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Abstract

Acute Respiratory Distress Syndrome remains challenging partially because the underlying mechanisms are poorly
understood. While inflammation and loss of barrier function are associated with disease progression, our understanding of
the biophysical mechanisms associated with ventilator-associated lung injury is incomplete. In this line of thinking, we
recently showed that changes in the F-actin content and deformability of AECs lead to cell detachment with mechanical
stretch. Elsewhere, we discovered that cytokine secretion and proliferation were regulated in part by the stretch-activated 2-
pore domain K+ (K2P) channel TREK-1 in alveolar epithelial cells (AECs). As such, the aim of the current study was to
determine whether TREK-1 regulated the mechanobiology of AECs through cytoskeletal remodeling and cell detachment.
Using a TREK-1-deficient human AEC line (A549), we examined the cytoskeleton by confocal microscopy and quantified
differences in the F-actin content. We used nano-indentation with an atomic force microscope to measure the deformability
of cells and detachment assays to quantify the level of injury in our monolayers. We found a decrease in F-actin and an
increase in deformability in TREK-1 deficient cells compared to control cells. Although total vinculin and focal adhesion
kinase (FAK) levels remained unchanged, focal adhesions appeared to be less prominent and phosphorylation of FAK at the
Tyr925 residue was greater in TREK-1 deficient cells. TREK-1 deficient cells have less F-actin and are more deformable making
them more resistant to stretch-induced injury.
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Introduction

Acute Respiratory Distress Syndrome (ARDS) remains a

challenging disease to manage in both the adult and pediatric

populations [1,2]. Except for an increased emphasis on low tidal

volume ventilation and lung protective strategies, few therapeutic

approaches have shown improvement in patient survival [3–5].

Oxygen administration and mechanical ventilation, the two main

treatment regimens for ARDS, can accentuate lung injury [3,6,7].

While inflammation and loss of barrier function contribute to the

progression of disease in these patients [8,9], our understanding of

the biophysical mechanisms associated with ventilator-associated

lung injury is incomplete [10–14].

We recently proposed a regulatory role for the stretch-activated

2-pore domain K+ (K2P) channel TREK-1 in the regulation of

alveolar epithelial cell (AEC) cytokine secretion and proliferation,

two functions related to inflammation and repair [15–17]. The

main function of K2P channels is thought to be the regulation of

the resting cell membrane potential by sustaining so-called

‘‘background’’ or ‘‘leak’’ potassium currents [18–20], but these

channels may also act as mechanosensors since they are activated

by mechanical stretch [21]. Interestingly, in addition to sensing

stretch signals, TREK-1 itself has also been shown to mediate

changes in intracellular architecture in the anterior eye chamber

[22] and the morphology of actin cytoskeleton independent of its

channel activity in fetal neurons [23]. Thus, TREK-1 may be

involved in both mechanosensing and in regulation of cell

structure.

We recently proposed a novel mechanism by which changes in

the F-actin content and increased stiffness of AECs could cause

loss of barrier function due to stretch-induced cell detachment

[24]. A previous study by Yalcin et al. [13] demonstrated that actin

depolymerization in A549 epithelial cells caused the cells to

become softer (more deformable) and protected the cells from

injury caused by bubble progression in a model of cyclic collapse

and re-opening of airways. Detachment of cells was reduced in

softer cells, but paradoxically this correlated with a reduced

number of focal adhesions (FAs).

In this study we propose that TREK-1 regulates the deform-

ability of AECs through cytoskeletal remodeling and affects

cellular detachment following mechanical stretch. To investigate

this hypothesis, we used shRNA transfected, TREK-1-deficient

A549 cells, and we show for the first time that TREK-1 deficiency

leads to considerable cytoskeletal alterations and an increase in the

deformability of human AECs. Moreover, we show that these

biophysical changes may be responsible for the decreased cell

detachment observed in TREK-1 deficient cells after exposure to

mechanical stretch.
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Materials and Methods

Cell culture
Human A549 AECs were purchased from the American Type

Culture Collection (ATCC, Manassas, VA). Cells were cultured in

DMEM (Gibco, Carlsbad, CA) supplemented with 10% FBS

(Gibco), 1% Penicillin/Streptomycin (Gibco), 20 mM HEPES

(Sigma Aldrich, St. Louis, MO), and 2 mM L-Glutamine (Gibco).

