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Abstract

The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by
specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of
cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this
work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of
Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are
manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the
experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client
recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions
has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric
communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that
client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that
could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range
of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90
interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction
networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local
interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We
have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction
networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins.
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Introduction

Allosteric regulation and support of diverse protein clients

underlie the fundamental role of the molecular chaperone Hsp90

in protein synthesis, refolding and degradation [1–6]. Hsp90 is an

abundant and highly specialized molecular chaperone that is

essential for the integrity of many signaling pathways. The rapidly

growing body of structural and functional data has significantly

advanced the mechanistic understanding of the Hsp90 chaperone

that operates in an ATP-coupled functional cycle associated with

stochastic switching between structurally different functional states

[7–13]. A conserved stretch of residues in the nucleotide-binding

N-terminal domain (Hsp90-NTD) comprises a ‘‘lid’’ motif that

closes over the nucleotide binding site in the ATP-bound closed

dimer, while it is in the open conformation in the nucleotide-free

and ADP-bound forms of Hsp90. The middle domain (Hsp90-

MD) is involved in ATP hydrolysis and contains critical catalytic

residues that complement the nucleotide binding site, whereas the

C-terminal domain (Hsp90-CTD) is involved in dimerization.

Conformational changes in the lid motif are coupled to the

ATPase cycle, whereby upon ATP hydrolysis the lid flips away

from the nucleotide site and concomitantly the Hsp90 dimer can

adopt an open functional form. The functional linkage of the

Hsp90 conformational cycle to ATP binding and hydrolysis is

essential for its chaperoning function [7–13]. However, the kinetics

of large conformational changes in yeast Hsp90 is nucleotide-

independent, where the formation of the close dimer is the rate-

determining step of the reaction [14,15]. The diverse regulatory

mechanisms of the Hsp90 machinery are enabled by the Hsp90

interactions with an array of cochaperones - protein adaptors that

are recruited to assist Hsp90 in modulating the progression of the

ATPase cycle and chaperoning of the vast protein clientele [16–

19]. Central to the role of cochaperones is targeted modulation of

the ATPase conformational cycle by turning stochastic conforma-

tional fluctuations of Hsp90 into precisely engineered progression

of specific conformational states that are tailored to structural
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requirements of protein clients. The class of client recruiter

cochaperones can also contribute to the process of client selection

and recognition, often by arresting the Hsp90-ATPase cycle in a

particular conformational state in order to support activities of

specific clients.

Cell division cycle protein 37 (Cdc37) is a highly specialized

cochaperone that in coordination with Hsp90 can facilitate protein

folding and maintain stabilization of protein kinase clients during

maturation until they attain their full biological activity [20,21].

Conformational changes associated with the recruitment and

loading of kinase clients to the Hsp90-Cdc37 chaperone allow

kinases to complete maturation of their functional states, initiate

subsequent interactions with the protein substrates and activate

signaling cascades (Figure S1). Structural and biochemical

experiments have indicated that Cdc37-mediated arrest of the

Hsp90-ATPase cycle at the early stage would stabilize an open,

nucleotide-free conformation of Hsp90 by preventing lid closure

and blocking the association of the Hsp90-NTDs [22–25]. The

human Cdc37 protein structure can be divided into three domains

where the N-terminal domain, Cdc37-NTD (residues 1–147) and

the middle domain, Cdc37-MD (residues 148–282) recognize

protein kinase clients and Hsp90, while the C-terminal domain,

Cdc37-CTD (residues 283–378) is primarily involved in Cdc37

dimerization (Figure S2). The middle domain is the most stable

region of Cdc37 and contains the Hsp90 recognition site [22]. The

crystal structure of the human Cdc37 construct (residues 148–348)

in the complex with the yeast Hsp90-NTD [23] has revealed a

Cdc37 dimer bound to the ‘‘lid’’ segment of the Hsp90-NTD and

intruding into the Hsp90 nucleotide binding pocket (Figure S2A).

These interactions formed between the middle domain of Cdc37

and the Hsp90-NTD can inhibit the ATPase activity of Hsp90 by

preventing dimerization and disrupting the Hsp90 ATPase cycle

[23,24]. A NMR study of the complex between the middle domain

of human Cdc37 (Cdc37-MD, residues 148–276) and human

Hsp90-NTD (Figure S2B) has produced a monomeric structure of

Cdc37 forming a compact hydrophobic interface with the Hsp90-

NTD [25].

Recent studies in plants and mammals have revealed that

cochaperones Sgt1 (suppressor of G2 allele of SKP1) and Rar1

(required for MLA12 resistance) are cooperatively integrated into

the Hsp90 system for stabilizing NLR (nucleotide-binding domain

and leucine-rich repeat containing) proteins, a family of conserved

immune sensors that recognize pathogens (Figure 1) [26–32]. To

defend against foreign pathogens, plants and animals employ these

immune sensor proteins which recognize extracellular molecules

and initiate immune response. Sgt1 is required for innate

immunity and consists of three distinct domains, TPR (tetra-

tricopeptide repeats), CS (CHORD-containing protein and Sgt1)

and SGS (Sgt1 specific domain) [33]. NMR studies have

demonstrated that human Sgt1 binds the Hsp90-NTD through

the Sgt1-CS domain, while the TPR domain is not involved in

direct interactions with Hsp90 [34]. The CS domain of Sgt1 (Sgt1-

CS) interacts with the Hsp90-NTD and is structurally similar to

the p23 (mammals)/Sba1 (yeast) cochaperone, yet the binding sites

on the Hsp90-NTD are entirely different [35,36]. While p23/Sba1

interacts with the closed lid form and stabilizes the ATP-bound

conformation of the chaperone, Sgt1 binds to the open lid

conformation and has no inherent Hsp90-ATPase regulatory

activity [34–36]. Rar1 contains two similar cysteine and histidine-

rich domains (CHORD1 and CHORD2) that can interact with

Hsp90-NTD (Figure 1). NMR-based mapping and mutational

analyses of the Sgt1 binding interfaces in plants have confirmed

that the Sgt1-CS domain is required for the Hsp90 binding and

that Rar1-CHORD2 and Hsp90-NTD interact with the opposite

sides of the Sgt1-CS domain [36,37]. Functionally, Hsp90 and

Sgt1 interact with the cochaperone Rar1 which acts as a core

modulator in plant immunity. While Sgt1-CS and Rar1-CHORD

domains can independently interact with Hsp90, structural and

biochemical studies have demonstrated that the Rar1-CHORD2

domain is essential to the formation of the functional complex

[38,39].

Recent crystallographic studies of the core Hsp90–Sgt1 complex

[38] and ternary Hsp90-Sgt1-Rar1 complex [40] have provided

the first detailed outlook of the architecture of the regulatory

complexes, suggesting possible recruitment mechanisms of NLR

client proteins, whose role in immune defense is shared in both

plants and animals. The crystal structure of the HSP90-Sgt1-Rar1

complex has revealed a heterohexamer in a ring configuration

with two copies of each component, in which Rar1-CHORD2

interacts with the Hsp90-NTD opposite to its Sgt1-interacting

region [40]. In addition to the interaction between Rar1-

CHORD2 and Sgt1, Rar1-CHORD1 binding to the Hsp90-

NTD also contributes to the assembly of the Hsp90-Sgt1-Rar1

regulatory complex. According to the structural insights, the

dynamically controlled ternary complex is implicated in the

activation mechanism of NLRs clients [38–40], in which the Rar1-

Sgt1 interactions could be critical for disease resistance and the

Rar1-Hsp90 interactions may facilitate decomposition of ATP and

boost the efficiency of immune sensor control. Collectively,

structural and functional studies have suggested a mechanistic

model of the NLR recruitment and maturation by the Hsp90-

Sgt1-Rar1 complex (Figure 1) [38–40]. In this model, ATP

binding to the Hsp90-NTD of apo-Hsp90 in the open form can

induce a fast dynamic exchange between a nucleotide-free Hsp90

and an ATP-bound state in which the lid segments and the Hsp90-

NTDs are in the open position. In the proposed mechanistic

picture Rar1 is the key component of the regulatory assembly that

can intersect the normal progression of the ATPase cycle at the

early stage of the cycle and inhibit the formation of the closed

Hsp90 dimer, while accelerating the ATPase activity (Figure 1).

Hence, cochaperone-mediated arrest of the Hsp90-ATPase

conformational cycle can promote the assembly of the ternary

Hsp90-Sgt1-Rar1 complex and recruitment of the NLR clients.

Although it is established that the formation of the regulatory

Hsp90 complexes with Sgt1 and Rar1 enable targeted modulation

of the ATPase conformational cycle, molecular and energetic

determinants of allosteric regulation have remained frustratingly

elusive. Among important questions that are currently under

active investigation are (a) how do Rar1 and Sgt1 cooperate at the

molecular level to mechanistically regulate Hsp90? (b) how can

Rar1 enhance the ATPase activity of Hsp90? (c) is there a feasible

unified mechanism that can explain the maturation process of

NLR proteins by the Hsp90-Sgt1-Rar1 complex?

Molecular understanding of the regulatory mechanisms criti-

cally depends on high-resolution structures of recognition-compe-

tent client states in regulatory complexes with the Hsp90-Sgt1-

Rar1 chaperone system. However, the dynamic nature of these

molecular assemblies hinders the molecular details that underlie

cochaperone-specific modulation of the ATPase activity. Com-

pounded by marginal stability of the regulatory complexes,

structural and thermodynamic characterizations of the Hsp90

interactions remain technically challenging, which is evident from

a relatively small number of high-resolution structures of the

Hsp90-cochaperone complexes. Consequently, computational

modeling of transient Hsp90-cochaperone interactions may

complement structure-functional studies and provide molecular

insights into mechanistic aspects of allosteric regulation of Hsp90.

The transient nature and cooperativity of the Hsp90-cochaperone

Protein Network Modeling of the Hsp90 Interactions
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interactions necessitates a multi-scale modeling strategy that

combines all-atom and coarse-grained representations of the

biological system. The key to understanding dynamics and stability

of the regulatory complexes is (a) to provide a quantitative

characterization of the dynamics and stability of the Hsp90-

cochaperone complexes; and (b) to establish a linkage between

cochaperone-induced global conformational changes in Hsp90

and specific interaction networks that can inhibit or promote

progression of the ATPase cycle and thus control the recruitment

of client proteins.

