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Abstract

Transcranial Magnetic Stimulation (TMS) is a promising technology for both neurology and psychiatry. Positive treatment
outcome has been reported, for instance in double blind, multi-center studies on depression. Nonetheless, the application
of TMS towards studying and treating brain disorders is still limited by inter-subject variability and lack of model systems
accessible to TMS. The latter are required to obtain a deeper understanding of the biophysical foundations of TMS so that
the stimulus protocol can be optimized for maximal brain response, while inter-subject variability hinders precise and
reliable delivery of stimuli across subjects. Recent studies showed that both of these limitations are in part due to the
angular sensitivity of TMS. Thus, a technique that would eradicate the need for precise angular orientation of the coil would
improve both the inter-subject reliability of TMS and its effectiveness in model systems. We show here how rotation of the
stimulating field relieves the angular sensitivity of TMS and provides improvements in both issues. Field rotation is attained
by superposing the fields of two coils positioned orthogonal to each other and operated with a relative phase shift in time.
Rotating field TMS (rfTMS) efficiently stimulates both cultured hippocampal networks and rat motor cortex, two neuronal
systems that are notoriously difficult to excite magnetically. This opens the possibility of pharmacological and invasive TMS
experiments in these model systems. Application of rfTMS to human subjects overcomes the orientation dependence of
standard TMS. Thus, rfTMS yields optimal targeting of brain regions where correct orientation cannot be determined (e.g.,
via motor feedback) and will enable stimulation in brain regions where a preferred axonal orientation does not exist.
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Introduction

More potent therapies are needed for mental illnesses such as

mood disorders, schizophrenia and anxiety disorders which are

common, restricting and expensive. One potential candidate to

improve therapies is Transcranial Magnetic Stimulation (TMS), a

noninvasive brain stimulation that uses a brief magnetic pulse to

induce a transient electric field in the underlying neural tissue.

Repetitive TMS modulates the responsiveness of cortical neurons

and coupled circuits, which can result in an improvement of

mental disorders [1–5]. Despite the extensive body of literature on

the therapeutic effects of TMS on psychiatric diseases, the impact

or persistence of these effects remain controversial and the only

treatment application of TMS approved by US Food and Drug

Administration is to depression [6]. Therefore, to maximize the

therapeutic value of this noninvasive method improvements are

needed [7]. We suggest viewing this task as challenges in two

separate areas: one is the advancement of rational design of

stimulus protocols; another is the successful implementation of

stimulation in a given human subject.

In search of more effective and longer lasting TMS-effects,

stimulation parameters such as the pulse shape [8–10], intensity

and repetition rate have been widely varied in experiments on

human subjects. To advance directed, rational design, a better

understanding of the biophysics of magnetic stimulation and the

physiology that underlies ensuing excitability changes is needed.

While human experiments are typically limited to behavioral

observations, in-vitro and in-vivo models allow the use of invasive

and pharmacological techniques and will therefore significantly

help to unveil the biological mechanisms of brain response to

TMS. Previous studies report MEP-recordings from rodent limb

muscles [11–15] and immunohistochemical evidence of the

modulatory effect of rTMS on protein expression in rat cortical

neurons [16]. However, although TMS in anaesthetized and

awake rats is feasible, rat cortex is difficult to target with existing

TMS systems [13]. Likewise, successful magnetic stimulation of
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neuronal cell cultures had not been reported until recently. It

required elaborate treatment of the substrate to pattern cell growth

such that axons are aligned with the induced electric field [17].

Even then, only a small subpopulation (about 1% of the neurons in

the culture) fired in direct response to the magnetic pulse, which

limits the use of cell cultures further. To elicit a response in widely

used non-patterned cultures would require a more global

stimulation scheme that can target axons with different orienta-

tions (Figure 1). In conclusion, a technological development

rendering standard cell cultures and rodents available for basic

TMS research would remove a significant impediment in the field.

The second key step in improving TMS in human is the

successful implementation of a given TMS protocol in the human

subject. To achieve the best possible effect of stimulation it is not

only necessary to choose a certain pulse shape and repetition rate

[8–10], but also to adjust stimulation intensity, coil position and

coil orientation in the plane tangentially to the head. Coil

orientation has a major impact on the effect of stimulation because

the magnitude and the polarity of the achieved neural modulation

depend on tissue morphology, such as position and shape of tissue

boundaries, and on cellular properties, such as axon diameter,

myelination, orientation and curvature. Although modeling studies

have started to address the interaction of subject-specific tissue

morphology and coil position [18–21], to date, the subject’s brain-

morphology cannot be accounted for in a practical way and more

pragmatic strategies are used to determine coil position. If

stimulation of the target area elicits a direct response, a trial-

and-error search can identify the optimal stimulus position and

orientation. But, in therapeutic applications this approach is not

available because cortical excitability is modulated through

repetitive stimulation over the course of several minutes without

any immediate feedback on stimulation success. The correct

position of the coil can still be approximately derived with simple

placement rules, such as following the EEG 10–20 system, or by

neuro-navigation of the TMS coil registered to an MRI of the

subject. However, the optimal orientation of the coil cannot be

inferred in this way. Therefore, the coil orientation is usually held

fixed to reduce the large parameter space of possible orientations.