A stable TREK-1 deficient A549 cell line and a control cell line

transfected with a scrambled shRNA were created as previously

described [17]. With this approach, we are able to obtain a 63%

knock down of TREK-1 expression [15]. Cells were grown on

FlexCell plates for detachment, imaging, and biochemical studies,

and plastic petri dishes for AFM indentation studies.

Confocal Microscopy
Confluent cells (80 to 90%) were fixed with 4% paraformalde-

hyde for 5 min at 4uC, permeabilized with 0.5% Triton X-100 for

10 min, and then blocked with 5% normal horse serum with 2%

BSA in PBS for 30 min. The cells were then incubated with Alexa

Fluor 594 phalloidin (Life Technologies, Grand Island, NY) for 30

min at room temperature for F-actin staining or an anti-vinculin

antibody (Alexa Fluor 488 Vinculin, Millipore) for 2 hours at

room temperature. Nuclear staining was obtained using Fluoro

Gel II mounting medium containing DAPI (Electron Microscopy

Sciences, Hatfield, PA). As a negative control, a species-specific

IgG antibody was substituted for the respective primary antibody.

Images were acquired using a Zeiss 710 confocal imaging

system. Emitted fluorescence was collected using a 63X magni-

fication objective lens (NA 1.4 Oil), and the images were recorded

using Zen 2009 Light Edition software (Zeiss).

Live cell indentation with atomic force microscopy (AFM)
We utilized the AFM (MFP3D, Asylum Research, Santa

Barbara, CA) as a nano-indenter with a flexible cantilever beam

(SiNi, Budget Sensors, Sofia, Bulgaria) [24,25] to measure the

elastic modulus, E, of live cells. Briefly, the AFM indentation is

achieved when the cantilever is lowered enough to come in contact

with the cell to cause indentation and deflect the cantilever beam.

The reaction force measured on the cantilever beam that

compresses the cell is related to the elastic modulus of the cell,

the nominal stiffness of the cantilever beam (its spring constant),

and the geometry of the tip of the cantilever beam [26–28]. The

nominal stiffness of the cantilever beams was reported to be

0.27 N/m, but we calibrated the cantilever beam with each

experiment. Next, at randomly selected spots on the confluent

monolayers, 50 (2625 grid) force-indentation curves were

recorded over a rectangle that is 12.5 mm650 mm. A MATLAB

(Mathworks, Natick, MA) code, developed in our group, was used

to batch process the force-indentation curves and to determine the

E using a modified version of the Hertz equation E = F [2(1 –

n2)]/[1.4906 d2 tan(h)] where n is Poisson’s ratio, h is the tip half-

opening angle, and d is the sample indentation [26–28]. In the

analyses, the Poisson’s ratio is assumed to be 0.49. We obtained a

minimum of 10 maps from 2 petri dishes per condition from 4

different cell-seeding events. We computed the median modulus of

each map and averaged these over the dish.

Cell Detachment Experiments and Quantification
Confluent monolayers of A549 cells were exposed to cyclic

stretch using the Flexercell FX-4000T tension unit (Flexcell

International, Hillsborough, NC). Cells were exposed to 20%

linear strain for 8 hours at a frequency of 15 cycles/min and fixed

in 4% paraformaldehyde for 5 min at 4uC. This is considered to be

an injurious level of stretch considering that AECs in the lungs

experience ,4% stretch during normal tidal breathing [29,30].

Phase contrast images were collected at 20X magnification using

an EVOS digital microscope (5 images/well) and marked using

Adobe Photoshop CS6. Images were analyzed using MATLAB

(Natick, MA) to determine the percentage of denuded area relative

to the overall field. Unstretched cells were used as controls.