Although principal modes of protein motions can be extracted

from all-atom molecular dynamics (MD) simulations, coarse-

grained approaches and elastic network models (ENM) such as

Gaussian network model (GNM) [41–43] combined with the

normal mode analysis [44,45] can efficiently probe functional

movements by reducing protein structure representation to a

network of uniformly connected nodes where the native interac-

tions in the equilibrium structure determine conformational

dynamics of the system [46–48]. Computational studies have

employed dynamic approaches to model collective motions and

allosteric interactions in the Hsp90 crystal structures revealing

conserved functional motifs that act collectively as central

regulators of the chaperone dynamics and activity [49–55]. All-

atom simulations of the Hsp90 crystal structures from different

species have detected two inter-domain hinge sites regulating

allosteric interactions of the chaperone [56]. Force-distribution

analysis based on atomistic simulations has identified an internal

signaling pathway connecting the nucleotide binding site in the

HtpG via a dynamic hinge with the distantly located client binding

region in the middle domain [57]. We have also recently shown

that functional dynamics and allosteric interactions of Hsp90 can

be selectively modulated by p23 and Aha1 cochaperones via

specific targeting of the regulatory hinge regions that could restrict

collective motions and stabilize specific chaperone conformations.

Figure 1. A Model of the Hsp90-ATPase Cycle: The Functional Role of the Cochaperones Sgt1 and Rar1. In this model, ATP binding to
the Hsp90-NTD of apo-Hsp90 in the open form can induce a fast dynamic exchange between a nucleotide-free Hsp90 and an ATP-bound state in
which the ATP lids and Hsp90-NTDs are still open. Binding of Rar1-CHORD1 to the Hsp90-NTD intersects the normal progression of the ATPase cycle
by preventing the lid enclosure of ATP and inhibiting the formation of the closed Hsp90 dimer. This interaction supports the binding of Rar1-CHORD2
to the other Hsp90-NTD in the other protomer. Upon binding of both Rar1-CHORD domains, SGT1 is recruited to interact with the Hsp90-NTD and
Rar1-CHORD2 domain. Cochaperone-mediated arrest of the Hsp90-ATPase conformational cycle in the open form promotes the assembly of the
ternary Hsp90-Sgt1-Rar1 complex and recruitment of the NLR clients. In the ternary complex, the fluctuations of the lid segment may allow the
catalytic Arg residue from the Hsp90-MD to reach the nucleotide binding site and induce ATP hydrolysis. The Rar1-stimulated hydrolysis of ATP would
lead to dissociation of RAR1, SGT1, and NLR client from the Hsp90 dimer. After ATP is hydrolyzed, the Hsp90-NTDs domains dissociate and ADP is
released returning Hsp90 to the nucleotide-free open state. The Hsp90 structure is shown in a surface representation with an annotation of structural
elements. The Hsp90-NTD is shown in green; the Hsp90-MD is depicted in blue and the Hsp90-CTD is presented in red.
doi:10.1371/journal.pone.0086547.g001
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[58]. Graph-based and network theoretical approaches [59,60]

can further reduce complexity of protein architectures to one-

dimensional maps comprised of nodes (residues) connected by

edges (inter-residue interactions). This description can yield a

convenient characterization of the protein topology and allow for

network-based analysis of protein structure. These methods have

shown that protein structure graphs are neither regular locally

connected graphs, nor they are random locally disconnected

graphs that have many long-range edges. It has been recognized

that protein topologies and the interaction connectivity could often

produce distinct small world networks, which combine the high

local connectivity of residue nodes with a smaller number of long-

range contacts [59,60]. Small-world allosteric networks and long-

range protein communication can be determined by specific

residues playing critical roles in the transmission of functional

signals [61,62]. Network-based analyses have been also used in

predicting allosteric communication pathways [61–63], protein-

protein interactions [64,65], catalytic site residues in enzymes

[66,67], protein folding mechanisms [68–70], and modeling of

protein unfolding pathways [71]. Protein networks can be also

described as weighted graphs [72–74] and use three common

measures of node centrality (degree, closeness, and betweenness)

introduced in the context of social networks [75–79] to identify

shortest paths of inter-residue communication. A combination of

MD simulations and the protein structure network analysis using a

graph-based representation of the residue interactions can identify

functionally important sites and subtle structural changes in the

conformational populations of states [80–87]. Graph-based

protein networks that incorporated dynamic contact maps of

cross-correlations with the interaction residue connectivity have

successfully described allosteric communications in tRNA–protein

complexes [88], cysteinyl tRNA synthetase [89,90], imidazole

glycerol phosphate synthase [91,92], thrombin [93], and the M2

muscarinic receptor [94].

By combining functional dynamics and protein structure

network analyses, the reported study attempted to dissect complex

mechanisms of Hsp90 regulation by this unique dual co-chaperone

system. Coarse-grained modeling was used to identify global

dynamic signatures of the Hsp90-cochaperone complexes and

show how client recruiter cochaperones can orchestrate global

conformational changes in Hsp90 by modulating local dynamics of

the lid motif. The variations in the functional dynamics profiles

were compared with the evolution of the protein structure

networks to determine cochaperone-mediated specific interactions

responsible for modulation of the Hsp90-ATPase cycle. We

compare distinctive networking profiles of the Hsp90-Cdc37 and

Hsp90-Sgt1-Rar1 complexes to illustrate how targeted modulation

of the lid dynamics is coupled with specific interactions to inhibit

or promote progression of the ATPase cycle. We show that the

regulatory Hsp90-cochaperone complexes have a small-world

organization of the interaction network in which a group of highly

connected interfacial hubs and global mediator residues of

allosteric communications could serve as functional hot spots of

the Hsp90-ATPase activity.

Results and Discussion

Sgt1 and Rar1 Cochaperones Differentially Modulate
Conformational Mobility of the ATP Lid

In the crystal structure of the binary Hsp90-Sgt1 complex [38],

the lid segment of the Hsp90-NTD is ordered in its open

conformation with the relative thermal parameters comparable to

the structurally rigid core of the Hsp90-NTD domain. However,

the Hsp90-NTD binding site for the Sgt1-CS domain does not

overlap with the nucleotide binding site and hence, would not

directly interfere with the lid conformation (Figure 2). In contrast,

the lid motif exhibited significantly higher thermal parameters and

was appreciably disordered in the crystal structure of the

regulatory ternary Hsp90-Sgt1-Rar1 complex [40]. Based on the

crystal structure analysis, it was proposed that the Rar1-CHORD2

domain can function as a regulatory on-off switch of the lid

mobility by favoring a flexible lid conformation in the ternary

complex [32,40]. We carried out functional dynamics analysis of

the Hsp90-Sgt1 and Hsp90-Sgt1-Rar1 complexes to (a) charac-

terize cochaperone-specific modulation of the lid dynamics, and

(b) understand how allosteric interactions with the lid motif may

allow cochaperones to engineer global conformational changes

and control the ATPase activity. According to our working

hypothesis, the thermal fluctuations of the inherently mobile lid

could be present in both complexes. Rather than operating an on-

off switch, we proposed that Rar1-CHORD2 may interfere in the

conformational equilibrium acting as a ‘‘relay switch’’ by

selectively reducing or enhancing the relative conformational

mobility of the lid motif. Functional dynamics and collective

protein motions are largely determined by the native interactions

and low frequency normal modes of fluctuations around the

equilibrium structure. The crystal structures of the Hsp90-Sgt1

and Hsp90-Sgt1-Rar1 complexes were optimized using the

3Drefine method [95] that is based on an atomic-level energy

minimization using a composite physics and knowledge-based

force fields. This approach allows for a robust refinement of the

global topology and the side-chain interaction networks in the final

structures that are relatively insensitive to the energy force field.

We compared the dynamics of the Hsp90-Sgt1 and Hsp90-Sgt1-

Rar1 complexes by relying on the transferability of the ENM-

derived lowest normal modes that could adequately reproduce

functionally important motions.

Conformational mobility of the Hsp90-cochaperone complexes

was first evaluated by using the normalized mean square residue

fluctuations (NMSF) obtained from computation of the 20 low

frequency modes (Figure 2). As expected, the aggregate dynamic

profiles revealed that the lid region (residues 96–126) could remain

fairly mobile in both the Hsp90-Sgt1 (Figure 2A) and Hsp90-Sgt1-

Rar1 complexes (Figure 2B). It may be noticed that the relative

fluctuations of the lid segment with respect to the structural core in

the ternary complex were considerably larger and somewhat

asymmetrical, causing larger deviations in the second Hsp90-NTD

molecule (Figure 2B). The NMSF profile of the Hsp90-Sgt1-Rar1

complex displayed more distinct characteristic peaks in the lid

region which are indicative of the sustained mobility during

functional movements. By projecting conformational mobility

profiles onto the subspace of the three lowest frequency modes, we

could disentangle critical differences in functional movements of

the Hsp90-cochaperone complexes. Generally, we observed that

the interfacial residues in both binary and ternary complexes

(shown in spheres and colored according to their mobility in

Figure 2C, D) experienced an appreciable reduction in confor-

mational mobility. Conformational mobility of the lid motif in the

Hsp90-Sgt1 complex remained to be present, but was greatly

reduced in the essential subspace (Figure 2C). Consistent with the

NMR mapping of the Hsp90-NTD-Sgt1-CS binding surface

[36,37], a number of interacting Sgt1-CS residues displayed a

significantly decreased mobility including E155, Y157, Q158,

K159, F168, and L218 (Figure 2C). Concurrently, we noticed that

the non-interacting regions of the Sgt1-CS domain were rather

flexible, perhaps reflecting larger movements of the cochaperone

domain in the Hsp90-Sgt1 complex. In agreement with structural

studies [36–40], we observed a considerable stabilization of the

Protein Network Modeling of the Hsp90 Interactions
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Hsp90-NTD residues extending beyond the firmly rigid interfacial

residues (E6, F8, T87, K88, H142, D145, and Y148) and reaching

to the non-interacting regions (Figure 2C). Structural stability of

the lid segment in the Hsp90-Sgt1 complex is not uniformly

distributed and a small connecting loop remained to be partly

flexible in the complex. Hence, the Sgt1-induced modulation of

the lid motions in the Hsp90-Sgt1 complex may attenuate

conformational mobility of the lid rather than acting as a binary

switch between rigid and flexible forms. This is consistent with the

experimental evidence that the interaction between the Hsp90-

NTD and SGT1-CS domains could be weakly inhibited by the

AMP-PNP analog [38]. In other words, while Sgt1-CS preferen-

tially binds to the open lid conformation in the ADP-bound

Hsp90-NTD, the cochaperone may still associate with the closed

(or intermediate) lid conformations albeit with lower affinity.

