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Abstract

Public health surveillance systems provide valuable data for reliable predication of future epidemic events. This paper
describes a study that used nine types of infectious disease data collected through a national public health surveillance
system in mainland China to evaluate and compare the performances of four time series methods, namely, two
decomposition methods (regression and exponential smoothing), autoregressive integrated moving average (ARIMA) and
support vector machine (SVM). The data obtained from 2005 to 2011 and in 2012 were used as modeling and forecasting
samples, respectively. The performances were evaluated based on three metrics: mean absolute error (MAE), mean absolute
percentage error (MAPE), and mean square error (MSE). The accuracy of the statistical models in forecasting future epidemic
disease proved their effectiveness in epidemiological surveillance. Although the comparisons found that no single method
is completely superior to the others, the present study indeed highlighted that the SVMs outperforms the ARIMA model and
decomposition methods in most cases.
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Introduction

Public health surveillance is an important way to continuously

collect, analyze, interpret and disseminate health data essential to

prevention and control [1]. Public health surveillance systems are

designed to facilitate the detection of abnormal behavior of

infectious diseases and other adverse health events. To achieve this

goal, different statistical methods have been used to forecast

infectious disease incidence. Time series models have long been of

interest in the literature. The time series models try to predict

epidemiological behaviors by modeling historical surveillance data.

Many researchers have applied different time series models to

forecasting epidemic incidence in previous studies. Exponential

smoothing [2] and generalized regression [3] methods were used

to forecast in-hospital infection and incidence of cryptosporidiosis

respectively. Decomposition methods [4] and multilevel time series

models [5] were used to forecast respiratory syncytial virus.

Autoregressive integrated moving average (ARIMA) models have

been widely used for epidemic time series forecasting including the

hemorrhagic fever with renal syndrome [6,7], dengue fever [8,9],

and tuberculosis [10]. Models based on artificial neural networks

were also used to predict the incidence of hepatitis A [11,12] and

typhoid fever [13].

The decomposition methods are generally the most traditional

methods in time series analysis [14,15]. These methods try to

break down the original series into a long trend pattern, a seasonal

pattern and residuals. Seasonal indices are extracted to express the

seasonal pattern; a regression model is established to express the

long trend pattern and the residuals are ignored in the methods.

Because the decomposition time series methods do not involve a

lot of mathematics or statistics, they are relatively easy to explain

to the end user. This is a major advantage because if the end user

has recognition of how the forecast was developed, he or she may

have more confidence in its use for decision making.

The ARIMA models are almost the most widely used methods

[16,17]. The ARIMA models are generally derived from three

basic time series models (1) autoregressive (AR), (2) moving

average (MA), and (3) autoregressive moving average (ARMA).

The current value of the time series is a linear function of its

previous values and random noise in the AR model; whereas the

current value of the time series is a linear function of its current

and previous values of residuals in the MA model. The ARMA

model is the combination of AR and MA, which considers both

the historical values and residuals. The time series required in AR,

MA, and ARMA models are stationary processes. This means that

the mean and the covariance of the series do not change with time.

Transformation of the series into a stationary one has to be

performed first for non-stationary time series. The ARIMA model

fits the time series data generally based on the ARMA model and a

differencing process which effectively transforms the non-station-

ary data into a stationary one.

In recent years, machine learning based time series models such

as artificial neural networks have been successfully applied for

modeling infectious disease incidence time series [18]. Support

vector machines (SVMs) are a new type of machine learning

methods based on statistical learning theory [19]. They could lead
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to greater potential and better performance in practical applica-

tions. This is due to the structural risk minimization principle

employed in SVMs, which has greater generalization ability and is

superior to the empirical risk minimization principle that is

adopted by traditional neural networks. SVMs have been

successfully applied in different problems of time series prediction

such as forecasting production value in machinery industry [20],

predicating engine reliability [21] and economic time series

predication [22,23]. The successful utilization of support vector

machines in time series predication motivates our research work

by using support vector machines for epidemic time series

forecasting.

The objectives of the present paper are to compare four typical

time series methods, namely, two decomposition methods

(regression and exponential smoothing), ARIMA model and

SVMs in theory and practice as well as their real forecasting

efficacy in epidemic time series. This comparison may be helpful

for the epidemiologist to choose the most suitable methodology in

a given situation.

Materials and Methods

Materials
We gathered available monthly incidence of nine typical

infectious diseases time series data which were reported by the

Chinese Center for Disease Prevention and Control (CDC). The

data were collected from the Chinese National Surveillance

System established in 2004. The incidence time series of

brucellosis, gonorrhea, hemorrhagic fever renal syndrome

(HFRS), hepatitis A (HA), hepatitis B (HB), scarlet fever,

schistosomiasis, syphilis, typhoid fever from 2005 to 2012 were

collected.

Methods
Decomposition methods. The decomposition methods try

to extract the underlying pattern in the data series from

randomness. The underlying pattern then can be employed to

predict future trends and make forecasts. The underlying pattern

can also be broken down into sub patterns to identify the

component factors that influence each of the values in a series.

Two separate components of the basic underlying pattern that

tend to characterize the infectious disease time series are usually

identified in decomposition methods. They are the trend cycle and

seasonal factors. The trend cycle represents long term changes,

and the seasonal factor is the periodic fluctuations with constant

length that is usually caused by known factors such as rainfall,

month of the year, temperature, timing of the holidays, etc. The

decomposition model assumes that the data has the following

form:

Time series = Pattern + Error = Trend cycle+ Seasonality+
error

The seasonality part of the time series is usually expressed with

the seasonal indices [24]. To arrive at seasonal factors, the entire

incidences for the training sample are averaged first, and then the

averaged incidence is divided by the mean incidence for each

month. If the seasonal index is bigger than 1, it means that the

incidence is usually higher than the average level. Otherwise, it

means that the incidence is usually lower than the average level.

