectral

resonances. LSFs have been shown to be robust to

quantization, which makes them a natural choice for

compression applications [24]. To start with, one considers

the linear prediction (LP) model [25] of a random signal sn,

and constructs an approximation ŝsn based on the past p
samples of sn as follows in equation (1):

ŝsn~
Xp

k~1

aksn{k,

where the coefficients ak,k~1,2,:::,pf g are optimized such

that e sn{ŝsnð Þ2
n o

is minimized, where e denotes the

Figure 1. Model and mimic call spectrograms for five species (four birds and one mammal).
doi:10.1371/journal.pone.0089540.g001

Quantification of Vocal Mimicry

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e89540



ensemble averaging (expectation) operator. This yields a

standard set of Yule-Walker equations (or normal equations,

which are linear in the unknown parameters) and the

coefficients can be obtained by solving them using Levin-

son-Durbin recursion [23]. The LP model essentially

constitutes an autoregressive or all-pole model of the short-

time spectrum on a linear magnitude scale. From the LP

polynomial A zð Þ~1{
Pp

k~1

akz{k one constructs two poly-

nomials P zð Þ and Q zð Þ such that in the following equations

(2):

P zð Þ~A zð Þzz{ pz1ð ÞA z1
� �

and (3):

Q zð Þ~A zð Þ{z{ pz1ð ÞA z{1
� �

,

which, in case of human speech, correspond to the vocal tract

configurations with glottis closed and open, respectively.

Interestingly, P zð Þ is a palindromic polynomial, and Q zð Þ is

anti-palindromic. The roots of P and Q lie on the unit circle

in the complex plane and they also mutually alternate. The

roots also occur in complex conjugate pairs. The locations of

the roots of P and Q constitute the LSF representation for a

short-time signal segment.

iii. RASTA-PLPCC features: The standard linear prediction model

results in a smoothed short-time spectral envelope. The main

feature of the LP model is that it approximates the short-time

spectrum equally well at all frequencies that fall within the

spectral band. While this feature may be viewed as a merit

from a generic spectral estimation approach, from the

perspective of auditory perception by humans (which is the

benchmark for cross validating the mimicry comparisons

given by the automated techniques reported in this paper), it

is important to have higher resolution at low frequencies and

lower resolution at high frequencies. Again, since auditory

perception in birds is similar to that of humans [21], the

PLPCC methodology is appropriate for such a comparative

approach. In perceptual linear prediction (PLP), Hermansky

[26] proposed to compute an auditory-like spectrum of

speech prior to approximations by an all-pole model.

The key steps involved in PLP are critical band smoothing of

the short-time spectrum, resampling the smoothed spectrum at

approximately 1-Bark intervals, pre-emphasis by an equal-

loudness compensation and compression of the resulting spectrum

to simulate intensity-loudness power law. The resulting spectrum

has been shown to be consistent with many known results in

acoustic signal perception. A feature vector parametrization of the

spectrum is obtained by all-pole modeling (Levinson-Durbin

recursion) and subsequent conversion to cepstral domain [22] to

yield a feature vector. The cepstral coefficients (CC) thus derived

are also referred to as the PLPCC. In RASTA-PLPCC [27], there

Table 1. Putative models and call types mimicked by the greater racket-tailed drongo.