Given the strong influence that stimulus direction has a on the

latency and amplitude of the evoked response [8,22–24], the effect

of a standard TMS stimulus can change from supra-threshold to

sub-threshold for orientation changes as small as 45 degree.

Clearly then, the use of a fixed orientation across subjects will lead

to varying results. Thus, a technological development that reduces

the sensitivity of stimulation to coil orientation would greatly

improve the implementation of TMS protocols, rendering them

more reliable and consistent.

Here we introduce a novel stimulation concept, rotating field (rf)

TMS, that allows for a fundamental change in the spatiotemporal

pattern of the induced electric fields. The electric field rotates,

because it is created by superposition of two precisely timed

biphasic pulses using coils that are oriented orthogonally to each

other. We demonstrate that using rfTMS, neurons in the human

primary motor cortex get activated for any orientation of the coil,

while standard coils require precise orientation to induce supra-

threshold stimulation. Similarly, neurons in the rat’s motor cortex

and neurons in primary cultures are excited with much higher

certainty when using rotating field stimulation, making these

model systems more widely available for studies on the underpin-

nings of TMS effects. For studies in rat and in cell cultures a cross

coil configuration is used, while in human experiments a cloverleaf

coil [25,26] with modified current control is used to achieve the

field rotation. Rotating Field TMS can provide a simple and

universally applicable solution to two main challenges in TMS,

Figure 1. Schematic of a culture whose cell’s axons (red or
black lines) are randomly orientated. a) A short magnetic pulse
with a fixed single orientation (black arrow indicates direction of the
stimulating field) stimulates only one cell whose axon (red line) is
oriented parallel to the direction of the induced electric field is excited.
b) A short rotating magnetic pulse (arc indicates the span of rotation of
the stimulating field) stimulates all cells whose axons’ orientations lie
within the arc of the rotating electric field (red lines), leading to a
population response of the network. c) Alternatively, when applying a
long magnetic pulse with a fixed orientation, all cells with dendrites
oriented parallel to the direction of the induced electric field (red
circles) are excited, leading to a population response of the network.
See also Note S1, S2 and S3 in File S1.
doi:10.1371/journal.pone.0086794.g001

Rotating Field TMS
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sensitivity to orientation and availability of in-vivo and in-vitro

models.

Materials and Methods

Ethics statement
rfTMS in human subjects was self-experimentation of W.P. and

A.N. Participants provided their written consent to participate in

this study. The ethics committee of the university clinics

Goettingen agreed to self-experimentation of these two authors,

as no dependency of any kind (financial, hierarchical etc.) exists

with respect to other authors on the study. All animal procedures

were approved by the Weizmann Ethics Committee (IACUC).

Preparation of magnetic coils
The magnetic coils were manufactured both in our lab and by

Magstim (Spring Gardens, UK). Our procedure used a polyester

coated rectangular copper wire 0.254 mm thick and 6.35 mm wide

(MWS Wire Industries, USA). Wires were turned on custom made

frames, insulated with glass fibers and cast in epoxy made from 1

part Versamid 140 (Cognis) in 2 parts EPON 815 (Shell).

Cross coil configuration
For the cross coil (see Figure 2) we used two circular coils with

10 and 11 turns and inner diameters of 75 and 62 mm respectively.

Each of the two coils was connected to an independent power

source. The coils were positioned one inside the other, while

keeping their planes perpendicular. The hotspot of the cross coil is

located near the poles of the spherical construct, where the two

coils intersect (Figure 2) and the induced fields of the coils are

perpendicular to each other. Since the planes of the two coils are

perpendicular, the cross coil does not suffer from mutual induction

losses and it is simpler to calculate the electric fields it induces than

in the cloverleaf coil.

Cloverleaf coil configuration
The cloverleaf consists of two ‘‘figure of eight’’ coils, each

connected to an independent power source. The coils are

positioned on the same plane and are perpendicular to each

other, so that at the hotspot their resulting electric fields are

perpendicular. The shape of the coils is pointed, rather than

circular, to produce high field strength in the center. Using

simulations, we predicted the field shape for different coil shapes.

The prototype cloverleaf manufactured by Magstim (Spring

Gardens, UK) has a shape that provides an optimal compromise

between field strength and homogeneity in the central region

(Figure 3a).