In a clear contrast, the open conformation of the lid in the

Hsp90-Sgt1-Rar1 complex appeared to be as flexible as the most

labile loop regions (Figures 2B, D). We also noticed that the lid

segment could be easily displaced from the open conformation

during low frequency motions, and migrate between alternative

states without affecting structurally stable core of the ternary

complex (Figure 2D). The greater flexibility of the Sgt1 molecule

in the binary complex could be associated with the lack of

correlated intermolecular motions (Figures 3A, C). Hence, thermal

Figure 2. The Residue-Based Fluctuation Profiles of the Hsp90-Sgt1 and Hsp90-Sgt1-Rar1 Complexes. The residue-based NMSF profiles
of the Hsp90-Sgt1 (A) and Hsp90-Sgt1-Rar1 complexes (B) were computed by averaging the fluctuations over 20 low frequency modes. In the Hsp90-
Sgt1 complex, the NMSF profile of the Hsp90-NTD residues is shown in blue lines and the NMSF values for the Sgt1-CS residues are depicted in red
lines. The consecutive residue numbering of the Hsp90-NTD and Sgt1-CS residues is adopted. The original numbering of the Hsp90-NTD residues
(residues 4–217) from the crystal structure (PDB ID 2JKI) corresponds to residues 1–213 in panel (A). The crystal structure annotation of the Sgt1-CS
domain (residues 151–240) corresponds to residues 215–304 in panel (A). The crystal structure of the HSP90-Sgt1-Rar1 complex (PDB ID 2XCM) is a
heterohexamer with two molecules of each domain (B). The NMSF profiles for the Hsp90-NTD domains are shown in blue (molecule 1) and red
(molecule 2); the NMSF graphs for the Sgt1-CS domain are in green (molecule 3) and cyan (molecule 4); the NMSF plots for the Rar1-CHORD2 domain
are in orange (molecule 5) and magenta (molecule 6). The crystal structure residue numbering was converted to a consecutive numbering. The
Hsp90-NTD residues are 1–213 (molecule 1) and 214–426 (molecule 2). The crystal structure numbering for the Sgt1-CS domain (residues 150–241)
translates in consecutive residues 427–518 (molecule 3) and 519–610 (molecule 4). The crystal structure numbering for the Rar1-CHORD2 domain
(residues 148–221) converted to residues 611–684 and 685–758. Structural distribution of conformational mobility in the essential conformational
space of the Hsp90-Sgt1 (C) and Hsp90-Sgt1-Rar1 complexes (D) was obtained by averaging the residue fluctuations along the three lowest
frequency modes. A surface-based protein representation is employed. The color gradient from blue to red indicates the decreasing structural rigidity
(or increasing conformational mobility) of protein residues. The interfacial residues are shown spheres and colored according to their mobility. The
ADP in the Hsp90-Sgt1 complex (C) is shown in atom-based colored spheres. The position and conformational mobility of the lid motif in the Hsp90-
Sgt1 and Hsp90-Sgt1-Rar1 complexes are highlighted and pointed to by oval circles surrounding the lid.
doi:10.1371/journal.pone.0086547.g002

Protein Network Modeling of the Hsp90 Interactions
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fluctuations of the lid in the Hsp90-Sgt1 complex may be largely

decoupled from the movements of the Sgt1-CS domain. This

dynamic signature of the binary complex may be associated with

the fact that the binding of Sgt1-CS is not sufficient for modulation

of the ATPase activity and Rar1 needs to be recruited to form a

fully functional ternary complex [38–40]. The increased flexibility

of the lid in the ternary complex is consistent with the notion that

the lid may fluctuate between an open conformation and an

intermediate swinging conformation (Figure 3B,D) [32,40]. These

results support the model of the ATPase cycle (Figure 1), according

to which the thermal movements of the lid segment may open up

the conformational space for the catalytic Arg residue from the

Hsp90-MD to reach the nucleotide binding site and induce ATP

hydrolysis. Although the lack of structural information about the

full Hsp90 dimer interacting Sgt1 and Rar1 precludes direct

modeling of this mechanism, our results point to the key role of

Rar1-CHORD2 as an allosteric regulator of the lid dynamics.

Rather interestingly, despite a considerable lid flexibility in the

ternary complex, the lid movements in each of the Hsp90-NTD

could be correlated with the functional displacements of the

interacting Sgt1-CS and Rar1-CHORD2 domains (Figure 3D).

Hence, in contrast to the binary complex, functional dynamics of

the Hsp90-Sgt1-Rar1 assembly may be characterized by correlat-

ed motions of the interacting molecules. These findings are

consistent with the experiments suggesting that RAR1-CHORD2

facilitates cooperative assembly of the complex and can enhance

the ATPase activity while destabilizing the closed lid conformation

[38,40].

Dynamic Coupling of Structural Rigidity and Flexibility in
the Hsp90-Cochaperone Complexes

According to previous studies [49–58] structural plasticity and

functional adaptation of Hsp90 to the vastly divergent families of

interacting cochaperones and client proteins are enabled by

modulating the proper balance of structural rigidity and flexibility

in the Hsp90 interdomain interfaces. We have recently demon-

strated that functionally important regulatory sites of Hsp90 may

be strategically positioned at the interdomain regions separating

structurally rigid and flexible regions [58]. These residues often

correspond to hinge sites around which large protein movements

are organized. In this section, we analyzed how cochaperone-

mediated modulation of the Hsp90 dynamics could affect the

distribution of structural rigid and flexible regions that are crucial

for proper functioning of the chaperone. Using the force constant

method [96] within the framework of the discrete molecular

dynamics formalism [97–99] as implemented in [100] we

computed the fluctuation distance force constant for each residue

in the Hsp90-Sgt1 (Figure 4A) and Hsp90-Sgt1-Rar1 complexes

(Figure 4B). The highest sharp peaks in force constant distributions

are typically associated with the residues forming boundaries

between structurally rigid and flexible regions, and could indicate

the interdomain hinge sites [96]. The residue-based force constant

profiles of the Hsp90-Sgt1 and Hsp90-Sgt1-Rar1 complexes are

characterized by several high value peaks separating structurally

rigid and flexible residues (Figure 4). Interestingly, the most

notable sharpest peaks that signify an abrupt transition from

structurally stable to mobile regions were observed near the lid

motif of the Hsp90-NTD. In the Hsp90-Sgt1 complex, the

pronounced peak corresponds to the L95 residue that anchors one

end of the lid motif and F126 that anchors the opposite end of the

lid (Figures 4A, C). Only a few very minor peaks could be spotted

in the Sgt1-CS domain, corresponding to a stretch of structurally

immobilized residues at the intermolecular Hsp90-Sgt1 interface.

Consistent with the ENM-based analysis, the force constant profile

of the binary Hsp90-Sgt1 complex similarly indicated the greater

mobility of the Sgt1-CS domain.

The residue-based dynamic profiles are based on the consec-

utive residue numbering for the Hsp90-NTD and Sgt1-CS

domains in the complex. For clarity of the comparison with

structural and functional experiments, we refer to the important

functional residues according to their original numbering in the

crystal structures. We observed three distinctive peaks in the Sgt1-

CS domain profile corresponding respectively to Y157, F168, and

K221 residues (Figure 4A). All these residues are important

functional hot spots as the alanine mutations of Y157 and F168 or

the charge reversal on K221 could abolish the Hsp90-Sgt1 binding

and significantly impair the essential Sgt1 functions in yeast [38].

In the Hsp90-Sgt1-Rar1 complex, the force constant profile

similarly revealed the highest peaks corresponding to L91 and

F126 from the Hsp90-NTD, thus indicating that the border

residues of the lid motif separate structurally rigid core of the

ternary complex from the floppy lid residues (Figures 4B, D). The

characteristic force constant peaks in the Sgt1-CS domain were

preserved between binary and ternary complexes and correspond-

ed to the Y157, F168, and K221 residues (Figure 4B). As a result,

these Sgt1-CS residues could form conserved functional sites that

are shared in the Hsp90-Sgt1 and Hsp90-Sgt1-Rar1 complexes.

These results are consistent with the NMR studies [36,37],

according to which the Sgt1 residues whose resonances were

shifted in the Hsp90-Sgt1 complex would not be further perturbed

by the addition of the Rar1-CHORD2 domain since the binding

mode of the Hsp90-Sgt1 complex is unaffected by RAR1-

CHORD2. Another noticeable peak could be seen in the Rar1-

CHORD2 domain that identified a stretch of residues A185-H188

as a cohesive structurally stable site during functional movements

of the ternary complex (Figure 4B). Indeed, the side-chain of H188

is involved in direct interactions with ADP in the crystal structure,

whereas yeast two-hybrid analysis of the Rar1-CHORD2 binding

determined that mutations of A185 and H188 severely compro-

mised the interactions and stability of the functional complex [40].

In both complexes, the force constant profile is characterized by

a rather steep and narrow well that corresponds to the lid residues

and indicative of their mobility in both complexes (Figure 4).

Interestingly, the force constant peaks in the Hsp90-NTD

correspond to the anchoring residues of the lid motif L95/F126

in the Hsp90-Sgt1 complex and L91/F126 in the ternary complex.

The projection of the force constant profiles onto the lowest

frequency modes indicated that the lid motif in the Hsp90-Sgt1

complex may maintain a stable open form during functional

movements. In contrast, in the Hsp90-Sgt1-Rar1 complex, the lid

continues to retain a considerable degree of conformational

mobility that may be inferred from low force constant values of lid

residues (Figures 4B, D). Hence, two different coarse-grained

models revealed a consistent pattern of the lid dynamics. Both the

force constant analysis and the ENM-based conformational

mobility profile of the Hsp90-cochaperone complexes demon-

strated that the enhanced conformational mobility of the lid may

be a salient characteristic of the Hsp90-Sgt1-Rar1 complex. These

results support our hypothesis that Sgt1-CS and Rar1-CHORD2

may differentially modulate conformational mobility of the lid

motif. In the functional ternary complex, the lid motif may freely

fluctuate between open and closed forms, likely spanning a range

of intermediate conformations and allowing a transient access to

the nucleotide binding site in the absence of bound ATP. As a

result, the Rar1 binding may destabilize the closed lid form and

eliminate the slow step of the formation of the Hsp90 dimer. We

propose a model in which cochaperone-mediated regulation of the

lid dynamics could be reminiscent of a ‘‘rheostat-like’’ (or
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‘‘dimmer’’) mechanism that adjusts the lid mobility accordingly to

engineer precise changes in the ATPase activity. In this

mechanism, the Hsp90-cochaperone system may successfully

‘‘bypass’’ stochastically-driven slow conformational changes of

the Hsp90 dimer and facilitate ATP hydrolysis. These results

provide some support to the recently proposed mechanistic picture

[32] in which Rar1-mediated interactions may enhance the

ATPase activity by decoupling ATP hydrolysis from the confor-

mational changes in the Hsp90 dimer.