Western Blot Analysis
G- and F-actin assay. Cells were seeded in 6 well FlexCell

plates (0.36106 cells/well) in triplicate and grown to .90%

confluence. Cells were washed twice with cold PBS and then lysed

in the following solution for 5 min on ice: 1% Triton X-100,

20 mM Tris, 5 mM EGTA, 20 mM NaFl, 25 mM Na pyrophos-

phate, containing a protease inhibitor cocktail (Roche, Burlington,

NC). G-actin containing supernatants were collected and total

protein concentrations were determined using the Quick Start

Bradford (BioRad, Hercules, CA). Thereafter, F-actin was

extracted by adding the following solution: 1% Triton X-100,

20 mM Tris, 5 mM EGTA, 20 mM NaFl, 25 mM Na pyrophos-

phate, containing a protease inhibitor cocktail (Roche, Burlington,

NC) and 5% SDS and 5% deoxycholic acid. After 5 min, F-actin

was removed from the wells using a cell scraper and the samples

were centrifuged at 17,000 g for 20 min at 4uC. To determine the

relative amounts of G- and F-actin, we performed Western Blot

experiments loading equal amounts of volume per lane with an

antibody against actin (1:1000, Cytoskeleton, Denver, CO).

GAPDH (1:2000, Cell Signaling) was used as an internal loading

control for G-actin.

Phospho-FAK, total FAK, and total vinculin determi-
nation. To determine the amounts of vinculin, focal adhesion

kinase (FAK), phospho FAK (Tyr397), and phospho FAK (Tyr925)

in our samples, we seeded 0.36106 cells in 6 well plates. Once cells

reached 90% confluence, they were lysed on ice in RIPA buffer

(50 mM Tris?HCl, pH 7.4, 150 mM NaCl, 2 mM EDTA, 1%

Nonidet P-40, 0.1% SDS) with a protease inhibitor cocktail

(Roche, Burlington, NC). Lysates were centrifuged at 4uC and

17,000 g for 15 min, and total protein concentrations were

measured using the Bradford assay (BioRad, Hercules, CA), with

60 mg protein loaded in each lane. An antibody pair against

phospho FAK (Tyr397, 1:1000 dilution), total FAK (1:1000

dilution), and vinculin (1:1000 dilution) was purchased from Cell

Signaling, and another antibody pair against phospho FAK

(Tyr925; 1:1000 dilution) and total FAK was purchased from

Abcam (Cambridge, MA). GAPDH (1:2000) was used as an

internal loading control.

Gel electrophoresis. G-actin, F-actin, phospho FAK (Tyr397

and Tyr925), and total FAK samples were separated by sodium

dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis (PAGE)

on 4–12% NuPage Bis-Tris gradient gels (Life Technologies,

Grand Island, NY) and transferred onto nitrocellulose membranes

at 35 mV for 2 hours. All membranes were blocked in 5% non-fat

dry milk in Tris-buffered saline (Bio-Rad) containing 0.1% Tween-

20 for 1 h at 37uC. The membranes were then incubated

overnight with the indicated primary antibodies at 4uC. The next

day, all membranes were incubated for 1 hour with an anti-rabbit

HRP-conjugated IgG (1:2000, Cell Signaling). To detect GAPDH

we used an anti-rabbit HRP-conjugated IgG (1:5000, Cell

Signaling). Bands were visualized by enhanced chemiluminescence

with ECL SuperSignal West Dura Extended Duration Substrate

(Thermo Scientific, Rockford IL). Band densitometry to determine

relative quantities of protein were performed using ImageJ 1.42

software for Windows.
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Statistical analysis
All values were expressed as mean 6 SEM and statistical

analysis was performed using Student’s t-test or ANOVA. All

statistical analyses were performed using SigmaStat 3.5 software,

and a p-value of p,0.05 was considered significant.