Once the Seasonal indices are calculated, one can deseasonalize

data by dividing by the corresponding index.

Deseasonalized data = Raw data/Seasonal Index

The long-term trend is estimated from the deseasonalized data.

There are many ways to estimate the long-term trend, such as

moving average, exponential smoothing, and linear regression. In

simple moving average methods, the current value is calculated as

the mean of its previous k values, whereas exponential smoothing

assigns exponentially decreasing weights over time. When the time

series x(t) begins at time t = 0, the simplest form of exponential

smoothing is given by the formulae:

S0~x0

St~axt{1z(1{a)St{1,tw0

where a is the smoothing factor and St is the output of the

exponential smoothing algorithm 0vav1.

The linear regression method is another simple way to express

the long term trend in which a common linear regression model is

established between the incidence and time t.

ARIMA model. The ARIMA model originated from AR

model, MA model, and the combination of AR and MA, the

ARMA models [25]. AR models express the current value of the

time series X(t) linearly in terms of its previous values (X(t21), X(t2

2)…) and the current residuals e(t), which can be expressed as:

X (t)~w1X (t{1)zw2X (t{2)z:::zwpX (t{p)ze(t) ð1Þ

MA models express the current value of the time series X(t)

linearly in terms of its current and previous residual series

Table 1. Seasonal index of each type of infectious disease.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Brucellosis 0.34 0.40 1.01 1.41 1.57 1.78 1.65 1.34 0.83 0.54 0.58 0.56

Gonorrhea 0.95 0.77 0.99 1.00 1.03 1.07 1.07 1.09 1.02 0.97 1.01 1.01

Hemorrhagic Fever 1.03 0.70 0.86 0.93 1.06 1.04 0.79 0.48 0.43 0.92 2.01 1.76

Hepatitis A 0.83 0.73 1.06 1.03 1.03 1.04 1.08 1.16 1.09 1.01 0.99 0.97

Hepatitis B 0.92 0.84 1.12 1.05 1.00 1.00 1.07 1.09 0.97 0.95 1.00 0.98

Scarlet Fever 0.80 0.33 0.69 1.15 1.65 1.71 0.90 0.45 0.56 0.84 1.34 1.59

Schistosomiasis 0.48 0.46 0.78 0.88 0.95 1.17 1.63 1.61 1.19 1.16 0.88 0.82

Syphilis 0.76 0.68 1.01 0.99 1.03 1.09 1.13 1.13 1.09 1.01 1.03 1.05

Typhoid fever 0.56 0.49 0.71 0.82 1.05 1.20 1.37 1.52 1.33 1.13 0.96 0.88

doi:10.1371/journal.pone.0088075.t001
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e(t),e(t{1),:::. the model can be expressed as:

X (t)~e(t){h1e(t{1){h2e(t{2){:::{hqe(t{q) ð2Þ

ARMA models are a combination of AR and MA models, in

which the current value of the time series is expressed linearly in

terms of its previous values as well as current and previous residual

series. It can be expressed as:

X (t)~w1X (t{1)z:::zwpX (t{p)ze(t){h1e(t{1){

:::{hqe(t{q)
ð3Þ

The ARIMA model deals with non-stationary time series with

differencing process based on the ARMA model. The differenced

stationary time series can be modeled as ARMA model to yield

ARIMA model.

The ARIMA model is usually termed as ARIMA (p, d, q)6(P, D,

Q)S. In the expression, P is the seasonal order of autoregressive, p

the non-seasonal order of autoregressive, Q the seasonal order

moving average, q the non-seasonal order of moving average, d the

order of regular differencing and D the order of seasonal

differencing. The subscripted letter ‘‘s’’ indicates the length of

seasonal period. For example, the incidence of infectious disease

varies in the annual cycle, so s = 12 in the present study.

The ARIMA modeling procedure consists of three iterative

steps: identification, estimation, and diagnostic checking. Prior to

fitting the ARIMA model, an appropriate difference of the series is

usually performed to make the series stationary. Identification is

the process of determining seasonal and non-seasonal orders using

the autocorrelation functions (ACF) and partial autocorrelation

functions (PACF) of the transformed data [26]. The ACF is a

Figure 1. Seasonal index of each type of infectious disease (1).
doi:10.1371/journal.pone.0088075.g001

Figure 2. Seasonal index of each type of infectious disease (2).
doi:10.1371/journal.pone.0088075.g002
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statistical tool that measures whether earlier values in the series

have some relation to later values. PACF captures the amount of

correlation between a variable and a lag of the said variable that is

not explained by correlation at all low-order lags. Parameters in

the ARIMA model(s) are estimated with the conditional least

squares (CLS) method [27] after the identification step. Finally, the

adequacy of the established model for the series is verified by

employing white noise tests [28] to check whether the residuals are

independent and normally distributed. It is possible that several

ARIMA models may be identified, and the selection of an

optimum model is necessary. Such selection of models is usually

based on the Akaike Information Criterion (AIC) and Schwartz

Bayesian Criterion (SBC) [29].

Support Vector Machine. SVMs estimate the regression

using a set of linear functions that are defined in a high

dimensional space. SVMs carry out the regression estimation by

using Vapnik’s e-insensitive loss function. SVMs use a risk function

consisting of the empirical error and a regularization principle

[30].