We also computed the NMSF and force constant profiles for the

structurally different Hsp90-Cdc37 client recruiter complex. The

mechanism of Cdc37-mediated inhibition of the ATPase activity is

based on the hydrogen bonding between Cdc37-R167 and

catalytic residue Hsp90-E47 that can prevent hydrolysis of ATP,

although it could still allow for ATP binding [23]. According to the

structural studies [23–25], the direct Cdc37 binding with the lid

motif inhibits the formation of the closed lid conformation and

triggers arrest of the Hsp90-ATPase cycle in the open Hsp90

conformation (Figures S1,S2). For the Hsp90-Cdc37 complex, the

employed coarse-grained modeling approaches also converged to

a consistent dynamics profile of the lid motif (residues 108–138 in

the NMR structure [25]) demonstrating that structural immobi-

lization of the lid is the fundamental dynamic feature of the

Hsp90-Cdc37 binding (Figures 5A,C). In agreement with the

experimental data [23–25], functional dynamics maps captured a

more subtle effect by observing that the boundaries of the

structurally stable core could be extended towards L29, A55, and

L103 residues from the first, second, and fifth a-helices of the

Hsp90-NTD (Figure 5A,C). The Cdc37 interfacial residues M164,

L165, R166, R167, and L205 that displayed a strong decrease in

signal intensity in the NMR experiments [29] were also

structurally stable in the dynamics analysis. The force constant

profile of the Hsp90-Cdc37 complex is marked by a steep hike for

the lid residues reflecting a significant increase in structural rigidity

Figure 3. Analysis of the Correlated Motions in the Hsp90-Sgt1 and Hsp90-Sgt1-Rar1 Complexes. The cross-correlation matrices of
residue fluctuations in the Hsp90-Sgt1 (A) and in the Hsp90-Sgt1-Rar1 complex (B). The matrix was calculated using the ENM-derived normal modes
of the refined structures. The axes denote Ca atoms of the protein residues in sequential order, so that each cell in the plot shows the isotropic
correlation of two residues in the protein. Cross-correlations of residue-based fluctuations vary between +1 (fully correlated motion; fluctuation
vectors in the same direction, colored in red) and 21 (fully anti-correlated motions; fluctuation vectors in the same direction, colored in blue). The
consecutive residue indexing of the Hsp90-cochaperone complexes is adopted and is consistent with the detailed annotation in Figure 2. The residue
ranges for the domains in the Hsp90-Sgt1 and Hsp90-Sgt1-Rar1 complexes are mapped onto correlation maps. The position of the lid motif is
indicated by a rectangular and the correlation of the lid with the rest of the protein is highlighted. (C) The Hsp90-Sgt1 structure is shown in a ribbon
representation I (Hsp90-NTD in green, and Sgt1-CS in red). (D). The Hsp90-Sgt1-Rar1 structure is in ribbons with the Hsp90-NTD domain in red
(molecule A) and blue (molecule B). The Sgt1-CS domains are shown in cyan (molecule C) and green (molecule D). The Rar1-CHORD2 domains are
depicted in magenta (molecule E) and orange (molecule F).
doi:10.1371/journal.pone.0086547.g003
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(Figure 5B, D). Interestingly, the top 10% of high force constant

residues in the Hsp90-Cdc37 complex include G132, Q133, V136,

G137, and F138 residues from the lid motif (Figure 5B). Structural

rigidity of the lid in Hsp90-Cdc37 complex determines the position

of I110 and F138 hinge sites, clearly demarcating the borders

separating structurally rigid core within the Hsp90-Cdc37 complex

(Figure 5B, D). Hence, from a dynamic perspective, the primary

inhibitory role of Cdc37 in arresting ATPase cycle may be fulfilled

by switching conformationally mobile lid into ‘‘rigid’’ open position

via local interactions and without invoking substantial allosteric

changes. This mechanism is another manifestation of cochaperone-

based manipulation of the lid dynamics. It is radically different from

the Rar1-mediated mechanism that promotes the enhanced

conformational mobility of the lid and effectively destabilizes both

the fully open and fully closed lid forms.

Hence, coarse-grained dynamics analysis has identified com-

mon and distinctive dynamic signatures of the Hsp90-Sgt1 and

Hsp90-Sgt1-Rar1 complexes as compared to the Hsp90-Cdc37

binding. Consistent with the experimental evidence, our results

suggested that targeted modulation of the lid dynamics as a

common characteristic of the client recruiter cochaperones. In

summary, we provided a quantitative characterization of the

functional dynamics in the Hsp90-cochaperone complexes that

suggested a linkage between cochaperone-induced modifications

of the lid dynamics and global structural changes that could

enhance the ATPase activity. In the next section, we analyze

networking characteristics of the Hsp90-cochaperone interactions

to understand how targeted modulation of the chaperone

dynamics is allosterically coupled with specific interaction

networks that can inhibit or promote progression of the ATPase

cycle and thus control the recruitment of diverse client proteins.

The Rar1-CHORD2 Binding Stabilizes Network
Communities in the Hsp90-Sgt1-Rar1 Complex

We conducted a protein structure network analysis of the

Hsp90-cochaperone complexes and analyzed principal differences

Figure 4. The Force Constant Profiles of the Hsp90-Sgt1 and Hsp90-Sgt1-Rar1 Complexes. The dMD-derived fluctuation distance force
constant profiles of the Hsp90-Sgt1 (A) and Hsp90-Sgt1-Rar1 complexes (B) were computed as implemented in [96]. The peaks in the distributions
can correspond to the hinge sites. In the Hsp90-Sgt1 complex, the residue-based force constant profile of the Hsp90-NTD residues is shown in blue
lines and the profile for the Sgt1-CS residues is in red lines. The force constant graph of the Hsp90-Sgt1-Rar1 complex is consistent with the coloring
adopted in Figure 2. The consecutive residue numbering is adopted in both complexes and is consistent with the annotation in Figure 2. The position
of the lid motif and the peaks corresponding to functionally important residues are indicated by arrows and annotated. The crystal structures of the
Hsp90-Sgt1 (C) and Hsp90-Sgt1-Rar1 complexes (D) are annotated according to the domain coloring adopted in (A) and (B). The lid motif in both
structures is highlighted and colored in gold; the anchoring residues with the high force constants are indicated. To streamline the comparison with
structural and functional experiments, we annotated functional residues according to their original numbering in the crystal structures.
doi:10.1371/journal.pone.0086547.g004
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in the interaction networks by evaluating the distribution of

cliques, communities and hubs. These network parameters can

characterize densely packed and structurally stable regions, thus

providing a simple yet robust metric for evaluation of structural

stability in the protein structures [80–87]. In the network analysis,

communities were identified using both the interaction residue

connectivity and cross-correlation contact maps [88] obtained

from the ENM-based normal mode analysis. We focused on the

network analysis of the regulatory Hsp90-Sgt1-Rar1 complex by

placing a specific emphasis on the distribution of the interfacial

cliques, communities and hubs (Figure 6A). It is evident that the

Rar1-CHORD2 interactions in the ternary complex are central to

the formation of the interaction network, producing a considerable

number of interfacial communities. This analysis indicated that the

Rar1-Sgt1 interactions resulted in the largest number of the

interfacial communities, whereas the Rar1-Hsp90 and Sgt1-Hsp90

interactions could generate a similar and smaller number of such

assemblies (Figure 6A). We also analyzed the distribution of hub

residues in the functional complex, particularly the interfacial hubs

that are connected with the residues at the intermolecular interface

(Figure 6B). Interestingly, the Rar1-CHORD2 interactions could

give rise to a significant number of the interfacial hubs that

exceeded the contribution of both the Hsp90-NTD and Sgt1-CS

domains. This distribution mirrors a similar trend in the

organization of the interfacial cliques and communities. Consistent

with structural and functional experiments [38–40], these results

Figure 5. Conformational Mobility Profiling of the Hsp90-Cdc37 Complex. The NMSF profile of the Hsp90-Cdc37 complex (A) was obtained
using the NMR structure (PDB ID 2K5B) of the complex between human Cdc37 (Cdc37-MD, original residue numbering 148–276) and human Hsp90-
NTD (original residue numbering 14–223) [25]. The residue-based NMSF values were computed by averaging the fluctuations over 20 low frequency
modes. The NMSF profile for the Hsp90-NTD residues is shown in blue lines and for the Cdc37-MD residues in red lines. The consecutive residue
numbering of the Hsp90-NTD and Cdc37-MD residues is adopted. The original numbering of the Hsp90-NTD (residues 14–223) in the NMR structure
corresponds to residues 1–210, and the original numbering of the Cdc37-MD (residues 148–276) corresponds respectively to residues 211–339. (B)
The fluctuation distance force constant profile of the Hsp90-Cdc37 complex. The profile is shown in blue lines for the Hsp90-NTD and in red lines for
the Cdc37-MD. The consecutive residue numbering is adopted and is consistent with the annotation in (A). The position of the lid motif and the
peaks corresponding to functionally important residues are indicated by arrows and annotated. The position of the lid motif (residues 108–138) is
highlighted and pointed to by oval circles surrounding the lid. (C) Structural mapping of the conformational mobility in the essential conformational
space of the three lowest frequency modes. A surface-based protein representation is employed. The color gradient from blue to red indicates the
decreasing structural rigidity of protein residues. The interfacial residues are shown colored spheres according to their mobility. The important
functional residues are annotated according to their original crystallographic numbering. (D) The Hsp90-Cdc37 structure is annotated according to
the adopted domain coloring. The lid motif in both structures is highlighted and colored in gold; the anchoring residues with the high force
constants are indicated.
doi:10.1371/journal.pone.0086547.g005
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point to a critical role of the Rar1-CHORD2 interactions in the

formation of the interaction network and stabilization of the

Hsp90-Sgt1-Rar1 complex.

Structurally stable communities at the Rar1-CHORD2 inter-

face are formed via cooperative interactions with the Hsp90-NTD

and Sgt1-CS residues (Figures 6 C,D). In one of these communities

Rar1-F187, Rar1-F204, and Rar1-F207 are interconnected with

Hsp90-F49. Another prominent community is formed through the

interactions of Rar1-E175 and Rar1-W217 with the Sgt1-CS

residues Q184 and H239 (Figures 6 C,D). The interactions of

Rar1-F187 support the proper positioning of the imidazole ring of

Rar1-H188 interacting directly in the crystal structure with the b-

phosphate of ADP in the Hsp90-NTD [40]. The experimental

studies confer a broad functional role of the Rar1-CHORD2

residues F204, F207, and W217 involved in the formation of

interaction communities. In particular, yeast two-hybrid assays

have demonstrated that mutation of these Rar1 residues in the

Rar1-CHORD2 domain only, but not in full length Rar1,

substantially reduced the interaction with Hsp90 and destabilized

the ternary complex [40]. According to these experimental studies,

mutations of W217 could disrupt the interaction with Sgt1 in yeast

two hybrid assay and in vivo co-immunoprecipitation assay.

Moreover, these mutations are detrimental to the activity of the

Hsp90-Sgt1-Rar1 complex by causing resistance to tobacco

mosaic virus conferred by the NLR client protein [40].