Power supplies
We used two independent power supplies in each experiment:

for stimulating neuronal cultures and rat motor cortex we used a

Magstim Rapid TMS (Magstim, UK) and a homemade stimulator

(HMS) designed and manufactured in our lab. The HMS is based

on a large 0.1 mF capacitor (Maxwell Laboratories, USA) with a

maximum voltage load of 22 kV, and can produce magnetic (and

induced electric) fields that are five times stronger than the fields

delivered by the commercially available Magstim Rapid. To

achieve accurate phase lag between the two magnetic pulses, the

two power supplies were synchronized using a function generator

(3390, Keithley instruments, USA). The signal generator issued

two trigger signals separated by 1/4 of a cycle. This lag changed

according to the coils used and ranged between 50–150 ms. For the

pilot experiments on humans we used two commercial Magstim

Rapid power supplies, and a custom-made delay line was used to

adjust the lag to 92 ms.

Measurement of induced electric field and calibration of
the coils

We used a small pick-up coil 40 mm in diameter to measure the

induced electric field of the coils. The pick-up coil was positioned

inside the measured coil parallel to its plane, and was used to

calibrate the cross coil as described in Note S4 in File S1.

Calculations of the induced electric field
The induced electric fields for the cross coil were simulated

using COMSOL (COMSOL Multiphysics 3.5, www.comsol.com,

2005). We used the Eddy Currents 3D model with the geometry

and pulse profiles taken from the actual experiment (File S1). The

electric field produced by the cloverleaf coil was qualitatively

calculated using the magnetic vector potential as described in Note

S5 in File S1.

Preparation of primary cultures
Cultures were prepared from dissociated hippocampus of

prenatal rats following a previously reported protocol [27]. Cells

were plated on 30 mm #0 glass coverslips (Menzel-Glaser,

Germany), at a density of 3 million cells per coverslip.

rfTMS of primary cultures
Cultures were stained with a calcium sensitive fluorescent dye

(Fluo4, Invitrogen) and the calcium transients [17] imaged during

application of magnetic pulses. The culture was placed in

recording solution [17] that filled a near-spherical glass ball

(Figure 2b), approximately 60 mm in diameter, whose bottom was

flattened to create a circular base approximately 30 mm in

diameter on which the coverslip lay. At the top of the sphere a

slot was opened through which the coverslip and fluid could be

inserted and at the base of the sphere a viewing hole 13 mm in

diameter was made, slightly off-center and near the circumference

of the base, which was then sealed with an optically transparent

glass coverslip. The glass sphere was placed inside the cross coil,

with the flattened base positioned over the lower pole (Figure 2c

and Video S1). The magnet and sphere were placed in an inverted

microscope (Zeiss Axiovert 135TV), with the objective positioned

under the viewing hole.

rfTMS of anesthetized rats
During the TMS protocols, rats were anesthetized (see Note S6

in File S1) and positioned so that their motor cortex was at the

focus of stimulation: the head was placed inside the cross coil, with

the motor cortex located just below one of the poles. To monitor

the effect of TMS on the rat, we recorded evoked muscle

potentials from its hind legs using an Electromyogram (EMG)

system (ActiveTwo, Biosemi, Netherland). We measured the

stimulation threshold, defined as the minimal magnetic field

required to create a response of more than 10 mV as recorded in

the EMG.

rfTMS of human motor cortex
The subject relaxed in a reclining seat. A 3D localizer (ANT,

Netherlands) was strapped to the head. Position and orientation of

the coil was monitored using the neuro-navigation software Visor

(ANT). The MRI image of the subject’s brain was initially

registered by reference points (nasion, left and right tragus) and

skull tracing. For short experiments (2 orientations), the coil was

fixed by a holder. For longer experiments (5 orientations 2 coils)

Rotating Field TMS
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the coil was positioned relative to the subjects head by a robot

(ANT). In all settings the neuro-navigation software Visor was used

to monitor the stability of the positioning. In all cases, the software

reported that target position was met to within 1 mm and 3u.
TMS, recording and analysis of muscle evoked potentials followed

standard procedures. Surface EMG was recorded with Ag/AgCl

cup electrodes in a belly-tendon montage from the right first dorsal

interosseous muscle (FDI), band-pass filtered (0.002–2 kHz),

amplified (Digitimer D360, UK) and sampled at 5 kHz (CED

Micro 1401 mk II, Cambridge Electronic Design, UK). EMGs

were analyzed in Igor-Pro (Wavemetrics, USA). The rfTMS coil

was connected to two Magstim rapid2 stimulators (Magstim). For

biphasic TMS a standard 70 mm figure-8 coil was used (Magstim

#9925). For monophasic stimulation it was connected to a

Magstim200 stimulator (Magstim). The motor hot spot of the left

primary motor cortex was identified as point for optimally eliciting

motor evoked potentials (MEPs) in the FDI. Then stimulation

intensity was adjusted to elicit MEP-peak-to-peak amplitudes of

1 mV and kept constant throughout the experiment.