Assume that G~ (xi,di)f gn
i is a set of data points, where xi is the

input sample, di is the desired value and n is the total number of

data. The SVMs calculate the function using the following:

y~f (x)~vw(x)zb ð4Þ

where w(x) is the high dimensional feature space which is non-

linearly mapped from the input space Q. The coefficients v and b

are calculated by minimizing

Rsvms(C)~C
1

n

Xn

i~1

Le(di,yi)z
1

2
vk k2 ð5Þ

Le(d,y)~
d{yj{e d{yj j§ej
0 otherwise

�
ð6Þ

In eq. (5), the first term C 1
n

Xn

i~1

Le(di,yi) represents the

empirical error risk, which is calculated by the e-insensitive loss

function in eq. (6). The second term
1

2
vk k2

is the regularization

term. C is the regularized constant, which determines the trade-off

Table 2. Regression results of each series removed
seasonality.

Constant Coefficient R2 p

Brucellosis 0.0931 0.0022 0.7404 0.0011

Gonorrhea 1.1952 20.0077 0.9220 0.0030

Hemorrhagic Fever 0.1218 20.0010 0.5295 0.0005

Hepatitis A 0.5496 20.0044 0.7991 0.0030

Hepatitis B 7.9058 0.0012 0.0019 0.4313

Scarlet Fever 0.1457 0.0013 0.1340 0.0067

Schistosomiasis 0.0193 0.0001 0.1975 0.0001

Syphilis 0.6958 0.0242 0.9464 0.0201

Typhoid fever 0.2121 20.0019 0.8049 0.0005

doi:10.1371/journal.pone.0088075.t002

Table 3. Estimation of available ARIMA models for each
disease.

Disease Identification AIC SBC

Brucellosis ARIMA(0,0,0)6(0,1,1) 2282.39 2280.13

ARIMA(0,0,0)6(1,1,0) 2279.25 2276.99

Gonorrhea ARIMA(0,0,1)6(0,1,0) 2152.05 2149.79

ARIMA(0,0,1)6(0,1,0) 2165.46 2163.08

ARIMA(1,0,0)6(0,1,1) 2160.70 2156.18

ARIMA(0,0,1)6(1,1,0) 2168.48 2163.96

Hemorrhagic Fever ARIMA(1,0,0)6(0,1,0) 2354.63 2352.32

ARIMA(0,0,1)6(0,1,0) 2358.07 2355.80

ARIMA(1,0,1)6(0,1,0) 2361.20 2356.67

Hepatitis A ARIMA(1,0,1)6(0,1,0) 2227.38 2222.85

ARIMA(0,0,0)6(1,1,0) 2237.12 2234.85

ARIMA(1,0,1)6(0,1,1) 2241.85 2235.06

ARIMA(0,0,0)6(0,1,1) 2241.90 2239.63

Hepatitis B ARIMA(1,0,0)6(0,1,0) 168.09 170.35

ARIMA(0,0,1)6(0,1,0) 160.53 162.79

ARIMA(1,0,1)6(0,1,0) 157.30 161.82

ARIMA(2,0,0)6(0,1,0) 161.89 166.41

ARIMA(3,0,0)6(0,1,0) 157.38 164.17

ARIMA(0,0,2)6(0,1,0) 155.18 159.70

ARIMA(1,0,0)6(1,1,0) 151.74 156.27

ARIMA(0,0,1)6(0,1,1) 134.61 139.13

Scarlet Fever ARIMA(1,0,0)6(0,1,0) 2169.68 2167.41

ARIMA(0,0,1)6(0,1,0) 2172.22 2169.96

ARIMA(0,0,1)6(0,1,1) 2190.10 2185.57

ARIMA(1,0,0)6(1,1,0) 2173.30 2168.77

ARIMA(0,0,1)6(1,1,0) 2176.39 2171.87

ARIMA(2,0,0)6(0,1,0) 2179.34 2174.81

ARIMA(1,0,0)6(0,1,1) 2187.63 2183.15

Schistosomiasis ARIMA(1,0,0)6(0,1,0) 2517.69 2515.43

ARIMA(1,0,1)6(0,1,0) 2524.15 2519.62

ARIMA(1,0,0)6(0,1,1) 2520.67 2516.15

ARIMA(0,0,1)6(0,1,0) 2522.71 2520.45

Syphilis ARIMA(1,0,0)6(0,1,0) 255.74 253.48

ARIMA(0,0,1)6(0,1,0) 267.99 265.74

ARIMA(1,0,1)6(0,1,0) 272.93 268.41

ARIMA(1,0,0)6(0,1,1) 274.20 269.67

ARIMA(0,0,1)6(1,1,0) 276.85 272.33

ARIMA(1,0,1)6(1,1,0) 281.47 274.69

ARIMA(2,0,0)6(0,1,0) 260.71 256.19

ARIMA(3,0,0)6(0,1,0) 268.56 261.77

ARIMA(0,0,2)6(0,1,0) 272.07 267.54

ARIMA(2,0,0)6(1,1,0) 274.93 268.14

ARIMA(2,0,0)6(0,1,1) 279.18 272.39

ARIMA(1,0,1)6(0,1,1) 283.70 276.91

Typhoid fever ARIMA(0,0,1)6(0,1,0) 2369.44 2367.17

ARIMA(1,0,0)6(0,1,0) 2370.33 2368.07

(Note: The final selected ARIMA model was marked into bold and italics).
doi:10.1371/journal.pone.0088075.t003
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between the empirical risk and the regularization term. If the value

of C is changed, the relative importance of the empirical risk and

the regularization term will also be changed. Increasing the value

of C will lead to the growth of the weight of the regularization. e is

named as the tube size, which is equivalent to the approximation

accuracy placed on the training data sample. Both C and e are

user-prescribed parameters [31].