Results

TREK-1 deficient cells contained less F-actin
To test the hypothesis that TREK-1 regulates cell structure and

deformability, we compared the distribution of F-actin and the

relative content of F- and G-actin in control and TREK-1-

deficient AECs. Using confocal fluorescence microscopy, we found

that TREK-1-deficient A549 cells exhibited decreased F-actin

compared with control cells (Figure 1A). An extensive network of

F-actin stress fibers was observed in the unstretched (static) control

cells, while stress fibers were much less prominent in the TREK-1-

deficient cells. In contrast, we found no difference in the

appearance of a-tubulin immunofluorescence between control

and TREK-1 deficient cells (results not shown).

To determine whether the decrease in F-actin stress fibers in

TREK-1 deficient cells was due to changes in actin content, we

examined the content of Triton-soluble (mainly G-actin) and

Triton-insoluble (mainly F-actin) fractions. The representative

Western blots in Fig. 1B show that both cell types contained

similar amounts of G-actin, but TREK-1-deficient cells contained

decreased amounts of F-actin compared to control cells (Fig. 1B).

Band densitometry analysis shown in Fig. 1C demonstrates that

TREK-1-deficient cells contained significantly less (27.2%) F-actin

relative to total (G+F) actin compared with control cells.

To further investigate the effect of TREK-1 deficiency on the

cell cytoskeleton, we exposed cells to cyclic stretch (20% strain, 15

cycles/min) for 8 hr. We found that cyclic stretch altered the

distribution and appearance of F-actin (Fig. 1A) as well as the

relative amount of F-actin in control shRNA cells (Fig. 1C). Cyclic

stretch caused F-actin to appear as stress fibers that had been

elongated and then released. In TREK-1-deficient cells, cyclic

stretch induced a similar appearance of F-actin (Fig. 1A), but the

ratio of F-actin to total actin was unaffected (Fig. 1C).

TREK-1 deficiency increased the deformability of AECs
To determine whether the observed changes in the actin

content of TREK-1 deficient cells impacted the deformability of

live AECs, we used nano-indentation to measure the elastic

modulus (E); the lower the E, the more deformable the cells. As

seen in Fig. 2, the average E of TREK-1 deficient cells was

significantly lower than in control cells. The E of control cells was

5.4760.45 kPa whereas the E of TREK-1 deficient cells was

4.0360.19 kPa (p,0.05, n = 4). This is consistent with the finding

that TREK-1 deficient cells contained less F-actin.

TREK-1 deficiency protected AECs from detachment
caused by cyclic stretch

In a previous study, we showed that cells with a higher elastic

modulus (less deformable) were more susceptible to stretch-

Figure 1. The normalized ratio of F-actin to total (G+F) actin in TREK-1 deficient cells is decreased compared to control cells. (A)
Representative confocal microscopy images of 3 separate experiments demonstrating decreased F-actin staining (phalloidin, red) in TREK-1 deficient
A549 cells compared with control shRNA cells under both no stretch (static) and stretch conditions. Nuclei were counterstained with DAPI (blue). (B)
Representative Western blots showing a decrease in the F-actin content relative to G-actin in TREK-1 deficient A549 cells. GAPDH was used as an
internal loading control for the G-actin (Triton-soluble) fraction. (C) Densitometric analysis shows a significant decrease in the ratio of F-actin relative
to total (G+F) actin. Values were normalized to the ratio in unstretched control cells. Cyclic stretch was applied for 8 hr (15 cycles/min, 20%).
(n = 4,*p,0.05, compared to unstretched control cells; # unstretched control cells compared to stretched control cells).
doi:10.1371/journal.pone.0089429.g001

Figure 2. TREK-1 deficiency increased the deformability of
cells. TREK-1 deficient cells have a significantly lower elastic modulus
(E) than control cells. AFM indentation was conducted on live
monolayers of A549 cells as described in the methods. (n = 4, *p,0.05.)
doi:10.1371/journal.pone.0089429.g002
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induced cell detachment. To determine whether TREK-1

deficiency impacted cell detachment caused by stretch, we

quantified cell-free area after 8 hours of cyclic stretch exposure.