The protein structure network parameters could also provide a

very approximate but simple measure for estimation of the binding

energy changes in the Hsp90-cochaperone complexes. According

to the relative number of structurally stable interfacial cliques and

communities, the Rar1-Sgt1 binding should be considerably

stronger that the Hsp90-Rar1 and Hsp90-Sgt1 interactions,

suggesting that the RAR1–SGT1 interactions should play a key

role in the stabilization and binding affinity of the ternary complex

(Figures 6A,B). The community analysis of the Hsp90-cochaper-

Figure 6. Network Analysis of the Hsp90-Sgt1-Rar1 Complex. (A) The distributions of the interfacial cliques (in blue filled bars) and the
interfacial communities (in red filled bars) in ternary complex are shown respectively for the Hsp90-Sgt1, Hsp90-Rar1 and Rar1-Sgt1 binding
interfaces. (B) The distribution of all residue hubs (in blue filled bars) and the interfacial hubs (in red filled bars) in the Hsp90-NTD, Sgt1-CS and Rar1-
CHORD2 domains. (C) A close-up of structurally stable communities formed by the Rar1-CHORD2 residues with the Hsp90-NTD (Rar1-F187, Rar1-F204,
Rar1-F207, Hsp90-F49) and the Sgt1-CS domain (Rar1-E175, Rar1-W217, Sgt1-Q184, Sgt1-H239). The interacting domains are annotated and shown in
ribbons, Rar1-CHORD2 is colored in magenta, Hsp90-NTD is in red, and the Sgt1-CS is in cyan. The residues contributing to the interfacial
communities are indicated. (D) The protein structure graphs of the major interfacial communities formed by the Rar1-CHORD2 domain in the
heterohexamer Hsp90-Sgt1-Rar1 complex. The annotation of the interacting domains is consistent with Figure 3. The Hsp90-NTD domain (molecules
A and B) interacts respectively with the Rar1-CHORD2 domain (molecules E and F). The Rar1-CHORD2 molecules E and F interact with the Sgt1-CS
molecules C and D respectively. The protein structure graphs were obtained using the CFinder program [104].
doi:10.1371/journal.pone.0086547.g006
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one interactions is indeed consistent with the isothermal titration

calorimetry (ITC) experiments that showed that the Kd value of

the Rar1-CHORD binding with Sgt1-CS is 3.09 mM, which is

appreciably lower than the Kd of 22.3 mM of the Hsp90-Rar1

binding and the Kd of 43 mM for the Hsp90-Sgt1 binding [40].

Overall, the community analysis is consistent with the structural

and functional experiments [38–40], indicating the Rar1–Sgt1

interactions critically contribute to the stability of the regulatory

ternary complex and, as such, may be of primary importance in

the recruitment and activation of NLR client proteins. The

interfacial hubs contribute to the stabilization of secondary

structure elements within their own domains and integrate the

cooperative interactions at the intermolecular interface. We then

proceeded with a detailed characterization and comparison of the

interfacial hub residues in the Hsp90-Sgt1 and Hsp90-Sgt1-Rar

complexes (Figure 7). The residues in the same community are

interconnected and can transfer the information through multiple

routes, whereas there are typically fewer edges involved in the

interaction between communities, and the nodes involved in this

communication could be critical for allosteric interactions and for

long-range signal transmission in the interaction network. We

specifically focused on the distribution of highly connected

interfacial hubs (with the number of connected residues exceeding

the default threshold of four) in the binary and ternary complexes,

since these hubs may reveal functional sites responsible for

cochaperone-mediated regulation. In the binary Hsp90-Sgt1

complex the highly connected interfacial hubs in the Hsp90-

NTD include critical residues F8, T87, K88, H142, D145, and

Y148 (Figure 7A, C). Interestingly, we observed that the Sgt1-CS

hubs have often a higher node degree that corresponds to a greater

number of the interfacial neighbors. The most ‘‘influential’’ Sgt1-

CS hubs include Y157 and F168 residues that are connected

structurally (via interaction connectivity) and dynamically (by

virtue of cross-correlated motions) with the significant number of

residues (Figure 7A, C). These residues are involved in the core

interactions that are primarily provided by the hydroxyl group of

Sgt1-Y157 hydrogen bonding to the side-chains of Hsp90-K88.

Additionally, the aromatic ring of Y157 forms the hydrophobic

interactions with Hsp90-F8 and Hsp90-K88 [40]. In agreement

with the structural analysis, Hsp90-F8 and Sgt1-Y157 residues also

correspond to the peaks in the distribution of the interfacial hubs.

Not only our analysis correctly pinpointed to these residues as

important interfacial hubs, but it also indicated that the key

interactions formed by these residues may be supported via a

dense network of additional contacts with the neighboring

residues. These results pointed to the propensity of highly

connected interfacial hubs to serve as functional hot spots of the

Hsp90 activity. Indeed, targeted mutagenesis of the Hsp90-Sgt1

interface demonstrated that modifications of the Sgt1-CS residues

Y157, F168, K221, and E223 would abrogate functional

interactions and reporter activation [38]. All these residues, with

the single exception of E223, emerged among highly connected

network hubs (Figure 7). In this context, it is important to mention

that though alanine mutations of Sgt1-E223 affected the Hsp90-

Sgt1 interactions, they had a negligible functional effect on NLR

client-mediated resistance to tobacco virus [38]. In contrast,

mutations of the Sgt1-Y157 and charge reversals on the Sgt1-

K221 sites resulted in a considerable functional effect. Hence,

structure-based network analysis of the Hsp90-Sgt1 interactions

revealed a small number of highly connected hubs which emerged

as functionally important sites in a broad range of experimental

investigations [36–40].

Mapping Functional Dynamics Profiles of the Hsp90-Sgt1
and Hsp90-Sgt1-Rar1 Complexes with Network
Parameters

By mapping network parameters onto the ENM-derived

dynamics profiles in the essential conformational space, we could

also characterize the role of specific residues in modulating

structural stability of the regulatory complexes. The distribution of

structurally stable communities is in good agreement with the

population distribution profiles (Figures 2, 4). Strikingly, the

noticeable peaks in the force constant profiles of the binary and

ternary complexes (Figure 4) correspond to the Sgt1 residues

Y157, F168, K221 that are among the highly connected interfacial

hubs in the Hsp90-Sgt1-Rar1 complex (Figure 7 B,D). The Rar1-

CHORD2 residues A185-H188 that displayed the higher force

constants in the dynamic profiling of the Hsp90-Sgt1-Rar1

complex (Figure 4B) were also among notable hubs at the

intermolecular interface (Figure 7 B, D). Moreover, these residues

also contribute to the interfacial communities and are central to

the stabilization of the interaction network in the functional

complex. According to our model, the highly connected interfacial

hubs are located within dense protein regions having more

interacting neighboring nodes than a typical residue in the Hsp90-

cochaperone complex. Not only the Rar1 interfacial hubs at the

Hsp90-Rar1 binding site have a large number of neighbors but

they are also supported by other well-connected residues, thus

leading to a dense structural core of stable and interconnected

residues (Figure 7B,D). These findings are consistent with the

notion that different networks (including protein structure

networks and protein-protein interaction networks) are often

formed via overlapping modules and could exhibit a hierarchical

organization where small, highly connected modules (communi-

ties) could associate into larger units [101–104].

We observed that the protein structure networks of the Hsp90-

cochaperone complexes may have some elements of a hierarchical

structure, in which central highly connected hubs are locally

surrounded and interact with less important hubs that have fewer

interacting neighbors. As a result, targeted perturbations of highly

connected hubs could simultaneously disrupt many interactions

leading a significant loss in chaperone activity. The dual role of

these residues in anchoring functional motions and promoting

stabilization of the ternary complex may explain some of the

experimental observations which have emphasized the importance

of these hot spots to the activity of the Hsp90-cochaperone

complex [38–40]. It is worth noting that flexible lid residues are

conspicuously absent in the structurally stable communities and

are not capable of serving as the network hubs. Hence, the

exceedingly mobile lid motif could be decoupled from the stable

interfacial communities, thus permitting its free excursions

between the open and closed lid forms without perturbing the

interaction network.

In summary, we found that (a) the largest number of the

interfacial hubs is in the Rar1-CHORD2 domain, and (b) the

incorporation of the Rar1-CHORD2 domain led to the increased

number of hubs in the Sgt1-CS domain (Figure 7). At the same

time, the interfacial hubs from the Hsp90-NTD are confined to

the Hsp90-Sgt1 interface. These results suggested that the Rar1-

Sgt1 interactions form the central core of the interaction network

that could stabilize the ternary complex. The most connected

interfacial hubs in the Hsp90-Sgt1-Rar1 complex include Sgt1-

Y157, Sgt1-F168, Rar1-F187, Rar1-F207, and Rar1-W217

(Figure 7B, D). It is evident from this analysis that a limited set

of key residues may critically contribute to the thermodynamic

stability of the functional complex. We also observed that the hub

residues contribute to the formation of cliques and communities
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which assures the cooperativity of the intermolecular interactions.

In particular, the Rar1-CHORD2 residue hubs F187, F204, and

F207 are interconnected with each other in the interfacial

communities (Figure 6). Hence, the organization of the interaction

network in the functional complex appeared to be strongly

influenced by the presence of the Rar1-CHORD2 domain and

largely determined a selected group of highly connected Rar1

residues. This may transpire in the denser network of intercon-

nected nodes in the Hsp90-Sgt1-Rar1 complex as compared to the

Hsp90-Sgt1 complex, and thus facilitate cooperative interactions

in the functional assembly.