Species Call type Spectral signature

Birds

Banded bay cuckoo Cacomantis sonneratii Call FM

Black-rumped flameback Dinopium benghalense Call Trill

Common hawk-cuckoo* Hierococcyx varius Call FM

Common tailorbird* Orthotomus sutorius Call FM

Crested serpent eagle Spilornis cheela Call FM

Crested treeswift Hemiprocne coronata Call HR

Green bee-eater# Merops orientalis Call Trill

Jungle babbler Turdoides striata Alarm HR

Large billed crow Corvus macrorhynchos Call NB-Trill

Loten’s sunbird# Cinnyris lotenius Call BB

Oriental honey buzzard* Pernis ptilorhyncus Call FM

Oriental honey buzzard* # Pernis ptilorhyncus Courtship FM

Oriental white-eye Zosterops palpebrosus Call NB-Trill

Plum-headed parakeet Psittacula cyanocephala Call HR

Red spurfowl# Galloperdix spadicea Call HR

Rufous treepie Dendrocitta vagabunda Call FM

Rufous treepie Dendrocitta vagabunda Alarm BB

Shikra* Accipiter badius Call HR

White-breasted kingfisher Halcyon smyrnensis Call Trill

Yellow-browed bulbul Iole indica Call FM

Mammals

Bonnet macaque Macaca radiata Alarm HR

#- files that were misclassified in the human assessment.
*- files that were misclassified by the computer-based method.
doi:10.1371/journal.pone.0089540.t001
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is an additional filtering step on the bandpass filter outputs. The

so-called RASTA filter has a sharp spectral zero at zero frequency.

Consequently, constant or slowly-varying components in each sub-

band output are suppressed by this operation rendering the

resulting feature representation more robust to slow variations in

the short-time spectrum (for example, linear distortions caused by

a microphone/recording device). This operation corresponds to

an implicit blind deconvolution. A block diagram representation of

RASTA-PLPCC computation is shown in Figure 3. RASTA-

PLPCC have been shown to be quite robust to channel

distortions/mismatch and degradation in the presence of additive

noise. The frame size used for short-time analysis is 25

milliseconds (1200 samples at 48 kHz sampling rate), with an

overlap of 10 milliseconds (480 samples). The resulting feature

vector is 12 dimensional. The feature vector computations were

made using the software available at http://labrosa.ee.columbia.

edu/matlab/rastamat/

We used these feature vectors in combination with the following

distance metrics to calculate similarity between mimicked and

putative model calls:

i. Jaccard’s metric: The Jaccard metric is a similarity measure to

quantify the diversity and similarity of two given sample sets.

The Jaccard distance between two sets A and B is defined as

in equation (4):

J A,Bð Þ~1{
A\B

A|B

����
����

It satisfies the properties of non-negativity, symmetry, and

triangle inequality.

ii. Correlation coefficient: The correlation coefficient between two

vectors v1 and v2 is given as in equation (5):

r~
Tv1,v2S
v1k k: v2k k

,

where Tv1,v2S denotes the dot product of the vectors and :k k
denotes the norm of the vector. The maximum value of r is

+1 (perfect correlation) and minimum value is -1 (perfect

anticorrelation).

iii. Angular similarity metric: The cosine metric is essentially the

correlation coefficient itself, but one could compare two

vectors solely on the basis of the angle between them. The

arc cosine nonlinear transformation gives rise to the angular

similarity: h~1{cos{1 rð Þ
�

p.

iv. ,p distance: The ,p distance between two vectors v1 and v2 is

defined as in equation (6):

Figure 2. Flow chart showing the procedure for computation of
mel-frequency cepstral coefficients.
doi:10.1371/journal.pone.0089540.g002

Figure 3. Flow chart showing the procedure for extraction of
RASTA-PLPCC feature vectors.
doi:10.1371/journal.pone.0089540.g003
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dp v1,v2ð Þ~
XN

k~1

v1 kð Þ{v2 kð Þj jp
 !1=p

If p = 1, we have the city block metric, and p = 2 gives rise to

the Euclidean distance metric.

We first created a library of 357 sound files that were segmented

to include only one representative of each call. These included 63

mimicked calls, 84 heterospecific calls (including putative models)

of 61 species and 210 racket-tailed drongo putative non-mimicked

species-specific calls. Frequencies of the calls in these files ranged

from 500 Hz to 8 kHz, spanning most of the frequency range of

bird vocalisations. The notes were broadly classified on the basis of

their spectral signatures (Figure 4), i.e. the shape of the

spectrogram, as Frequency Modulated (FM), Broadband (BB),

Harmonic (HR), Repeated trills (Trill) and Narrowband trills (NB-

Trill). This was done in order to examine if the spectral feature

extraction methods that we used worked better for certain types of

calls (Brandes 2008). We initially tested 27 types of mimicked calls,

including one call where the putative model was a mammal. Each

mimicked file was compared with the remaining 356 files in the

library. All computer based analyses were performed in MATLAB

version 6.5 (MathWorks, Natick, MA, U.S.A.).