As shown in Fig. 3, we found 10 times more cell detachment (cell-

free area) in control cells compared to TREK-1 deficient cells

(8.0%62.6%(STE) vs. 0.8%60.4%(STE)). These results suggest

that TREK-1 deficiency may protect the alveolar epithelial barrier

from stretch-induced cell detachment.

TREK-1 deficiency caused changes in the distribution of
vinculin and phosphorylation of FAK

Focal adhesions (FAs) are located at the interface between cells

and extracellular matrix and play a key role in the regulation of

the biophysical properties of a cell. Vinculin is a membrane-

cytoskeletal protein in FAs that is involved in the linkage of

integrin adhesion molecules to the actin cytoskeleton and

participates in the regulation of AEC adherence to submucosal

substrates [31]. To determine whether the biophysical changes

induced by TREK-1 deficiency or cyclic stretch altered FAs, we

examined vinculin expression by western blotting and vinculin

organization by immunofluorescence microscopy (Fig. 4). The

total vinculin content was similar between control and TREK-1

deficient cells, and was not altered by cyclic stretch (Fig. 4A-B). As

shown in Fig. 4C, unstretched (static) control cells exhibited a

distinct vinculin staining pattern indicative of FAs, but these

structures were not prominent in TREK-1-deficient cells. When

cyclic stretch was applied, vinculin staining appeared more diffuse

and FAs localized near gaps between cells in control cells. TREK-

1-deficient cells also exhibited more diffuse vinculin staining but

no change in FAs.

Phosphorylation of focal adhesion kinase (FAK) at specific

residues can indicate activation of FAK, which may indicate

participation in the formation or disorganization of FAs [32]. We

found that total FAK expression was similar in control and

TREK-1 deficient cells and was not affected by cyclic stretch (Fig.

5). However, phosphorylation of FAK at the Tyr925 residue was

increased in TREK-1 deficient cells, and was further increased in

cells exposed to cyclic stretch. In contrast, phosphorylation of FAK

at the Tyr397 site was not affected by TREK-1 deficiency in

unstretched cells, but was significantly decreased in TREK-1

deficient cells after stretch (Fig. 5).

Discussion

In a previous study, we demonstrated that loss of AEC

deformability increased cell detachment due to stretch [24]. Based

upon these findings and a report proposing that TREK-1

expression could alter cytoskeletal remodeling [23], we hypothe-

sized that TREK-1 was involved in the regulation of cell

deformability. In the present study, we showed that decreased

expression of TREK-1 in A549 cells caused changes in the

cytoskeletal structure, localization of FAs, and an increase in cell

deformability. These changes provided protection against stretch-

induced cell detachment. Interestingly, in our previous study, we

showed that a decrease in cell deformability (stiffer cells) led to

increased cell detachment [24]. In this study, we further expand

this concept by showing that an increase in cell deformability

(softer cells) led to decreased cell detachment when exposed to

cyclic stretch. In our studies, we have utilized an injurious level of

linear strain of 20% based on our prior experience [24,33]. In

future studies, we intend to explore the role of stretch frequency

(strain rate), magnitude, and duration on cell detachment of

control and TREK-1 deficient cells.

It is an interesting finding that A549 cells with a more

deformable cytoskeleton and less organized FAs display less injury

or better attachment to a substrate experiencing stretch. This

suggests that cells with greater deformability (less cytoskeletal

Figure 3. TREK-1-deficient cells were protected from stretch-induced cell detachment. Representative images of control (A) and TREK-1-
deficient (B) A549 cells after stretch. (C) A close up of Panel A where an area with cell denudation is captured and masked (black areas). (D) Summary
of 4 separate experiments indicating a significant decrease in cell detachment in TREK-1-deficient cells (5 images per well, 3 wells per cell type in each
experiment). (n = 4, *p,0.05.)
doi:10.1371/journal.pone.0089429.g003
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stress) and decreased stress at sites of FAs are better able to

withstand deforming stresses. These findings are consistent with

the earlier findings of Yalcin et al. in which they demonstrated that

AEC injury and detachment due to bubble propagation across the

cells was decreased in cells with de-polymerized actin [13].