Protein Network Analysis of the Hsp90-Cdc37
Interactions

We also compared the organization of the interaction networks

between structurally different Hsp90-Sgt1-Rar1 and Hsp90-

Cdc37 complexes to probe general principles of the Hsp90

interactions with client recruiter cochaperones. This analysis

highlighted a common role of the interfacial hubs as functional

regulators of the Hsp90 activity. The highly connected hubs in the

Hsp90-NTD corresponded to the M130, Q133, and F134

residues. The Cdc37-MD hubs that contribute to the structural

stability of the Hsp90-Cdc37 complex included M164, L165,

R167, L205 and Q208 residues (Figure 8A). We also noticed a

good correspondence between the dynamic force constant

profiling and distribution of the hub residues in the interaction

network. Of special interest the appearance of key functional

Cdc37 residues R167 and L205 as prominent peaks in the force

constant profile (Figure 5B). Concurrently, these residues emerged

as highly connected hubs in the structural network, where L205

residue is locally connected to the total of nine neighboring

residues from both interacting proteins (Figures 8A, B). Interest-

ingly, L205 contributes to the formation of several stable

communities within the Cdc37-MD as well as the interfacial

communities formed with the partnering Hsp90-NTD residues

A117, A121, F134 (Figure 8C). The prominent communities in the

Hsp90-Cdc37 complex are all anchored by L205 as a central

Figure 7. The Distribution of the Interfacial Hubs in the Hsp90-Sgt1 and Hsp90-Sgt1-Rar1 Complexes. The degree of the interfacial hubs
in the Hsp90-Sgt1 complex (A) and Hsp90-Sgt1-Rar1 complex (B). The degree of a hub (or degree centrality) is the simplest measure of centrality and
is defined as the number of links incident upon a node. The highly connected interfacial hubs with the number of connected residues exceeding the
default threshold of four are shown for both complexes in filled blue bars. (C) Structural mapping of the interfacial hubs shown in (A) on the crystal
structure of the Hsp90-Sgt1 complex (PDB ID 2JKI). The Hsp90-NTD is in blue ribbons, the Sgt1-CS domain is cyan ribbons. (D) Structural mapping of
the interfacial hubs shown in (B) on the crystal structure of the Hsp90-Sgt1-Rar1 complex (PDB ID 2XCM). In the heterohexamer Hsp90-Sgt1-Rar1
complex, the two Hsp90-NTD molecules are shown in blue and red ribbons; the two Sgt1-CS domains are presented in cyan and green ribbons; and
the two Rar1-CHORD2 domains are depicted in orange and magenta ribbons respectively. The interfacial residue hubs in (C) and (D) are mapped as
spheres and annotated according to their domain color.
doi:10.1371/journal.pone.0086547.g007
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residue, including the stabilizing intradomain community of

Cdc37-MD residues W193-L197-K202-L205-V209 as well as

the key interfacial community composed of the Hsp90-NTD

residues A121 and F134 that are interconnected with the Cdc37-

MD residues M164 and L205 (Figure 8C). The graph-based

representation could illustrate the hierarchical nature of the

interaction connectivity in the Hsp90-Cdc37 complex that is

marked by the emergence of the central integrating residue hub

L205 surrounded by multiple layers of supporting residues and

smaller communities that create the complex interconnected web.

Despite the simplicity of the network-based analysis, the results are

in an excellent agreement with the NMR experiments [25] that

implicated L205 as a single key residue enabling the complex

formation. We also observed that a small number of Cdc37-MD

residue hubs may provide a decisive contribution to the Hsp90-

Cdc37 binding and stabilization of the regulatory complex.

These results are also consistent with the detailed biochemical

analysis of the full-length human Hsp90-Cdc37 complex [105]

that identified critical residues and their contributions to the

Hsp90-Cdc37 interactions in living cells. According to these

experiments, mutations in the Hsp90-NTD (Q133A, F134A, and

A121N) and mutations in the Cdc37-MD (M164A, R167A,

L205A, and Q208A) could dramatically reduce the Hsp90-Cdc37

interactions by as much as 70–95%. Although the extensive

hydrophobic interface with the large buried surface area (,1600

Å2) is formed in the NMR structure of the Hsp90-Cdc37 complex

[25], single mutations in selected number of residues could be

sufficient to disrupt the Hsp90-Cdc37 complex and displace

Cdc37 from the chaperone system [105]. The network analysis of

the Hsp90-Cdc37 complex recapitulated these central experimen-

tal findings. Indeed, Q133, F134, M164, L205, Q208 were found

among the most connected interfacial hubs, where F134, M164,

L205 are directly connected to 7–9 residue nodes in the interaction

network (Figure 8). As a result, the alanine mutations of these

residues could simultaneously abolish many favorable interactions

and disrupt the organization of the interaction network, leading a

significant loss in binding and cochaperone activity [105].

Moreover, the degree of the hub connectivity correlates with the

contributions of critical residues in the Hsp90-Cdc37 binding that

were experimentally ranked in the following order Q133. F134.

E47 [105]. Indeed, we found that these residues correspond to the

major interfacial hubs, where Q133 and F134 have the largest

number of local interacting neighbors (Figure 8). Hence, Cdc37-

mediated inhibition of the ATPase activity is determined by the

interaction network of a small number of specific hydrophobic and

polar residues that can stabilize the open lid conformation and

arrest the progression of the ATPase cycle.

The Centrality Analysis of the Interaction Networks:
Global Mediators of Long-Range Communications Are
Functional Hotspots of Hsp90 Regulation

We have thus far utilized the simplest measure of centrality,

which is the degree centrality defined as the number of interacting

residues that a particular node is connected to. However, the

degree of a node could identify only locally connected hubs that

are determined mainly by the local structural environment. This

measure does not consider the global structure of the interaction

network, i.e. although a node might be connected to many local

neighbors, it might not be strategically positioned to quickly reach

other residues in the network. Here, we explore weighted graph

parameters such as node closeness and betweenness to determine

globally connected nodes that could mediate efficient long-range

communication between residues in the protein network. We

evaluated the propensity of protein residues to serve as mediator

nodes by computing the closeness and betweenness indices and

focusing on the peaks in the respective centrality profiles as

indicators of key mediating residues in the network (Figure 9). The

closeness is a natural distance metric between all pairs of nodes

and measures the inverse of the average of the shortest path

between a residue and all other residues. Betweenness centrality

quantifies the number of times a node could act as a bridge along

the shortest path between any other two nodes. Due to their

structural position, residues corresponding to the peaks in the

centrality profiles are coupled to the other residues in the network

over long-range distances and could mediate long-range allosteric

interactions.

The centrality analysis of the Hsp90-Sgt1 (Figure 9A, B) and

Hsp90-Sgt1-Rar1 complexes (Figure 9 C, D) revealed important

differences in the distribution of mediator residues. We observed

that the closeness of the Hsp90-NTD residues in the binary

complex (Figure 9A) was somewhat higher than for the Sgt1-CS

residues. On average, both closeness and betweenness indices were

roughly similar for both domains (Figure 9A, B). The high peaks in

the centrality profiles were consistent using both metrics and

reflected the mediating role of the Hsp90-NTD residues F8, L95

and H142 as well as Sgt1-CS residues Y157, F168, and Q184.

Importantly, these interfacial residues also emerged as prominent

peaks in the force constant profiling (Figure 4) and were detected

as highly connected local interaction hubs (Figure 7). Hence, a

selected group of functional residues may serve as both local and

global mediators in the interaction network of the Hsp90-Sgt1

complex (Figures 9A, B). The distinctive feature of the Hsp90-

Sgt1-Rar1 complex is the characteristically higher value of the

closeness and betweenness for the Rar1-CHORD2 residues in the

ternary complex as compared to the Hsp90-NTD and Sgt1-CS

domains (Figures 9C,D). According to our findings, a panel of

selected Rar1-CHORD2 residues displayed the highest network

centrality in the ternary complex. The Rar1-CHORD2 residues

corresponding to the notable peaks in the closeness (and

betweenness) profiles are E170, H181, K195 and W217, with

the highest peak in both Rar1 molecules mapped precisely onto

the position of the critical mediating residue W217 (Figures 9C,D).

These residues serve as central mediators of the global interaction

connectivity and thus are vital to the regulatory function of the

ternary complex. Not only a selected group of the Rar1-CHORD2

residues displayed the highest network centrality in the ternary

complex, but also the entire Rar1-CHORD2 domain seems to be

involved in supporting these key nodes by exhibiting above

average values of closeness and betweenness in the complex

(Figures 9C, D). Furthermore, the Rar1-CHORD2 binding may

lead to a partial rewiring of the functional residues in the ternary

complex. Indeed, the peaks in the centrality profiles for the Hsp90-

NTD residues shifted in the ternary complex towards D45, K46,

and R48 that are involved in the Hsp90-Rar1 interactions

(Figures 9C, D). In other words, the Rar1-CHORD2 binding

may induce the reorganization of the Hsp90 mediating residues

that would be primarily assembled at the Hsp90-Rar1 interface

rather than in the Sgt1 interacting site. Since the structural mode

of Hsp90-Sgt1 interaction is unaffected by the Rar1-CHORD2

binding, the Sgt1 mediating residues from the Hsp90-Sgt1

interface are preserved in the ternary complex. More importantly,

the average closeness and betweenness of the Sgt1-CS residues

noticeably increased in the ternary complex (Figures 9C, D),

suggesting that Rar1 binding may enhance the contribution of the

Sgt1-CS domain to the allosteric interactions. In general, because

of the increased number of Rar1-CHORD2 nodes with higher

closeness/betweenness, the average minimal distance between any

pair of nodes in the Rar1-CHORD2 domain would be distinctly
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smaller than in other domains, suggesting a central role of Rar1-

CHORD2 in mediating allosteric communications in the ternary

complex. Consistent with functional studies [38–40], this network-

based assessment of mediating capabilities in the Sgt1-CS suggests

that Rar1-CHORD2 would not interfere but rather stabilize the

Hsp90-Sgt1 binding interactions, i.e. Rar1 would act as an

enhancer of the Hsp90-Sgt1 chaperone system.

Mapping of the conformational mobility profiles with centrality

parameters could also help to explain an apparent dilemma in

which Rar1 is capable of enhancing the Hsp90-ATPase activity

while destabilizing the active closed lid conformation [32,40]. The

globally connected mediating sites corresponding to the peaks in

centrality profiling correspond to structurally stable regions in the

essential conformational space of principal motions. This reflects

the fact that more central amino acids (having a shorter average of

their shortest path lengths) have a more restricted motion.

The centrality profiles revealed that, unlike highly connected

mediating sites, the lid residues exhibit low closeness and

betweenness values. The low mediating capabilities of most lid

residues could arise from their high mobility and weak coupling

with the structural core of the functional complex. Hence, the

Rar1-CHORD2 binding may accelerate free conformational

movements of the lid, thus effectively destabilizing both the lid-

open ADP-bound and lid-closed ATP-bound conformations.

Based on this model, it could be dynamically feasible for RAR1

to divert the Hsp90-ATPase conformational cycle from reaching

the closed dimerized state, while allowing the catalytic residue to

transiently access the nucleotide site and promote ATP hydrolysis.

This model is consistent with the proposed mechanism of Rar1-

mediated regulation of the ATPase activity [38–40].