We used the results from this large data set to select one spectral

feature extraction method and two distance metrics that gave the

maximum number of correct matches. We selected the two

similarity indices based on the total number of first-ranked correct

matches made by the various indices. We also examined the

variance in rank assignment within the first three ranks across calls

(incorrect matches were scored as 4, the lowest rank, for this

calculation) for all the indices.

We then repeated the analysis using these selected methods on a

smaller subset of the sound files, which was identical to the subset

used for the human assessment. The design for this analysis was

also identical to the design for the human assessment, i.e. each of

the 21 mimicked calls was tested 5 times. Each comparison was

against a randomly picked set of 10 other calls (3 ‘‘mimicked’’, 3

‘‘species specific’’, and 3 ‘‘other species’’ plus the putative model

call).

We used a 2-sample test for equality of proportions with Yates’

continuity correction to compare the total proportion of correct

matches obtained by each method. All statistical tests were

performed in R 2.13.2 [28].

Results

I. Human assessment
We examined how humans identified mimicry at three different

levels. First, at the broadest level, 77 of the 105 people tested

correctly matched a mimicked call to its model as their first choice

(73.3%). This accuracy increased to 82.9% when we included

second-ranked calls into the criteria for correct matches. Secondly,

on a call-by-call basis, 7 out of the 21 mimicked calls tested

(33.3%) were ranked as most similar to their putative model in all

5 trials (i.e. by five different people) in which they were presented

(Fig. 5 A). If we included the second-ranked correct matches, the

total percentage of correct matches increased to 61.9% (Fig. 5 A).

At a third level, we examined the five trials for each call. If we set a

threshold of 80% accuracy for each call, i.e. correct matches in at

least four of the five trials per call, then according to this criterion,

15 of the 21 (71.4%) mimicked calls that were tested were matched

correctly to their models in the first rank; this increased to 81%

when we included second-ranked correct matches (Fig. 5 A, grey

bars).

There was a significant increase in accuracy when we compared

the correct matches in the first rank with and without an 80%

threshold (Figure 5 A: Rank 1; P,0.05). This effect was not seen

when the criterion for correct matches included first and second-

ranked matches (Figure 5 A: Rank 1+2; P = 0.30). Four calls were

not matched to their putative model in either the first or the

second rank by human assessment (Table 1).

II. Computer-based method
i. Feature vector and distance metric selection. In the

first part of our analysis with a sound library of 357 files, 14 of the

27 mimicked calls (51.85%) tested showed the putative model call

as the closest match (out of 356 files) across all three feature

extraction methods. If we included the calls where the model was

ranked as the second closest match (out of 356), the total number

of files matched correctly increased to 17 (63%). The PLPCC

feature vector performed best, giving 12 of these 17 correct

matches. PLPCCs also performed well across three categories of

call types (5/7 FM calls; all 3 BB calls and 3/4 HR calls). The

Jaccard index, the correlation co-efficient and the cosine similarity

indices showed the maximum number of first-ranked correct

Figure 4. Spectral signatures of five broad classes of bird calls. Trill (Black rumped flameback, Dinopium benghalense); Narrowband-Trill
(Oriental white eye Zosterops palpebrosus); Harmonic (Plum-headed parakeet Psittacula cyanocephala); Broadband (Black-hooded oriole Oriolus
xanthornus); and Frequency Modulated (Yellow browed bulbul Iole indica).
doi:10.1371/journal.pone.0089540.g004
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matches across feature extraction methods (Table 2). These three

similarity indices also showed the most consistent results i.e. they

gave identical ranks to the correct matches (Table 3, as

represented by the lowest variance in rank assignment). Thus,

we decided to use the PLPCC feature vector and the Jaccard and

correlation indices for our comparative analysis on the subset of 82

sound files.