Interestingly, they also observed that the protected cells were softer

and exhibited reduced FAs. We previously showed that disruption

of F-actin with cytochalasin D caused a significant reduction in cell

deformability [24]. One limitation in our study is that the elastic

moduli of the substrates (1-2MPa for FlexCell membranes,

,2GPa for petri dishes) are significantly greater than the lung

parenchyma (,5 kPa)[34,35]. There is now extensive information

relating various functions of cells (e.g., fibrotic activity [36]) and

substrate stiffness, although not all cell types exhibit the same level

or type of sensitivity [37]. Without further experiments with cells

grown on substrates with very low E (,100 kPa) that can be

mechanically stretched, we cannot predict whether differences we

observed between control and TREK-1 shRNA cells would be

altered.

TREK-1 deficient cells had less detachment in response to

stretch even though they contained less organized FAs (Fig. 4). We

then examined if the FA alterations in TREK-1 deficient cells

were associated with FAK phosphorylation. The relationship

between phosphorylation of FAK at different residues, the

maturation or turnover of FAs, and cell attachment is complex

and not fully understood [38]. Previous studies have shown that

FAK was phosphorylated at Tyr397 and Tyr925 residues at the

onset of migration in A549 cells [39] or in mouse embryonic

fibroblasts [40]. It is possible that FAK is phosphorylated to

disassociate from FAs to encourage turnover, thus facilitating

migration. We found that the baseline level of FAK phosphory-

lation was higher in TREK-1 deficient cells at the Tyr925 residue

(Fig. 5B), which is known to lead to disorganization and turnover

of FAs [38,41]. This may explain the less prominent formation of

Figure 4. Vinculin expression was not affected by TREK-1 deficiency, but localization to focal adhesions was diminished. (A)
Representative Western Blot experiment depicting total vinculin expression under no stretch (NS) and stretched (stretch) conditions. (B)
Densitometric quantification of 3 experiments showing equal levels of total vinculin expression in control and Trek-1 deficient cells under no stretch
(static) and stretch conditions. (C) Representative confocal microscopy images of vinculin immunofluorescence (green) and nuclei (DAPI, blue) in
unstretched cells (static) and stretched cells (20% stretch, 15 cycles/min) for 8 hr; n = 3. All cells were grown on FlexCell plates.
doi:10.1371/journal.pone.0089429.g004

Figure 5. Total FAK was unchanged by TREK-1 deficiency, but FAK phosphorylation at Tyr925 residue was increased in TREK-1
deficient cells, while Tyr397 phosphorylation was decreased in stretched cells. (A) Representative Western blots of FAK Tyr397 and Tyr925

phosphorylation in control and TREK-1 deficient cells under no stretch (static) and stretched (20%, 15 cycles/min for 8 hours) conditions. (B) Summary
of densitometric band analyses of 3 Western blot experiments for Tyr925 and for Tyr397 (C). In (B) and (C) the ratio of phosphorylated FAK (p-FAK) to
total FAK (t-FAK) was normalized to the ratio for unstretched control cells. *p,0.05, compared to unstretched control cells; # unstretched TREK-1
deficient control cells compared to stretched TREK-1 deficient cells; n = 3-4.
doi:10.1371/journal.pone.0089429.g005
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FAs in our unstretcthed TREK-1 deficient cells (Fig. 4C).

Although we provide strong evidence that TREK-1 appears to

modulate the cell cytoskeleton, the molecular mechanisms by

which TREK-1 alters the cell cytoskeleton remain elusive.