Results

Rotating magnetic field measurements
We measured the electric field induced by the cross coil using a

circular pick-up coil positioned in the plane of the cross coil. The

measurement was carried out first for the assembled cross coil,

with the probe rotated by 90u between measurements, and then

separately for each of the two coils that construct the cross coil.

The resulting phase shifted fields are shown in Figure 2e. The total

resulting electric field performs a rotation, of which 270u are

scanned smoothly over three quarters of a cycle, lasting on the

order of 300 ms. During the first quarter of the cycle, the

maximum magnitude of the rotating field is kept within 15% of the

peak field strength obtained with a single coil driven by the

Magstim power supply, as depicted in Figure 2f. The equivalent

calibration was also performed for the clover leaf coil (Figure 3c

and d).

Figure 2. Cross coil experiments. a) A photograph of the cross coil used in the experiment. The two coils interlock on perpendicular planes and
connect to two independent stimulators. b) A photograph of the glass sphere that was custom made to fit inside the cross coil. The glass coverslip,
on which the neuronal culture grows, and the fluid medium were inserted through a slot located at the top of the sphere. The coverslip lay on a
flattened base at the bottom of the sphere and was observed via a viewing aperture, which was sealed with optically transparent glass. See also
Video S1. c) Schematic of the setup – the coverslip (red) was placed in a glass sphere inside the cross coil while an inverted epi-fluorescence
microscope monitored neuronal activity. Scale bars in a–c are 2 cm. d) Cross coil setup for rat experiments. The rat’s head was positioned inside the
cross coil (in place of the glass sphere, which was not used). EMG electrodes recorded muscle potentials from the Gastrocnemius. The EMG data was
digitized and synchronized with the rfTMS pulses to assess the motor response to rfTMS. e) The induced electric field in the cross coil was measured
using a pick-up coil oriented first on the plane of one of the coils (solid line) and then on the plane of the second coil (dashed line). The Magstim
stimulator was loaded to 100% and the HMS was loaded with 3.5 kV (see details in the Methods section). f) A reconstruction of the effective electric
field created from the sum of the two perpendicular components measured in e) with the field of coil #1 directed along the x-axis and the field of
coil #2 along the y-axis. The effective field was reconstructed for a specific location just inside the poles of the cross coil (‘Neuronal culture’ arrow in
Figure 2d). The effective field completes L of a spiral cycle during the magnetic pulses cycle, as indicated by the black arrows.
doi:10.1371/journal.pone.0086794.g002

Rotating Field TMS

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e86794



Computer simulation of the induced electric field
We simulated the electric field induced by both the cross coil

and the cloverleaf coil for different phases of the rotation cycle.

The electric field induced in 3D by the cross coil is simulated over

a sphere placed inside the coils and is maximal at the poles where

the two coils intersect (Figure 4b). This is the hotspot for maximal

excitation and rotation, and is where we located the culture and

the motor region of the brain of the rat. The electric field induced

by the cloverleaf coil is simulated in 2D over a plane located 3 cm

below the coils and is maximal under the center of the cloverleaf.

This is the hotspot for maximal excitation and rotation, which is

where we located the motor region of the human subject’s brain

(figure 4c). We used these simulations to estimate the induced

electric field at the hotspots, where the maximum rotating field

that our system could induce was of the order of 300 V/m. In real

applications charge accumulation will decrease this value and

change the primary E-field direction.

Excitation of 2D neuronal cultures
The main result of using the cross coil is immediately seen by

applying it on two dimensional (2D) cultures. While we were

previously unable to excite 2D cultures with magnetic pulses, in

the cross coil this was rather easily achieved. This is readily

understood from simulations of neuronal excitation by conven-

tional TMS and rfTMS, performed in NEURON (Note S7 and

Figure S1 in File S1). As shown in Table 1, half of the 2D cultures

tested (15 out of N = 30) were excited by magnetic stimulation. The

electric field threshold for excitation had a mean of 90610% (SD)

of the maximum rotating field. According to our estimation the

corresponding electric field induced at the hotspot is 270 V/m

which agrees with that reported previously for 1D cultures [17]

(3006130 V/m (SD)). Surprisingly, with this geometry 13% (N = 4)

of the 2D cultures also responded to single coil excitation, with a

threshold field that was between 20% and 50% higher than the

threshold for cross coil stimulation (we used the HMS to induce

non-rotating electric fields that were up to 2 times stronger than

the maximum rotating field).