The network-based centrality analysis may help to rationalize

several subtle functional experiments, particularly the fact that

some mutants of Rar1-W217 that abrogate the interactions with

Sgt1-CS could still bind Hsp90-NTD in the absence of Sgt1-CS,

but the interaction with Hsp90 would be greatly decreased in the

presence of Sgt1-CS [40]. Indeed, according to our results, the

community formed by W217 at the Rar1-Sgt1 interface may be

allosterically coupled through abundance of mediating routes with

another community of the Rar1 interfacial hubs (F187, F204, and

F207) at the Rar1-Hsp90 interface. Although the residues within

Figure 8. The Distribution of the Interfacial Hubs in the Hsp90-Cdc37 Complex. (A) The degree of the interfacial hubs in the Hsp90-Cdc37
complex. The highly connected interfacial hubs with the number of connected residues exceeding the default threshold of four are shown for both
complexes in filled blue bars. (B) Structural mapping of the interfacial hubs shown in (A) on the NMR structure of the Hsp90-Cdc37 complex (PDB ID
2K5B). The Hsp90-NTD is in blue ribbons, the Cdc37-MD is cyan ribbons. (C) The protein structure graphs of the major interfacial communities formed
by in the Hsp90-Cdc37 complex. The graph illustrates the key role of the Cdc37-L205 residue hub in integrating a number of stable communities in
the Hsp90-Cdc37 complex. The protein structure graphs were obtained using the CFinder program.
doi:10.1371/journal.pone.0086547.g008
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each of these communities are strongly interconnected, only a few

highly globally mediating nodes are primarily responsible for long-

range signal transmission between remote communities. Accord-

ing to our findings, the Rar1-CHORD2 residues E170, F187,

F204, F207, and W217 could form a major bottleneck for the

information transfer in the network. The Rar1-CHORD2 domain

harbors the critical functional sites, including E170 and W217 at

the Rar1-Sgt1 interface, that serve not only as highly connected

local interaction hubs but also as global mediators of allosteric

communication in the ternary complex (Figures 9C,D). In

addition, the average centrality of the Rar1-CHORD2 residues

is higher than in the other domains, i.e. the key mediator residues

are surrounded by ‘‘supporting cast’’ residues that have sufficient

communication capacity to rapidly disseminate the information

signal from central mediators across the network. Hence, the

Rar1-CHORD2 binding could regulate the long-range interac-

tions and promote stabilization of the ternary complex. The

network analysis could thus clarify the elusive role of Rar1 as a key

component of the ternary assembly and stability enhancer of the

Hsp90-cochaperone interactions [38–40]. Overall, our results

support the mechanism in which a selected group of critical Rar1-

CHORD2 residues, particularly Rar1-W217 as a potential

principal contributor, may be critical for mediating long-range

interactions and modulation of the Hsp90-ATPase activity. Our

results indicated that the Rar1-CHORD2 binding may result in a

more assortative interaction network [106,107] that is better

integrated through preferential association of global mediating

residues with many locally connected hubs.

The centrality analysis of the Hsp90-Cdc37 complex similarly

revealed that key mediating residues and functional hot spots are

aligned with the peaks in the closeness (Figure 10A) and

betweenness profiles (Figure 10B). The characteristic peaks were

conserved in both distributions and corresponded in the Hsp90-

NTD to the residues E47 and Q133. Both residues form stabilizing

polar interactions with R167 in Cdc37 and these interactions are

implicated as a major contributing factor in the mechanism of

Cdc37-mediated inhibition of the ATPase activity [23–25,105].

The centrality analysis recovered major functional sites E47,

Q133, and F134 as key mediating residues of allosteric commu-

nications in the Hsp90-Cdc37 complex. Interestingly, E47A

Figure 9. The Centrality Analysis of the Interaction Networks in the Hsp90-Sgt1 and Hsp90-Sgt1-Rar1 Complexes. The residue-based
centrality parameters: closeness (A, C) and betweenness (B, D) of the Hsp90-Sgt1 and Hsp90-Sgt1-Rar1 complexes. In (A) and (B) the centrality profile
for the Hsp90-NTD residues is shown in red lines, and for the Sgt1-CS residues in blue lines. In (C) and (D) the centrality profile for the Hsp90-Sgt1-
Rar1 residues is also colored according to their domain annotation. The Hsp90-NTD molecules are in red/blue; the Sgt1-CS molecules in green/brown;
and the Rar1-CHORD2 molecules in orange/magenta. The peaks in the centrality profiles corresponding to the functional hot spot residues of the
Hsp90 activity are annotated and pointed by arrows. The lid residues in the Hsp90-Sgt1 and Hsp90-Sgt1-Rar1 complexes are highlighted and pointed
to by oval circles surrounding the lid. To streamline the comparison with structural and functional experiments, we annotated functional residues
according to their original numbering in the crystal structures.
doi:10.1371/journal.pone.0086547.g009
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mutation reduced Hsp90-Cdc37 binding by 50%, while Q133A

mutation could decrease the Hsp90-Cdc37 interactions by 85%

[105]. While our analysis robustly selected the Hsp90 binding hot

spots, the simplicity of the centrality metric somewhat underesti-

mated the relative contribution of Q133 to the Hsp90-Cdc37

binding that is more significant that was predicted. In the Cdc37-

MD, the centrality peaks corresponded to R167 and Q208

residues (Figure 10) that were also among highly connected

interfacial hubs. Overall, the centrality analysis suggested that the

group of strongly interacting residues Hsp90-E47, Hsp90-Q133,

Cdc37-R167, and Cdc37-Q208 could collectively form a major

gateway for allosteric communications in the Hsp90-Cdc37

complex (Figure 10). These global mediating residues are also

highly connected local hubs and major contributors of the

structurally stable communities. The prominent role of these

residues in the Hsp90-Cdc37 binding was demonstrated via a

comprehensive biochemical analysis [105] in which mutations of

Hsp90-Q133, Cdc37-R167 and Cdc37-Q208 essentially abolished

the complex formation, causing 85%–90% reduction in the

Hsp90-Cdc37 interactions as measured in cell-based assays. These

key functional sites were consistently recovered as largest peaks in

both closeness and betweenness metrics. Mutations of key

mediating nodes in the Hsp90-Cdc37 complex would cause a

simultaneous disruption of multiple interactions and disrupt the

integrity of the allosteric network, thus leading to a dramatic loss of

the chaperone activity. At the same time, the centrality analysis

unveiled a few smaller noticeable peaks corresponding to the

Hsp90-NTD residues Y61, L91 W162 and Cdc37-F238

(Figure 10). These residues are not located at the interdomain

interface and reside within their respective domains, contributing

to the structural integrity of the interacting modules. Although

these residues may contribute to the intradomain communications,

their role as global mediating nodes of long-range communications

is less prominent and respectively their mutations have a smaller

effect on the ATPase activity [105].

Small-world Organization of the Hsp90 Interaction
Networks

We argue for the functional relevance of the centrality

parameters as robust indicators of functionally important sites as

this network analysis captured most of the known loss-of-function

mutations [105]. The organization of the interaction networks in

the studied Hsp90-cochaperone complexes gives rise to small-

world networks, marked by a relatively small number of highly

connected mediators occurring mostly at the intermolecular

interfaces and playing critical roles in the transmission of

functional signals. Small-world networks are characterized by

small separation of nodes from each other, which for proteins

means a higher degree of interaction cooperativity. The vulner-

ability of the interaction networks to targeted perturbations of

highly connected hubs may explain why mutations of these critical

hot spot residues could lead to a significant loss in chaperone

activity. Complex networks may be either disassortative (links

between hubs are systematically suppressed) or assortative (links

between hubs are enhanced) [106–110]. In the network analysis,

disassortativity produces better connected but more vulnerable

networks, whereas assortativity gives rise to more resilient

networks. We found that the interaction networks of the Hsp90-

cochaperone complexes may undergo a specific rewiring of key

mediating residues and assortative growth as a result of

conformational equilibrium changes during protein-protein bind-

ing. Our results also suggested that the interaction networks may

evolve the network of ‘‘supporting’’ residues that acquire sufficient

communication capacity to pass signal from various central

mediators across the network.

The evolution of various networks has been extensively studied

and a scale-free model of network organization has gained a

considerable recognition [102,103,111,112]. This model is based

on the idea of ‘‘preferential attachment’’ where the most

connected nodes are more likely to acquire new edges in the

course of graph evolution. The scale-free topology of a network

arises from network growth and preferential attachment endowing

the network with high efficiency and robustness against random

errors due to a small number of central nodes and exceedingly

large number of peripheral nodes. However, due to the finite size

of the protein structure graphs and topological constraints, the

degree distribution of protein structure networks do not follow the

preferential attachment scenario and is not scale-free, but is likely

to be Poissonian [113–117]. The fundamental reason for deviation

from the scale-free behavior is the inherently limited interacting

capacity of a given residue within a structural fold due to the

excluded volume effect. The scale-free networks are highly

efficient in transmitting long-range signal due short paths between

any pair of nodes, but could be extremely vulnerable to targeted

attacks on a few key hubs that could result in splitting the global

network into smaller pieces. We suggest that protein structure

networks may be more tolerant to targeted attacks at the expense

of some efficiency by virtue of creating broad-scale connectivity in

which global hubs and central mediators are often protected by a

dense network of ‘‘secondary’’ hubs that could mitigate the effect

of targeted mutations in certain functional sites. A possible

explanation for the functional lethality of some, but not all,

mediating residues is that assortative hubs are likely to be

responsible for long-range communications that may be compro-

mised by deleterious mutations. Although mutations of these

residues may often result in a dramatic loss of activity, some of

these alterations could be rescued by the presence of well-

connected supporting hubs that may assume ‘‘responsibility for

global centrality’’ in the mutation-damaged interaction network.

Our results argue for relevance of the synergistic approach that

combines functional dynamics and protein structure network

analyses as a simple yet robust tool for probing subtle mechanisms

of Hsp90 regulation by cochaperones and client proteins.

However, computational modeling presented in this study

critically depends on the availability of structural information

about Hsp90-cochaperone complexes. A critical question remains

is how the Hsp90-Sgt1-Rar1 system can ensure selective recruit-

ment of NLR proteins and whether the chaperone machinery is

designed to recognize a recognition-competent folded state or

NLR proteins undergo folding upon binding scenario. Dissecting

the intricate interaction network that connects Hsp90, Sgt1, Rar1

and NLR proteins is a prerequisite to further capture the

specificities of this important client family. Structural and

computational challenges of quantifying the Hsp90 interactions

with the vast array of interacting proteins are especially relevant in

light of recent proteomics studies that have suggested how

structural diversity of the Hsp90 clientele may be handled by

the chaperone machinery [118–121]. This analysis has clarified

the mechanism of Hsp90 client recognition as a two-step process:

its co-chaperones provide specificity at the protein-fold level,

whereas thermodynamic parameters determine client binding

within a protein family. According to these studies, the critical

determinants that control recognition and recruitment of client

proteins include preferential binding to the clients that are only

marginally stable in their native folds. In particular, Hsp90-kinase

binding is sensitive to the conformational status of the kinase as

strong clients of Hsp90 are intrinsically unstable kinases.
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Consequently, allosteric stabilization of the kinase fold by small

molecules strongly decreases chaperone interaction, suggesting

that the Hsp90 chaperone could serve as a ‘‘thermodynamic

sensor’’ of drug-protein interactions in living cells [119]. The

integration of structural, functional and computational studies of

the Hsp90 interactions would likely to be useful for probing

mechanisms of molecular chaperones and guiding discovery of

allosteric Hsp90 modulators.