In summary, for the first time, we demonstrated that reduced

expression of the stretch-activated K2P channel TREK-1 in A549

cells caused a decrease in F-actin content, an increase in cell

deformability, reduced localization of vinculin at FAs, and

increased phosphorylation of FAK at Tyr925. These changes

promoted protection of the cells against cell detachment caused by

cyclic stretch. The reduction in E and F-actin content suggest a

more deformable cytoskeleton that is capable of sustaining

injurious stretch levels. However, the molecular mechanisms

linking TREK-1 to changes in actin/vinculin/FAK remain to be

determined. It is quite possible that TREK-1 may function not

only as a K+ permeable pore, but also a regulatory molecule, as

has been described for the Cl2 permeable channel CFTR [42]. In

fact, Lauritzen et al. [23] proposed a direct regulatory role of

TREK-1 on cytoskeletal remodeling independent of its function as

an ion channel. Further studies are necessary to delineate the

molecular details of such a relationship.
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mechanical properties of living cells by atomic force microscopy with blunted
pyramidal cantilever tips. Phys Rev E Stat Nonlin Soft Matter Phys 72: 021914.

29. Roan E, Waters CM (2011) What do we know about mechanical strain in lung

alveoli? American Journal of Physiology-Lung Cellular and Molecular
Physiology 301.

30. Fredberg J, Kamm R (2006) Stress transmission in the lung: pathways from
organ to molecule. Annu Rev Physiol 68: 507–541.

31. Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I, et al.
(2012) Vinculin associates with endothelial VE-cadherin junctions to control

force-dependent remodeling. J Cell Biol 196: 641–652.

32. Schaller MD (2010) Cellular functions of FAK kinases: insight into molecular
mechanisms and novel functions. J Cell Sci 123: 1007–1013.

33. Wilhelm KR, Roan E, Ghosh MC, Parthasarathi K, Waters CM (2013)
Hyperoxia increases the elastic modulus of alveolar epithelial cells through Rho

kinase. FEBS J.

34. Cavalcante F, Ito S, Brewer K, Sakai H, Alencar A, et al. (2005) Mechanical
interactions between collagen and proteoglycans: implications for the stability of

lung tissue. J Appl Physiol 98: 672–679.
35. Luque T, Melo E, Garreta E, Cortiella J, Nichols J, et al. (2013) Local

micromechanical properties of decellularized lung scaffolds measured with

atomic force microscopy. Acta Biomaterialia 9: 6852–6859.
36. Marinkovic A, Liu F, Tschumperlin DJ (2013) Matrices of Physiologic Stiffness

Potently Inactivate Idiopathic Pulmonary Fibrosis Fibroblasts. American Journal
of Respiratory Cell and Molecular Biology 48: 422–430.

37. Georges PC, Janmey PA (2005) Cell type-specific response to growth on soft
materials. Journal of Applied Physiology 98: 1547–1553.

38. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in

command and control of cell motility. Nat Rev Mol Cell Biol 6: 56–68.
39. Meng XN, Jin Y, Yu Y, Bai J, Liu GY, et al. (2009) Characterisation of

fibronectin-mediated FAK signalling pathways in lung cancer cell migration and
invasion. Br J Cancer 101: 327–334.

40. Deramaudt TB, Dujardin D, Hamadi A, Noulet F, Kolli K, et al. (2011) FAK

phosphorylation at Tyr-925 regulates cross-talk between focal adhesion turnover
and cell protrusion. Mol Biol Cell 22: 964–975.

41. Katz BZ, Romer L, Miyamoto S, Volberg T, Matsumoto K, et al. (2003)
Targeting membrane-localized focal adhesion kinase to focal adhesions: roles of

tyrosine phosphorylation and SRC family kinases. J Biol Chem 278: 29115–
29120.

42. Davis KA, Cowley EA (2006) Two-pore-domain potassium channels support

anion secretion from human airway Calu-3 epithelial cells. Pflugers Arch 451:
631–641.

TREK-1 and Mechanobiology of AE Cells

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e89429