A qualitative test for the directionality is found in two cultures

that were excited both by a single coil and the cross coil. By

physically rotating the culture 45u with respect to the coil we could

check whether the initial random orientation was dominant in

enabling the excitation. The single coil stimulation was indeed

sensitive to this rotation, with the threshold climbing beyond the

maximum field strength of our system. Strikingly, stimulation with

the cross coil showed no sensitivity to the rotation, and the culture

responded at all angles (0u, 45u, 90u, 135u, 180u, 225u, 270u and

Figure 3. Cloverleaf coil experiment. a) Bottom and side X-ray images of the cloverleaf coil used in the experiment. The coils are coupled
diagonally to form two figure of eight coils and each figure eight coil is connected to an independent power source. b) Neuro navigation software
display. The position of the coil is tracked using the navigator and indicated by the central red dot and the yellow circle over an MRI scan of the brain
of the subject. The coil shape is added offline to illustrate the actual position. The yellow sphere at the front is the nasion, the red sphere at the
bottom left the left tragus, used in registering MRI and head position. The color scale indicates tentative field strength, calculated in real time
assuming a spherical head model and a figure of eight coil. c) Electric field induced in a pickup coil positioned on 2 neighboring wings of the clover
leaf coil. The coils were driven separately by 2 Magstim rapid2 stimulators. d) A reconstruction of the effective electric field amplitude and direction
during a rfTMS pulse of the clover leaf coil with the field of coil #1 directed along the x-axis and the field of coil #2 along the y-axis.
doi:10.1371/journal.pone.0086794.g003

Rotating Field TMS
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315u with respect to one of the coils constructing the cross coil),

qualitatively demonstrating the alleviation of the directional

sensitivity by rfTMS.

Excitation of rat motor cortex
The cross coil configuration is particularly well suited for

application on rats, since the head of the animal fits nicely inside

the cross coil, with the cortex located where the field is maximal,

near the joint axis of the two coils (see Figure 5c). We tested 9

anesthetized animals for the response of the Gastrocnemius muscle

to magnetic stimulation, as measured by an EMG electrode on the

leg of the animal. The major difficulty in this test is to differentiate

between the excitation of the motor cortex and that of the spinal

cord. This was done using the different latencies of the response in

the two excitation modes.

As shown in Figure 5d, the response of the Gastrocnemius to

stimulation was complex yet reproducible. Two typical latency

times were observed, and we associated the shorter one with the

spinal response (3.260.2 ms (SE)) and the longer one with the

cortical response (7.460.4 ms (SE)). In most cases, the spinal and

cortical responses could thus be reliably differentiated by the

latency time. Cervical dislocation or sectioning of the spine

Figure 4. Simulations of rotating electric fields induced in the crossed coil and cloverleaf coil (photograph and X-ray image of the
coils are presented at left of second and third row respectively). Upper row: idealized, calculated voltage traces – dashed line represents the
voltage load on the dashed coils shown in the middle and bottom rows, solid line represents the voltage load on the solid coils. Blue vertical bars
denote the time point for which the fields below were calculated. Middle row, cross coil: two circular coils are connected to two independent current
sources each producing a single sinusoidal pulse (as described in the top row). The resulting electric field on the surface of a sphere positioned inside
the coils is simulated (magnitude according to color code, direction by white arrows). a) After the solid coil completes J of a cycle, the dashed coil
commences its pulse and dominates the induction. b) A quarter of a cycle later, both coils induce an equal field and the effective field is diagonal. c)
After another J of a cycle, the solid coil completely takes over again and the resulting field is rotated by 90u with respect to the original orientation
in a). During a full cycle the orientation of the induced field on the sphere surface at the crossing point of the two coils (‘‘hot spot’’, red dashed
ellipse) rotates, sweeping 270u. Bottom row, cloverleaf coil: Two pairs of modified figure eight coils are connected to two independent current
sources each producing a single sinusoidal pulse (the voltage load on the coils is described in the top row). The resulting electric field at a plane
located 3 cm above the coil and parallel to it is simulated (magnitude according to color code, direction by white arrows). a) After the solid pair
completes J of a cycle, the dashed pair commences its pulse and dominates the induction, resulting in a vertical field. b) J of a cycle later, both
coils induce an equal field and the effective field is diagonal. c) After another J of a cycle, the solid pair completely takes over and the resulting field
is horizontal. During a full cycle the orientation of the induced field at the center of the cloverleaf (‘‘hot spot’’) rotates, sweeping 270u. See also Video
S2.
doi:10.1371/journal.pone.0086794.g004

Table 1. Summary of magnetic stimulation response in both neuronal 2D cultures and anesthetized rats.

2D culture (N = 30) Rat (N = 9)

Responded to stimulation
Electric Threshold (Normalized
to maximum inducible field) Responded to stimulation

Electric Threshold (Normalized
to maximum inducible field)

Cross coil 50% 90610% 89% 70610%

Single coil 13% 120*620% 44% 90610%

All distribution errors are standard error (SE). % denotes fraction of the maximum attained rotating electric field.
*When using only our home made stimulator as the single coil we can induce non-rotating electric fields that are up to 2 times stronger than the maximum rotating
electric field.
doi:10.1371/journal.pone.0086794.t001

Rotating Field TMS
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abolished the longer latency response, while leaving the shorter

one active for several minutes. The spinal response was typically

achieved at a lower magnetic stimulation threshold than the

cortical one. We observed a clear cortical response in eight of the

nine animals tested. The estimated electric field threshold for

excitation was distributed around a mean of 70610% (SD) of the

maximum inducible field.