To estimate v and b, eq. (5) is transformed to the primal

function given by eq. (7) by introducing the positive slack

variableszi and z�i as follows:

Minimize Rsvms(v,z(�))~
1

2
vk k2

zC
Xn

i~1

(zizz�i ) ð7Þ

Subjected to di{vw(xi){biƒezzi,

vw(xi)zbi{diƒezz�i , z(�)
§0

Finally, by introducing Lagrange multipliers and exploiting the

optimality constraints, the decision function given by Eq. (4) has

the following explicit form:

f (x,ai,a�i )~
Xn

i~1

(ai{a�i )K(x,xi)zb ð8Þ

In Eq. 5, ai and a�i are the so-called Lagrange multipliers. They

satisfy the equalities ai:a�i ~0,ai§0, and a�i §0 where i = 1,…,n,

and are obtained by maximizing the dual function of eq.4 which

has the following form:

R(ai,a�i )~
Xn

i~1

di(ai{a�i ){e
Xn

i~1

(aiza�i ){

1

2

Xn

i~1

Xn

j~1

(ai{a�i )(ai{a�j )K(xi,xj)

ð9Þ

with the constraints
Xn

i~1

(ai{a�i )~0

0ƒaiƒC, i~1,2,:::n

Figure 3. MAPE for Decomposition method (Regression)
doi:10.1371/journal.pone.0088075.g003

Figure 4. MAPE for Decomposition method (Exponential Smoothing)
doi:10.1371/journal.pone.0088075.g004
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0ƒa�i ƒC, i~1,2,:::n

K(xi,xj) is called the kernel function. The value of the kernel is

equal to the inner product of two vectors Xi and Xj in the feature

space w(xi) and w(xj), that is K(xi,xj)~w(xi) � w(xj). The

elegance of using the kernel function is that one can deal with

feature spaces of arbitrary dimensionality without having to

compute the map w(x) explicitly. A. Typical examples of kernel

function are the Gaussian kernel K(x,y)~exp({1=d2(x{y)2)

where d2 is the bandwidth of the Gaussian kernel [32]. The kernel

parameter should be carefully chosen as it implicitly defines the

structure of the high dimensional feature space w(x) and thus

controls the complexity of the final solution. From the implemen-

tation point of view, training SVMs is equivalent to solving a

linearly constrained quadratic programming (QP) with the

number of variables twice as that of the training data points.

The sequential minima optimization algorithm propounded by

Scholkopf and Smola [33,34] is reported to be very effective in

training SVMs for solving regression problems.

Model selection criterion and evaluation indices. The

contrasts between the observed value of the raw series and the

predicted values obtained through the four methods were

compared to determine the efficacy of the four forecasting

methods used in the present study. The mean absolute error

(MAE), mean absolute percentage error (MAPE), and the root

mean square error (RMSE) were selected as the measures of

evaluation because as empirical methods they are widely used in

combining and selecting forecasts for measuring bias and accuracy

of models [35].

These measures were calculated using Equations (10), (11), and

(12). Pt is the predicted value at time t, Zt is the observed value at

time t and T is the number of predictions.

MAE~
1

T

XT

t~1

Pt{Ztj j ð10Þ

Figure 5. MAPE for ARIMA model
doi:10.1371/journal.pone.0088075.g005

Figure 6. MAPE for SVM model
doi:10.1371/journal.pone.0088075.g006
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MAPE~
1

T

XT

t~1

(Pt{Zt)

Zt

����
���� ð11Þ

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t~1

(Pt{Zt)2

vuut ð12Þ

To take into account the variability of MAE, MAPE and

RMSE, the block bootstrap technique [36] was adopted to

calculate their standard errors. All of the incidence time series in

the current research have a one-year period of seasonality (D = 1).

Therefore, in our block bootstrap simulations, the block length was

set to be 12 months so that the autocorrelation structure within

seasonal blocks was reserved. We firstly simulated 10000

replications by block bootstrap sampling, and then calculated

the MAE, MAPE and RMSE for each replication. At last, the

standard errors could be obtained by the following formula:

Sindex~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

indexi{index
� �

n(n{1)

vuuut

where n is number of replications (10000), index could be MAE,

MAPE or RMSE. Take MAE as an example, here Index means

MAE, indexi represents the specific value of MAE in the i-th

replication and index is the mean value of MAE for the whole

replications. It is the same with MAPE and RMSE.

Time Series Modeling Results

Decomposition Methods
Seasonal indices of different types of infectious diseases were

extracted from the original time series, which are listed in Table 1

(Seasonal index of each type of infectious disease), Figure 1–2(Seasonal

index of each type of infectious disease (1)). The seasonality of the

Figure 7. Comparison of the performances of the four different methods (1).
doi:10.1371/journal.pone.0088075.g007

Figure 8. Comparison of the performances of the four different methods (2).
doi:10.1371/journal.pone.0088075.g008
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incidence behavior of each infectious disease can be seen according to

the seasonal indices. All the infectious diseases selected show a seasonal

trend as the occurrence of infectious disease can be more or less

influenced by the temperature, rainfall and sunshine, etc. However, the

extent of the seasonality is not quite similar among them. Figure 1

shows the five types of diseases whose seasonal index varies obviously

through 12 months. Figure 2 shows the four types of disease whose

seasonality indices do not vary seriously. Brucellosis, hemorrhagic

fever, scarlet fever, schistosomiasis and typhoid fever show stronger

seasonality than the others, as their variances of their seasonal indices

are bigger than others. The incidence of brucellosis is higher in summer

and lower in winter, with the crest in June. Hemorrhagic fever has the

highest seasonal index in November and lowest in September. Scarlet

fever has the higher seasonal index in May, June and December and

lower index in August. The incidence of schistosomiasis is higher in

summer and lower in winter, with the crest in July. The incidences of

typhoid fever are higher in summer and lower in winter, with the crest

in August. The other diseases, such as Hepatitis A, Hepatitis B,

Gonorrhea and syphilis have relatively smooth seasonal index curves.