ii. Final automated analysis. When we performed the

analysis on the smaller sound library, 11 of the 21 files tested

(52.38%) using the PLPCC were ranked as most similar to their

putative model in all 5 trials. If we included correct matches in the

second rank, the total percentage of correct matches increased to

71.43%. In accordance with our analysis of the human assessment,

if we kept a threshold of 80% accuracy for each call, i.e. correct

matches in at least four of the five trials per call, then according to

this criterion, 15 of the 21 (71.4%) mimicked notes that were tested

were matched correctly to their models in the first rank and this

increased to 76% when we included second ranked correct

matches. The increase in the total number of correct matches with

a threshold of 80% was not significant for the first rank, nor for the

first and second ranks combined (P = 0.34).

Five mimicked calls were not matched to their putative model in

either the first or the second rank by the computational algorithms

(Table 1).

Figure 5. Percentage of correct matches from (A) the human assessment and (B) the computational method.
doi:10.1371/journal.pone.0089540.g005

Table 2. The total number of correct matches in the first three ranks given by the five similarity indices for each spectral feature
extraction method.

RASTA-PLPCC MFCC LSF

Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3 Rank 1 Rank 2 Rank 3

Jaccard’s distance 9 3 2 5 1 1 5 1 -

Correlation coefficient 9 3 2 5 1 1 5 1 -

Cosine metric 9 3 2 5 1 1 5 1 -

City Block distance 9 2 2 2 1 1 3 1 2

Euclidean distance 10 3 2 2 1 - 2 2 -

doi:10.1371/journal.pone.0089540.t002

Table 3. The variance of the ranks for all correct matches
within the first three ranks by the five similarity indices for the
three spectral feature extraction methods.

RASTA-PLPCC (14) MFCC (7) LSF (7)

Jaccard’s distance 0.58 0.62 1.29

Correlation coefficient 0.58 0.62 1.29

Cosine metric 0.58 0.62 1.29

City Block distance 1.02 1.9 1.48

Euclidean distance 0.57 2.14 1.95

Similar values indicate consistency in assigning ranks.
doi:10.1371/journal.pone.0089540.t003
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PLOS ONE | www.plosone.org 7 March 2014 | Volume 9 | Issue 3 | e89540



III. Comparison of computer-based methods and human
assessment

Both methods showed similar results in terms of

the total proportion of mimicked calls that were matched correctly

to their putative models. Although the automated method

performed slightly better than humans, the difference was not

significant (Rank 1: P = 0.34; Rank 2: P = 0.74). The total

percentage of correct matches with the 80% threshold was also

similar for both the methods. When we included second-ranked

correct matches within this criterion, humans made a relatively

higher number of correct matches, but this difference was also not

statistically significant. A closer inspection of the calls misclassified

by both methods revealed little overlap between these two sets

(Table 1). Only one call was not matched to its putative model in

the first or second rank by both the computer-based methods and

humans (Table 1: Oriental honey buzzard courtship call) and will

therefore be deleted from the mimicked calls data set.

Discussion

This is the first study of vocal mimicry in the racket-tailed

drongo that has attempted to quantify mimicry using an objective

approach. This is also the first study in which MFCCs and

PLPCCs have been applied to describe vocal mimicry in a bird

species. Overall, both computer-based methods and human

assessment showed similar results (in terms of proportion of calls)

in matching a mimic to its model.

These results are similar to those obtained in previous studies on

automatic recognition of bird calls using feature vectors used in

human speech analysis to examine the calls of a relatively large

number of species [16,29]. Somervuo et al. [29] used MFCCs and

time-varying sinusoidal models for the classification and identifi-

cation of the songs of 14 North European passerines. In their

study, the average recognition accuracy for single syllables for

most species ranged from 40% to 50%. This increased when more

data were supplied to the classifiers in the form of song phrases.