Four of the animals also responded to stimulation using only a

single coil of the cross coil pair. As in the neuronal culture

stimulations, when using only a single coil the electric field

threshold was between 10% and 50% higher than that of the cross

coil system and exhibited a strong directional dependence as

expected.

Excitation of human motor cortex
The clover leaf magnetic coil was used to demonstrate the

efficacy of rfTMS on human subjects. The location and

orientation of the coil and the corresponding motor response is

depicted for two positions in Figure 6a. Clearly, the two

orientations, rotated with respect to each other by an angle of

50u, elicit the same response. Using a robotic stereotactic device

controlled by a neuro-navigation software, the experiment was

repeated for 5 orientations, covering a rotation by 180u. The same

location in the motor cortex was stimulated with the rfTMS clover

leaf coil and with a standard figure-eight coil. While the motor

response evoked by the standard TMS coil drops dramatically for

orientations away from the optimal orientation, rfTMS can elicit a

response at any orientation.

A slight orientation dependence remains in the motor response

to the cloverleaf coil. This is expected because the induced electric

field traces out only 270u of a full circle (see Figure 1e) and can be

seen also in the accompanying simulations (Video S2). For the

same reason, the clockwise and counterclockwise rotations show a

slight asymmetry in motor response. The remaining directionality

can be overcome in the future by appropriately designed power

supplies, building on recent advances in this field [9].

Discussion

Stimulation of neurons by magnetic pulses relies on current

injection along neuronal processes and is therefore inherently

direction-dependent. In this paper we have overcome this

dependence via the application of a rotating field. We realized

this using a superposition of two spatially orthogonal and

temporally phase-shifted stimuli delivered by two custom made

coil setups – one that that was specially designed for the

stimulation of small-scale model systems and another for targeting

the human cortex. In both cases, the rotating field had striking

advantages.

Figure 5. Results from neuronal culture and from rat motor cortex. a) The response of 2D Neuronal culture to rfTMS. Spiking activity in the
culture was imaged through the viewing aperture (see Figure 2b). Fluorescent neurons are seen as white spots. The green rectangles indicate the
regions of interest over which the signal was averaged. The dashed white line indicates the borders of the coverslip on which the culture was grown.
b) The average calcium dependent fluorescence of the regions of interest outlined in a). Dashed lines mark events of magnetic stimulation using first
the cross coil and then a single coil. The intensity of each stimulation pulse is noted in Tesla. Successful stimulation of a population response is
indicated by a caret while intrinsic activity unrelated to magnetic stimulation is indicated by an asterisk. Note that the cross coil successfully triggered
a response already with 0.8T (but not at 0.75T), while a single coil required around 1.3T. c) The response of rat motor cortex to rfTMS. Graphs of EMG
recording of the Gastrocnemius when using the cross coil to stimulate a rat at different locations. Each location is illustrated to the right of the
response trace with the black cross representing the cross coil. The last row was performed after cervical dislocation of the rat. Scale bar is 200 mV. d)
A comparison between the last two rows in c). The solid line is the average of 10 individual responses (green traces) of the rat to rfTMS over its head
before dislocation and the dashed curve is the average of 5 individual responses (cyan traces) of the rat to rfTMS in a similar location over its head
after dislocation.
doi:10.1371/journal.pone.0086794.g005
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Model systems are necessary to achieve a detailed understand-

ing of the biophysical basis of TMS stimulation and the excitability

changes it can induce. However, while thousands of studies of

TMS application in humans are published, only a few dozen or so

use the standard model systems of neuroscience: rodents and 2D

cell cultures. We have shown that rotating field magnetic

stimulation delivered by the cross coil reliably drives excitation

in both model systems. The ability to stimulate 2D cultures and rat

cortex magnetically is particularly significant in view of the

reported difficulty to achieve this using the standard single or

figure-eight planar coils [17] (see also Note S8 and S9 in File S1).

Although the overall duration of the pulse is longer by 25%

compared to non-rotating TMS, we believe that the improved

stimulation is a direct result of the rotation of the field, and is

consistent with our understanding that: 1) axons are the neuronal

domain that is excited during TMS and 2) the axons have no

preferred orientation in 2D cultures.

We were surprised to find that 4 out of 15 cultures that could be

excited by the cross coil were also excited by only one of the coils

that construct the cross coil (Table 1). This could occur if in those

4 cultures a sufficient number of axons were aligned by chance in

the direction of the induced electric field (for an example see

Figure S2 in File S1). Since the field of a one-coil magnet is

spatially directed, it is not surprising that in those cases the

excitation of the cultures was directional-dependent and could be

abolished by rotating the culture by 45u with respect to the coil.