After the extraction of seasonal indices, linear regressions were

modeled for the rest of the incidence time series. The form of the

regression model is:

Deseasonalized value at time t = Constant + Coefficient * t

The parameters of the established models are listed in Table 2

(Regression results of each series removed seasonality). R2 is the

coefficient of determination. It ranged between 0 and 1, which is used

Figure 9. Comparison of the performances of the four different methods (3).
doi:10.1371/journal.pone.0088075.g009

Figure 10. Residual plot of the four methods modeling Brucellosis.
doi:10.1371/journal.pone.0088075.g010
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to describe how well a regression line fits a set of data. An R2 near 1

indicates that a regression line fits the data well, while an R2 closer to 0

indicates a regression line does not fit the data very well. It can be seen

from Table 2 that the regression model on the seasonality-removed

incidence data of brucellosis, gonorrhea, hepatitis A, Syphilis and

typhoid fever generally fit well. The regression model on the seasonality

removed incidence data of hepatitis B fit badly, and P value is over

0.05, however, the model is still used to forecast the incidence in the

study as the model has good fitting and forecasting efficacy.

We also used exponential smoothing to extract the long term trend

after the extraction of seasonal indices. Different smoothing factors

were tested from 0.1 to 0.9 with 0.1 step. Smoothing factors were

selected by the criterion of minimum MSE in the modeling process.

ARIMA model
ARIMA models were fitted to the nine types of infectious diseases

from 2005 to 2011 and tested by predicting the incidence for the year

2012. Different ARIMA models were tested to determine the best

fitting models. Table 3(Estimation of available ARIMA models for

each disease) presents the results of the estimations using various

ARIMA processes for the nine diseases incidence time series. The

selections of the best models were performed according to the principle

of AIC and SBC. The final selected ARIMA model was marked into

yellow in Table 3. The parameter significance test and the white noise

diagnostic check for residuals obtained by the selected model were

made to ensure that the data was fully modeled.

Figure 11. Residual plot of the four methods modeling Typhoid fever.
doi:10.1371/journal.pone.0088075.g011

Figure 12. Brucellosis incidence and fitting values predicted by the four methods.
doi:10.1371/journal.pone.0088075.g012
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Support Vector Machine
The training number of the SVM based time series model needed to

be determined. In previous studies [13], the training number for the

training of periodic series is usually the period of the series. In the

present study, the period of the entire infectious disease incidence

selected is twelve. Therefore, twelve was selected as the training

number for SVM based models, in which the last 12 months of data

were reserved as the input for forecasting the present data. Proper

transition of the data series is always necessary to determine the input

and the output data before the training process. Supposing that Xt

represents the value at time t, the input matrix and the corresponding

output matrix of the training and validation sample used in our study

are written as follows:

input matrix~

X1

X2

:::

Xt{12

X2

X3

:::

Xt{11

:::

:::

:::

:::

X12

X13

:::

Xt{1

2
666664

3
777775

corresponding output matrix~

X13

X14

:::

Xt

2
666664

3
777775

The input matrix is sent into SVM for training, and its

corresponding output matrix is its training goal. Once the

Figure 13. Gonorrhea incidence and fitting values predicted by the four methods.
doi:10.1371/journal.pone.0088075.g013

Figure 14. Hemorrhagic fever incidence and fitting values predicted by the four methods.
doi:10.1371/journal.pone.0088075.g014
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parameters are determined, they are used to forecast the incidence

in 2012 iteratively.

Several parameters needed to be determined. They are C, e and

the kernel parameter d2. The value of e is reportedly not sensitive

to the accuracy of SVMs. In the present study, the value of e was

prescribed as 0.01. Different C and d2 were examined from 2210 to

210 in 2 increments. There is no structural way to determine the

optimal parameters of SVMs. In the present study, cross validation

methods were applied to determine the proper SVMs. The

training samples were randomly divided into k parts in the training

process, each part was used for testing and the others used for

training. The obtained MSE each test was recorded and the mean

of the MSE acted as the selection criterion for the optimal

parameters.

Comparisons of the forecasting performance
Table 4 (Comparison of the performance of the three different

methods), Figure 3–6(MAPE for ARIMA model) and Figure 7–9

(Comparison of the performances of the three different methods)

show the modeling and predication performances of the three

methods. Residual plots were made of the four different methods

for each disease. The residual plots of Brucellosis and Typhoid

fever are presented in this paper as examples (Figure 10–11). The

fitting and the forecasting incidences of the four methods for over

seven years are graphed in Figure 12–20. Generally, the fitting

values and predicated values obtained by all the three methods

reasonably matched the real incidence of the infectious diseases. It

can also be seen that the performance of the four methods are not

quite the same among the different diseases. The standard errors

of the MAE, MAPE and MSE are quite small, indicating that

these MAE, MAPE and MSE index values are quite stable.

MAPE is a relative index among the three evaluation indices.