They argued that the low recognition accuracy could be due to the

large variation in bird vocalizations. They also found that time-

varying sinusoidal models of the syllables gave the overall highest

recognition accuracies, especially for species with a certain type of

harmonic calls. They recommend the use of hierarchical classifiers

based on the tonality of the song syllable to select the most

appropriate feature extraction method. Cheng et al. [16]

attempted the classification and identification of the calls of 10

species of birds using LPCCs and MFCCs combined with various

machine-learning algorithms. Recognition accuracy varied for

each species (from 50% to 100%). Support vector (SVM) machine-

learning classifiers in combination with MFCCs worked best for

their data, whereas LPCCs worked better with Hidden Markov

Models (HMMs). HMMs and SVMs, however, require a lot of

training data, which may not always be available for all the species

of interest.

In our study, we did not have any training data sets and the

PLPCC gave the maximum number of correct matches irrespec-

tive of the spectrogram category (FM, BB, HR, NB-Trill, and

Trill) i.e., there was no structural similarity in the types of calls

correctly classified by the PLPCC. The best matching perfor-

mance in our study was obtained with the RASTA-PLPCC feature

vectors and the performance did not vary significantly with the

type of distance metric employed. MFCC and LSF feature

representations performed nearly identically up to within the first

two ranks and both were found to be significantly inferior

compared with RASTA-PLPCC. The LSFs are a discrete

representation of the spectrum and hence more sensitive to minor

perturbations of the spectrum or additive noise than MFCC/

PLPCC, which are smoother representations of the short-time

spectrum.

It is, however, surprising to note that MFCC feature represen-

tations and dynamic features, which have become de facto

standard in speech/speaker recognition applications, did not fare

well in the mimicry to model call matching task. RASTA-PLPCC

equipped with the Euclidean distance metric (in terms of total

number of correct matches) emerged the top performer. Also,

among the three feature representations considered, it is again

RASTA-PLPCC that comes quite close to modelling the

peripheral auditory system behaviour using suitable engineering

approximations. Given that the ground truth in the call matching

task was given by a trained human listener, it is probably not

surprising that RASTA-PLPCC outperforms the other two

representations considered.

Our results also corroborate recent work on vocal mimicry in

the brown thornbill, where human identification and classification

of mimicked notes did not differ from that done by computer-

based methods [11]. Their results showed 97% overlap in the

identification of mimicry by computer based methods and by

humans. Igic and Magrath [11] were interested in alarm mimicry

of five model species (only calls above a 6 kHz threshold were

selected), and they had only one species-specific alarm call for

comparison, which could explain why they were able to obtain

such a high degree of accuracy using only spectral cross-

correlation methods (SPCCs).

In this paper, we examined 21 racket-tailed drongo calls, which

include mimicry of 19 different species, and compared them with

61 other calls (including the putative models, 20 non-model species

calls, and 20 racket-tailed drongo species specific calls). In our

study there was 81% overlap in the sounds judged as mimicry by

the trained human assessor and the untrained human assessors

and 76% overlap between the trained human assessor and the

automated method. If we pool the results of the automated

methods and the human assessment, we have a combined

accuracy of 95%. This indicates that humans were able to match

certain calls that the computational algorithms were unable to and

highlights the fact that cross-validation by humans is still a

necessary component of studies involving automated procedures

for identifying and classifying sounds. This could be especially

relevant when the calls vary greatly in signal-to-noise ratio, a

problem that continues to be a significant hurdle in the progress of

automated sound recognition in the field [30]. Any advances in

these methods would benefit from a comparison between multiple

trained human assessors and the application of more complex

algorithms such as support vector machine-learning and neural

networks, especially when we take into account the large variation

in the types of calls being examined.

Quantitative methods to study vocal mimicry provide a useful

tool in identifying and establishing variations in mimicry

repertoires across mimicking individuals. They can also be used

to examine the accuracy of imitation between models and their

mimics [6,9–11]. Our results reveal however that the automated

methods still need to be refined and improved to obtain higher

levels of accuracy, even if they are currently close to the levels of

accuracy achieved by untrained human observers. Identification of

mimicry based on structural features of calls is however just the

first step and further exploration into its functions would require

information on the contexts in which mimicry is produced, as well

as bioassays involving the target (receiver) species in the wild [10].
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