This demonstrates an obvious advantage of rfTMS. It eliminates

the need for precise orientation of the coil, which is always time

consuming if it can be achieved, but is often impossible to attain in

humans because no direct readout of stimulus efficiency exists.

Moreover, this ‘‘exception to the rule’’ demonstrates the rule - the

probability that such an orientation exists, i.e. that several axons in

the culture are oriented along a single axis, is presumably low. In

all other cases the axon orientation is distributed randomly, and it

is the scanning ability of the cross coil that enables the excitation of

those cultures. Thus, rotating field does more than just find the

right orientation and excite the axons that lie in that direction, it

enables stimulation of neuronal structures whose axons are

oriented in a random fashion, with no preferred directionality.

The comparison between rfTMS and the existing standard

brain stimulation was performed by applying the cloverleaf coil to

the index finger region of the primary motor cortex, showing that

rfTMS induces clear response regardless of the coil orientation.

This self-experimentation which is limited to the motor cortex

somewhat underrepresents the power of rfTMS. Motor response is

reliably induced with supra-threshold stimulation using conven-

tional coils while in other regions such as the visual area, only a

very narrow range of coil-orientations would have provided

reliable, trial-by-trial supra-threshold stimulation. Moreover,

without feedback such as muscle-evoked or vision-evoked poten-

tials conventional TMS could not ascertain reliable stimulation,

while rfTMS works almost regardless of coil orientation. Thus,

rfTMS clearly holds great promise for an increased reliability in

the magnetic stimulation of higher function cortex areas which do

not provide immediate feedback. In addition, if there are regions

of the brain where axon orientation is distributed randomly,

standard TMS is not expected to elicit a response while the

scanning ability of the cloverleaf coil should enable the excitation

of such regions, as when applying the cross-coil to standard 2D cell

cultures.

It should be emphasized that rfTMS as a technology is

complementary in nature, and can be used in tandem with most

other advances in TMS technology, e.g. deep TMS or novel

repetitive frequency protocols. The additional power supply and

the double magnets pose a minimal technical or financial burden,

comparable to that incurred in existing paired-pulse setups, with

advantages easily overcoming the cost.

Orientation free stimulus may not be adequate in all cases.

Studies performed on the primary motor cortex indicate, that

stimulus direction not only influences the threshold for stimulation,

but can also select between different sub-populations of neurons

that get excited [24,28] and, more importantly, affect the ability to

Figure 6. The response of Human motor cortex to rfTMS. a) The cloverleaf coil is positioned over the motor cortex. Stimuli with constant
strength are applied at 0.2 Hz. Individual muscle evoked potentials recorded from the first dorsal interosseous are shown in grey, and the averaged
response in black. Rotating the coil by 50u in the plane of the cloverleaf coil and maintaining the center position does not change the amplitude of
the muscle response. Data obtained from subject A.N. b) Extended experiment, testing 5 different orientations, controlled by a robotic device. For
each orientation two opposite rotation directions of the rotating field were tested. The experiment was then repeated using a standard figure-eight
coil, used to apply both biphasic pulses, as in rfTMS, and mono-phasic pulses. Under standard TMS no muscle response can be detected for
orientations more than 45u away from the optimum. In contrast, rfTMS provides reliable stimulation independent of the coil’s orientation. Data
obtained from subject W.P.
doi:10.1371/journal.pone.0086794.g006
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induce lasting modulation of cortical excitability [29]. The

implications of these findings for the effect of rfTMS are not

clear. On the one hand, coincident activation of several sub-

populations might mask specific effects; on the other hand, long

lasting modulations of equal sign, i.e. either potentiation or

suppression, which are induced in each of several sub-populations

individually could conceivably sum up to reach larger magnitudes

than achieved with conventional, directional stimulation. In the

clinical setting, selective activation of oriented subpopulations is

not part of current practice, thus loss of directional specificity

should not be a limitation. Instead, rfTMS would most probably

warrant reliable stimulation, where standard TMS might fail to

excite the target at all.

The sensitivity to field orientation has its origin in the

directionality of axons, and in the fact that magnetic stimulation

is achieved via axonal excitation. If the neuron could be excited at

the dendrites then the dependence on field orientation would

disappear (as in rfTMS) since the dendritic tree is isotropic

(Figure 1c, see also Note S1 in File S1). Because of their different

physical properties, excitation of dendrites necessitates the

application of pulses with longer duration, but these are currently

accessible only using electric excitation. We note that achieving

long pulses in a magnetic stimulation is feasible, and is currently

being pursued in our lab.

Supporting Information

File S1 Supplementary Notes and Figures.
(DOCX)

File S2 Comsol Model of the electric field induced by
the cross coil using the geometry and pulse profile used
in the 2D culture experiment.