We used MAPE to evaluate the general performance for the

models to forecast each disease. The MAPEs for each model

obtained for each disease in both modeling process and

predicating process are shown in Figure 3–6. It was shown that

most of the MAPEs obtained by the decomposition (Regression)

method in the modeling process are controlled within 30% except

scarlet fever (42%). In the predication process, the MAPEs for all

infectious disease are controlled within 30% except hemorrhagic

fever (55%), and typhoid fever (51%). The decomposition

(Regression) methods had bad performance in fitting scarlet fever

incidence and predicating those of hemorrhagic fever and typhoid

fever. All of the MAPEs obtained by decomposition (Exponential

Smoothing) method in the modeling process were controlled

within 15%. The method generally had a good fit in the modeling

process. In the predication process, the MAPEs for all infectious

diseases were controlled within 30% except scarlet fever (59%) and

Hepatitis A(31%). The decomposition (Exponential Smoothing)

Figure 15. Hepatitis A incidence and fitting values predicted by the four methods.
doi:10.1371/journal.pone.0088075.g015

Figure 16. Hepatitis B incidence and fitting values predicted by the four methods.
doi:10.1371/journal.pone.0088075.g016
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methods had bad performance in predicating scarlet fever

incidence. The MAPEs obtained by ARIMA model in the

modeling process method were controlled within 30%. In the

predication process, the MAPEs for the 9 kinds of infectious

diseases were controlled within 30% except scarlet fever (175%).

The ARIMA model had good performance in the fitting process of

all the infectious diseases selected. But it had bad performance in

forecasting scarlet fever. The MAPEs obtained by SVM model in

the modeling process are controlled within 15%. In the

predication process, the MAPEs for the 9 kinds of infectious

diseases were controlled within 20% except scarlet fever (33%) and

Schistosomiasis (25%). The SVM based model had good

performance in the fitting process and predicting process of all

the infectious diseases selected.

To compare the performance the different models for different

diseases, different evaluation indices were emphasized. MAPE is

emphasized for lower level incidence disease (annual mean

incidence ,0.1/100,000) such as Schistosomiasis (0.0245/

100,000) and Hemorrhagic Fever (0.0814/100,000). RMSE is

emphasized for higher level incidence disease (mean incidence .

1/100,000), such as Hepatitis B (7.9335/100,000) and syphilis

(1.8461/100,000). MAE was emphasized for medium level

incidence disease (0.1/100,000,mean incidence ,1/100,000)

including Hepatitis A (0.3356/100,000), gonorrhea (0.8329/

100,000), scarlet fever (0.2131/100,000), typhoid fever (0.1242/

100,000) and brucellosis (0.1975/100,000). The performances of

the three methods for gonorrhea, hepatitis B, Schistosomiasis and

Syphilis ranked in descending order were: SVM, ARIMA,

exponential smoothing and regression. The performances of the

three methods for Hepatitis A ranked in descending order were:

SVM, regression, exponential smoothing and ARIMA. The

performances of the three methods for Brucellosis and Hemor-

rhagic fever ranked in descending order were: ARIMA, SVM,

exponential smoothing and regression. The performances of the

four models for Scarlet Fever ranked in descending order were:

regression, SVM, exponential smoothing and ARIMA. The

performances of the four models for typhoid fever ranked in

descending order were: exponential smoothing, ARIMA, SVM

and regression. SVMs performed best in forecasting gonorrhea,

hepatitis A, hepatitis B, Schistosomiasis and Syphilis. ARIMA

performed best in forecasting Brucellosis and Hemorrhagic Fever

and performed the worst in forecasting Scarlet Fever. Exponential

smoothing performed best in forecasting typhoid fever, but worst

in hepatitis A. Regression method performed best in forecasting

scarlet fever, however the worst in Brucellosis, Gonorrhea,

Hemorrhagic Fever, Schistosomiasis, Syphilis and typhoid fever.

The exponential smoothing method performs better than regres-

Figure 17. Scarlet fever incidence and fitting values predicted by the four methods.
doi:10.1371/journal.pone.0088075.g017

Figure 18. Schistosomiasis incidence and fitting values predicted by the four methods.
doi:10.1371/journal.pone.0088075.g018
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sion decomposition method except in the case of hepatitis A and

scarlet fever.

Discussion

The early recognition of epidemic behavior is significantly

important for epidemic disease control and prevention. The

effectiveness of statistical models in forecasting future epidemic

disease incidence has been proved useful [37]. The surveillance

system is a good way to collect and analyze infectious disease data.

With high quality surveillance data, the epidemic behavior may be

accurately detected and forecasted. Discussion of the forecasting

techniques is very important. In the present study, we conducted a

comparative study of four typical time series investigations in the

forecasting of the epidemic pattern of nine types of infectious

diseases, namely two decomposition methods (regression and

exponential smoothing), ARIMA model, and SVMs based model.

We have also compared the differences among these methods in

both principle and practical aspects.

In principle, the decomposition method can break down the

original into different parts. The seasonal factor can be expressed

in the form of seasonal indices. The series after seasonal pattern

removal can be modeled with regression methods or exponential

smoothing, etc. Time series decomposition models do not involve

a lot of mathematics or statistics; they are relatively easy to explain

to the end user. The ARIMA model can grasp the historical

information by (1) AR to consider the past values, and (2) MA to

consider the current and previous residual series. The ARIMA

model is popular because of its known statistical properties and the

well-known Box–Jenkins methodology in the modeling process. It

is one of the most effective linear models for seasonal time series

forecasting. In contrast, the SVMs time series models capture the

historical information by nonlinear functions. With flexible

nonlinear function mapping capability, support vector machine

can approximate any continuous measurable function with

arbitrarily desired accuracy.

In practical matters, the building of the decomposition methods

generally involves two parts: (1) extraction of the seasonal indices

to express the seasonal pattern hidden in the infectious disease

time series, and (2) regression methods to model the long trend

pattern. The building of the ARIMA model requires the

determination of differencing orders (d, D), and operators (p, q,

P, Q), as well as the estimation of model parameters in the

autoregressive and moving average polynomials. The construction

of SVMs requires the determination of three parameters, namely,

d2, C, e. The time series data should be transformed into the input

matrix and the output matrix, and then be put into the support

Figure 19. Syphilis incidence and fitting values predicted by the four methods.
doi:10.1371/journal.pone.0088075.g019

Figure 20. Typhoid fever incidence and fitting values predicted by the four methods.
doi:10.1371/journal.pone.0088075.g020
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vector machine. Certain training accuracy goals should be

assigned before training.

Based on the three forecasting measured errors (MAE, MAPE,

MSE), and the visualization of the forecasted values, the empirical

evidence is that no one method completely dominated the others.

However, the present study shows that support vector machine

generally outperforms the conventional ARIMA model and

decomposition methods. The ARIMA model has been proved

an effective linear model to effectively capture a linear trend of the

infectious disease series. The decomposition methods generally

perform better when the series conform to the decomposition

hypothesis. The linear regression hypothesis seems to be more

rigid on the season moved series than exponential smoothing.

The advantage of decomposition is that decomposition models

do not involve a lot of mathematics or statistics; they are relatively

easy to explain to the end user. This is a major advantage because

if the end user has an appreciation of how the forecast was

developed, he or she may have more confidence in its use for

Table 4. Comparison of the performance of the four different methods.

Disease Methods Modeling Predication

MAE SE MAPE SE RMSE SE MAE SE MAPE SE RMSE SE

(MAE) (MAPE) (RMSE) (MAE) (MAPE) (RMSE)

Brucellosis Regression 0.0240 0.0075 0.1345 0.0873 0.0313 0.0016 0.0520 0.0206 0.1970 0.3565 0.0642 0.0057

Exponential Smoothing 0.0183 0.0080 0.1084 0.0994 0.0261 0.0018 0.0414 0.0219 0.1546 0.3367 0.0540 0.0060

ARIMA 0.0247 0.0135 0.1505 0.1210 0.0327 0.0147 0.0285 0.0369 0.1464 0.2396 0.0341 0.0403

SVM 0.0045 0.0161 0.0402 0.1269 0.0077 0.0033 0.0355 0.0161 0.1667 0.3271 0.0428 0.0051

Gonorrhea Regression 0.0356 0.0139 0.0481 0.0182 0.0460 0.0056 0.0898 0.0380 0.1510 0.0578 0.1026 0.0190

Exponential Smoothing 0.0321 0.0139 0.0431 0.0193 0.0457 0.0061 0.0700 0.0401 0.1273 0.0593 0.0835 0.0199

ARIMA 0.0446 0.0098 0.0570 0.0136 0.0718 0.0128 0.0345 0.0193 0.0659 0.0402 0.0515 0.0238

SVM 0.0334 0.0397 0.0485 0.0468 0.0570 0.0098 0.0281 0.0547 0.0542 0.0562 0.0436 0.0250

Hemorrhagic
Fever

Regression 0.0180 0.0041 0.2580 0.0602 0.0245 0.0004 0.0524 0.0104 0.5528 0.2075 0.0700 0.0014

Exponential Smoothing 0.0081 0.0043 0.1145 0.0683 0.0110 0.0005 0.0170 0.0105 0.1822 0.2084 0.0240 0.0015

ARIMA 0.0119 0.0039 0.1628 0.0682 0.0184 0.0050 0.0129 0.0135 0.1246 0.2605 0.0200 0.0188

SVM 0.0052 0.0049 0.0689 0.0257 0.0105 0.0007 0.0189 0.0148 0.1758 0.1100 0.0285 0.0024

Hepatitis A Regression 0.0382 0.0332 0.1111 0.0233 0.0539 0.0019 0.0141 0.0071 0.0898 0.1284 0.0176 0.0079

Exponential Smoothing 0.0209 0.0083 0.0637 0.0378 0.0286 0.0021 0.0482 0.0236 0.3110 0.1283 0.0501 0.0074

ARIMA 0.0296 0.0101 0.0910 0.0336 0.0435 0.0115 0.0294 0.0090 0.1854 0.0631 0.0319 0.0096

SVM 0.0313 0.0390 0.0941 0.1278 0.0432 0.0074 0.0132 0.0218 0.0887 0.1352 0.0158 0.0055

Hepatitis B Regression 0.4468 0.0089 0.0553 0.1670 0.5660 0.1179 0.7544 0.3892 0.0966 0.0261 0.9321 0.0584

Exponential Smoothing 0.3033 0.0622 0.0384 0.0093 0.4548 0.1309 0.6530 0.1655 0.0817 0.0257 0.8938 0.3839

ARIMA 0.3922 0.0758 0.0498 0.0099 0.6070 0.0925 0.6425 0.1559 0.0813 0.0186 0.8714 0.1943

SVM 0.4529 0.2727 0.0583 0.0363 0.6238 0.3054 0.7206 0.1986 0.0942 0.0312 0.8379 0.3997

Scarlet Fever Regression 0.0718 0.0125 0.4192 0.0785 0.1066 0.0045 0.0514 0.0292 0.1832 0.2896 0.0623 0.0142

Exponential
Smoothing

0.0239 0.0131 0.1321 0.0912 0.0365 0.0049 0.1650 0.0323 0.5909 0.2896 0.1924 0.0151