(MPH)

Video S1 A rotating 3D schematic view of the cross coil,
including its assembly and dis-assembly into two
circular coils.

(AVI)

Video S2 Simulation of the electric field induced by the
cloverleaf coil. the arrows represent vectors of the induced

electric field while color codes local magnitude of the electric field,

in arbitrary units.

(MPG)

Acknowledgments

The authors are indebted to Amnon Fisher for help in designing and

producing the magnetic coils and the power supply. Manuel Hewitt and

David Liebetanz were a great help with the robotic coil positioning.

Author Contributions

Conceived and designed the experiments: AR AN NEN AA-T DR WP

EM. Performed the experiments: AR AN NEN AA-T DR WP EM.

Analyzed the data: AR AN NEN AA-T DR WP EM. Contributed

reagents/materials/analysis tools: AR AN NEN AA-T DR WP EM. Wrote

the paper: AR AN NEN AA-T DR WP EM.

References

1. O’Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, et al. (2007)

Efficacy and Safety of Transcranial Magnetic Stimulation in the Acute

Treatment of Major Depression: A Multisite Randomized Controlled Trial.

Biological Psychiatry 62: 1208–1216. doi:10.1016/j.biopsych.2007.01.018

2. George MS, Nahas Z, Molloy M, Speer AM, Oliver NC, et al. (2000) A

controlled trial of daily left prefrontal cortex TMS for treating depression.

Biological Psychiatry 48: 962–970. doi:10.1016/S0006-3223(00)01048-9

3. Grisaru N, Amir M, Cohen H, Kaplan Z (1998) Effect of transcranial magnetic

stimulation in posttraumatic stress disorder: a preliminary study. Biological

Psychiatry 44: 52–55. doi:10.1016/S0006-3223(98)00016-X

4. Aleman A, Sommer IE, Kahn RS (2007) Efficacy of slow repetitive transcranial

magnetic stimulation in the treatment of resistant auditory hallucinations in

schizophrenia: A meta-analysis. J Clin Psychiatry 68: 416–421.

5. Berlim MT, van den Eynde F, Tovar-Perdomo S, Daskalakis ZJ (2013)

Response, remission and drop-out rates following high-frequency repetitive

transcranial magnetic stimulation (rTMS) for treating major depression: a

systematic review and meta-analysis of randomized, double-blind and sham-

controlled trials. Psychological Medicine FirstView: 1–15. doi:10.1017/

S0033291713000512

6. George MS, Padberg F, Schlaepfer TE, O’Reardon JP, Fitzgerald PB, et al.

(2009) Controversy: Repetitive transcranial magnetic stimulation or transcranial

direct current stimulation shows efficacy in treating psychiatric diseases

(depression, mania, schizophrenia, obsessive-complusive disorder, panic, post-

traumatic stress disorder). Brain Stimul 2: 14–21. doi:10.1016/j.brs.2008.06.001

7. Huang Y-Z, Sommer M, Thickbroom G, Hamada M, Pascual-Leonne A, et al.

(2009) Consensus: New methodologies for brain stimulation. Brain Stimul 2: 2–

13. doi:10.1016/j.brs.2008.09.007

8. Sommer M, Alfaro A, Rummel M, Speck S, Lang N, et al. (2006) Half sine,

monophasic and biphasic transcranial magnetic stimulation of the human motor

cortex. Clinical Neurophysiology 117: 838–844. doi :10.1016/

j.clinph.2005.10.029

9. Peterchev AV, Murphy DL, Lisanby SH (2011) Repetitive transcranial magnetic

stimulator with controllable pulse parameters. Journal of Neural Engineering 8:

036016. doi:10.1088/1741-2560/8/3/036016

10. Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H (2001) Motor

thresholds in humans: a transcranial magnetic stimulation study comparing

different pulse waveforms, current directions and stimulator types. Clinical

Neurophysiology 112: 250–258. doi:10.1016/S1388-2457(00)00513-7

11. Luft AR, Kaelin-Lang A, Hauser T-K, Cohen LG, Thakor NV, et al. (2001)

Transcranial magnetic stimulation in the rat. Exp Brain Res 140: 112–121.

doi:10.1007/s002210100805

12. Luft AR, Kaelin-Lang A, Hauser T-K, Buitrago MM, Thakor NV, et al. (2002)

Modulation of rodent cortical motor excitability by somatosensory input. Exp

Brain Res 142: 562–569. doi:10.1007/s00221-001-0952-1

13. Nielsen JB, Perez MA, Oudega M, Enriquez-Denton M, Aimonetti J-M (2007)
Evaluation of transcranial magnetic stimulation for investigating transmission in

descending motor tracts in the rat. European Journal of Neuroscience 25: 805–
814. doi:10.1111/j.1460-9568.2007.05326.x

14. Rotenberg A, Muller PA, Vahabzadeh-Hagh AM, Navarro X, López-Vales R,
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