ARIMA 0.0416 0.0090 0.2614 0.0738 0.0628 0.0112 0.3888 0.0821 1.7556 0.5018 0.3933 0.0861

SVM 0.0206 0.0228 0.1214 0.1452 0.0352 0.0061 0.0712 0.0219 0.3278 0.2373 0.0847 0.0110

Schistosomiasis Regression 0.0032 0.0065 0.1521 0.3112 0.0045 0.0001 0.0095 0.0094 0.2997 0.2923 0.0114 0.0001

Exponential Smoothing 0.0031 0.0007 0.1440 0.0574 0.0039 0.0000 0.0092 0.0019 0.2882 0.1981 0.0112 0.0000

ARIMA 0.0048 0.0008 0.2312 0.0499 0.0063 0.0010 0.0088 0.0025 0.2707 0.0692 0.0118 0.0031

SVM 0.0027 0.0007 0.1242 0.0571 0.0045 0.0000 0.0083 0.0019 0.2490 0.1978 0.0114 0.0000

Syphilis Regression 0.0987 0.0392 0.0538 0.0398 0.1319 0.0472 0.3557 0.1178 0.1355 0.1446 0.4120 0.1819

Exponential Smoothing 0.0888 0.0417 0.0501 0.0426 0.1356 0.0544 0.2021 0.1158 0.0741 0.1415 0.3165 0.1762

ARIMA 0.0999 0.0200 0.0593 0.0126 0.1286 0.0279 0.2722 0.0886 0.1090 0.0370 0.3110 0.1006

SVM 0.0740 0.0098 0.0477 0.0053 0.1378 0.0029 0.2038 0.1864 0.0828 0.1922 0.2414 0.2675

Typhoid Fever Regression 0.0145 0.0053 0.1466 0.0508 0.0179 0.0007 0.0389 0.0133 0.5074 0.1687 0.0397 0.0024

Exponential Smoothing 0.0081 0.0051 0.0813 0.0567 0.0105 0.0007 0.0080 0.0130 0.1086 0.1721 0.0096 0.0024

ARIMA 0.0133 0.0038 0.1319 0.0429 0.0176 0.0057 0.0121 0.0077 0.1766 0.1070 0.0152 0.0089

SVM 0.0087 0.0040 0.0797 0.0143 0.0122 0.0010 0.0111 0.0130 0.1435 0.0878 0.0130 0.0032

doi:10.1371/journal.pone.0088075.t004
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decision making. The disadvantage of decomposition methods is

that the hypothesis may be too strong for the epidemic behavior,

so that the model may not perform well sometimes. The ARIMA

model has advantages in its well-known statistical properties and

effective modeling process. It can be easily realized through

mainstream statistical software. The model can be used when the

seasonal time series are stationary and have no missing data. The

disadvantage of the ARIMA model is that it can only extract linear

relationships within the time series data. it may not work well for

the occurrence of an infectious disease which can be affected by

various factors, including many meteorological and various social

factors, namely, the occurrence of the disease does not necessarily

associate with the historical data in linear relationship. Our study

suggested that nonlinear relationships may exist among the

monthly incidences of many diseases such as scarlet fever, so that

the ARIMA model did not efficiently extract the full relationship

hidden in the historical data. Support vector machines are

potentially useful endemic time series forecasting methods because

of their strong nonlinear mapping ability and tolerance to

complexity in forecasting data. SVMs have very good learning

ability in time series modeling. SVMs have unique advantages

compared with other machine learning methods, such as neural

networks. For example, the SVMs implement the structural risk

minimization principle, which leads to better generalization than

neural networks that implement the empirical risk minimization

principle. SVMs also have fewer free parameters than neural

networks [38].

What is more, the scarlet fever incidence shown in figure 17

(Scarlet fever incidence and fitting values predicted by the four

methods) indicated that the average incidence from 2011 to 2012

was higher than that in the previous six years (2005–2010). The

phenomenon that the incidence level changed greatly through

time was called level shift by Tsay, R. S. in 1988.[39] Since the

ARIMA model is in fact a regression of the present incidence value

on the past values and residuals, it is of high risk that level shift

would likely affect the forecasting performance of ARIMA model.

Therefore, statisticians and time series analysts have tried to

overcome the effect of level shift for many years. In our paper, it is

interesting that, as presented in Table 4, the MAE, MAPE, RMSE

and their standard errors of ARIMA model are larger than those

of decomposition model, SVM and exponential smoothing

method. This result in our paper suggests that the other three

methods may serve as a better way than SARIMA model in

analyzing time series in the presence of level shift.

The limitations of the study should also be acknowledged. First,

only eight-years of incidence data were obtained because the

Chinese National Surveillance System for Infectious Disease was

established only in 2004. The relatively short length of the series

may influence the forecasting efficacy of the different methods.

Second, we only predicted the infectious disease incidence with the

four typical forecasting methods. The findings based on a specific

disease may not be repeatable when used on other cases. What is

more, there are some other hypotheses on the long term trend in

decomposition methods, such as generalized models which assume

a nonlinear function among the time series. Many other models

were developed to make up deficiencies of ARIMA, such as

GARCH, etc. SVM is only one of the typical machine learning

techniques. In this paper, we only choose four very typically used

time series methods to make a comparison.

Infectious diseases pose a significant threat to human health.

The establishment of epidemiological surveillance system greatly

facilitates the implement of strategic health planning, such as

vaccination costs and stocks. More research on the accurate

prediction of the epidemiological events based on surveillance data

should be conducted, and more sophisticated forecasting tech-

niques should be applied and compared in practice.
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