Conclusions

By combining functional dynamics and protein structure

network analyses, the reported study integrated structural

bioinformatics and molecular simulation approaches to dissect

complex mechanisms of Hsp90 regulation. Distinctive dynamic

and networking signatures of the Hsp90-Sgt1 and Hsp90-Sgt1-

Rar1 complexes have demonstrated how targeted modulation of

the lid dynamics is coupled with specific interactions that can

inhibit or promote progression of the ATPase cycle. We proposed

a model in which cochaperone-mediated regulation of the lid

dynamics could be reminiscent of a rheostat mechanism that

adjusts the lid mobility to induce the required changes in the

ATPase activity. In this mechanism, the Hsp90-cochaperone

system may successfully bypass stochastically-driven slow confor-

mational changes of the Hsp90 dimer and facilitate ATP

hydrolysis.

Protein network analysis of the Hsp90-cochaperone interactions

has also identified structurally stable interaction communities,

interfacial hubs and key mediating residues of allosteric commu-

nication pathways. The results have shown that client recruiter

cochaperones can orchestrate global changes in the dynamics and

stability of the interaction networks that could enhance the

ATPase activity and assist in the client recruitment. The network

analysis has reproduced a number of structural and mutagenesis

experiments, suggesting that the network parameters and central-

ity analysis could present a robust and simple tool for predicting

hot spots of the Hsp90 activity.

Small-world organization of the interaction networks in the

Hsp90 regulatory complexes gives rise to a strong correspondence

between highly connected local interfacial hubs, global mediator

residues of allosteric interactions and key functional hot spots of

the Hsp90 activity. The vulnerability of the interaction networks to

targeted perturbations of highly connected hubs may explain why

mutations of these critical hot spot residues could simultaneously

disrupt many interactions leading a significant loss in chaperone

activity. The results of this study suggest that the topology of the

interaction networks may be determined by the structural

architecture of the Hsp90 complexes and functionally important

changes that direct the ATPase cycle are often coordinated by a

small number of highly connected conserved hubs.

Materials and Methods

Coarse-Grained Modeling of Functional Dynamics
The functional dynamics analysis of the Hsp90-cochaperone

complexes was conducted using the GNM approach [41–43] in

which protein structure is reduced to a network of N residue nodes

identified by Ca atoms and the fluctuations of each node are

assumed to be isotropic and Gaussian. The topology of the protein

structure is described by N 6N Kirchhoff matrix of inter-residue

contacts C, where the off-diagonal elements are 21, if the nodes

are within a cutoff distance rc, and zero otherwise. Bonded and

nonbonded pairs of residues located within an interaction cutoff

distance rc = 7.0 Å are assumed to be connected by springs with a

uniform spring constant c. The equilibrium dynamics of the

structure results from the superposition of N21 nonzero modes

found by the eigenvalue decomposition of C. The GNM-derived

Figure 10. The Centrality Analysis of the Interaction Networks in the Hsp90-Cdc37 Complex. The residue-based centrality parameters:
closeness (A) and betweenness (B) of the Hsp90-Cd37 complex. The centrality profile for the Hsp90-NTD residues is shown in red lines, and for the
Cdc37-MD residues in blue lines. The consecutive residue numbering of the Hsp90-NTD and Cdc37-MD residues is adopted as in Figure 5. The original
numbering of the Hsp90-NTD (residues 14–223) in the NMR structure corresponds to residues 1–210, and the original numbering of the Cdc37-MD
(residues 148–276) corresponds respectively to residues 211–339. The peaks in the centrality profiles corresponding to the functional hot spot
residues of the Hsp90 activity are annotated and pointed by arrows. The lid residues in the Hsp90-Sgt1 and Hsp90-Sgt1-Rar1 complexes are
highlighted and pointed to by oval circles surrounding the lid. To facilitate the comparison with structural and functional experiments, we annotated
functional residues according to their original numbering in the crystal structures.
doi:10.1371/journal.pone.0086547.g010
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cross-correlations between the fluctuations DRi and DRj of

residues (nodes) i and j were also computed. The normal modes

are found by diagonalization of the Kirchhoff matrix C~ULUT .

SDRi
:DRjT~

3kBT

c
½C{1�ij~

3kBT

c
½ULUT�ij

~
3kBT

c

XN{1

k~1

l{1
k ½ukuT

k �ij

ð1Þ

Here, U is a unitary matrix, UT~U{1 of the eigenvectors uk of C
and L is the diagonal matrix of eigenvalues lk.The elements of the

kth eigenvector uk describe the displacements of the residues along

the kth mode coordinate, and the kth eigenvalue, lk, scales with

the frequency of the kth mode, where 1# k # N –1.

The normal mode analysis generated eigenvalues lk and

eigenvectors uk obtained using the WEBnm@ approach [122].

The normal mode analysis included computation of 20 low

frequency modes using an approximation that was proven to be

highly efficient and accurate in describing functional protein

motions [123].

The root mean square fluctuations of a given residue can be

then evaluated as a sum over the contributions of all modes. The

fluctuation of the ith atomic degree of freedom along the

eigenvector uk reflects the mobility of residue i in the kth mode.

S(DRi)
2T~

3kBT

c

XN{1

k~1

(l{1
k ukuT

k )ii ð2Þ

kB is Boltzmann constant, the temperature T in the simulation is

300 K and N is the number of considered normal mode. The

residue-based fluctuations and conformational mobility profiles

were estimated using oGNM computation of structural dynamics

based on the GNM approximation [43].

Discrete Molecular Dynamics and Force Constant
Analysis

We explored the force constant method [96] using the

formalism of the discrete molecular dynamics (dMD) simulations

[97–99] as implemented in [100]. According to the dMD

approach, the protein structures were modeled as systems

consisting of Ca residue-based beads interacting through a

discontinuous square well potential. In the basic dMD formalism

[98,99] particles move in the ballistic regime under constant

velocity until a collision between a pair of particles occurs. In the

absence of any collision, the particles move linearly with constant

velocity.

The interaction potentials are defined as infinite square wells,

such that the particle-particle distances vary between

dmin~(1{s)r0
ij and dmax~(1zs)r0

ij where r0
ij is the distance

between particles (residues) i,j in the native conformation and 2s
the width of the square well. The MD-averaged conformation was

taken as the native conformation. Residue-residue interaction

potentials are defined for the particles at a distance smaller than a

cut-off radius rc in the native conformation. A small well width

s = 0.05 was used for neighboring particles to keep the Ca–Ca

distances closer to the expected equilibrium value of 3.8 Å. For

nonconsecutive pairs of Ca particles, rc = 8 Å and s = 0.1 were

used.

The dMD trajectories were used to compute the force constant

values for each residue as was originally introduced in [96] and

implemented in the FlexServ web-based tool [100]. A force

constant for each residue is calculated by averaging the distances

between the residues over the dMD trajectory using the following

expression:

ki~
1

S(di{SdiT)2T
ð3Þ

di~SdijTj� ð4Þ

Here dij is the instantaneous distance between residues i and j.

In accordance with the original definition [96], di~SdijTj�
corresponds to the average distance between residues i to all

other residues in the protein. The interactions between the Ca

atom of residue i and the Ca atom of the neighboring residues i21

and i+1 are excluded in the calculation. The ignored interactions

correspond to largely constant distances between consecutive

particles.

Protein Structure Network Analysis
The network analysis of the Hsp90-cochaperone complexes was

conducted by generating graphs in which amino acid residues

were considered as nodes connected by edges corresponding to the

noncovalent interactions. The noncovalent interactions between

side chain atoms are included and the interactions between

sequence neighbors are ignored. The pair of residues with the

interaction strength Iij greater than a user-defined cut-off (Imin) are

connected by edges and produce a protein structure network

graph for a given interaction strength Imin. In accordance with the

analyses of protein structure [80,84], the optimal interaction

strength Imin is typically in the range 2–4% for most of the protein

structures. We considered any pair of residues to be connected if

Imin was greater than 3.0%.

The analysis of the interaction networks was done using network

parameters such as hubs, cliques and communities. The hubs are

highly connected nodes in the network. If the total number of

edges incident on the node (called the degree of a node) is at least 4

the node is identified as a hub. The k-cliques are complete sub

graphs of size k in which each node is connected to every other

node. In our application, a k-clique is defined as a set of k nodes

that are represented by the protein residues in which each node is

connected to all the other nodes. A k-clique community is

determined by the Clique Percolation Method [104] as a subgraph

containing k-cliques that can be reached from each other through

a series of adjacent k-cliques. We have used a community

definition [80–87] according to which in a k-clique community

two k-cliques share k{1 or k{2 nodes. Community size is

determined by the number of constituent cliques and is typically

proportional to the compactness in the proteins. The construction

of protein structure graphs was done with the web-based tool that

converts protein structures into graphs (http://vishgraph.mbu.iisc.

ernet.in/GraProStr/). Computation of the network parameters

was performed using the Clique Percolation Method as imple-

mented in the CFinder program [104]. Given the chosen

interaction strength Imin we typically obtain communities formed

as a union of k = 3 and k = 4 cliques.

Similarly to the original approach introduced by Luthey-

Schulten and co-workers [88] we also employed the weighted

network representation that combines the non-covalent connec-

tivity of side chains and ENM-derived residue cross-correlation

information in the construction of graphs. This protein network

model is described by the weighted graphs where the weight wij of
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an edge between nodes i and j measures the cross-correlation

dynamic connectivity of the nodes connected by that edge. The

weight wij is defined as wij~{ log (DCij D) where Cij the cross-

correlation value between the residues is i and j which is obtained

from the ENM-derived normal mode analysis of the Hsp90-

cochaperone complexes.

Centrality Analysis: Closeness and Betweenness of the
Interaction Networks

Using the constructed protein structure networks, we also

computed the global centrality measures such as closeness and

betweenness. Central to the computation of these parameters is the

determination of the shortest paths between two given residues.

Closeness centrality is defined as the inverse of the average of the

shortest path between a residue ni and all other residues:

Cc(ni)~
1

PN

j~1

d(ni,nj)

ð5Þ

And the normalized closeness centrality is expressed as:

Cc(ni)~
N{1

PN

j~1

d(ni,nj)

ð6Þ

Betweenness centrality quantifies the number of times a node ni

acts as a bridge along the shortest path between two other nodes.

The betweenness measures the frequency of a given residue to

belong to all shortest path pairs within the protein structure:

Cb(ni)~
XN

jvk

gjk(i)

gjk

ð7Þ

where gjk denotes the number of shortest geodesics paths

connecting j and k, and gjk(i) is the number of shortest paths

between j and k passing through the node ni. In the normalized

representation, betweenness centrality expressed as

Cb(ni)~
XN

jvk

gjk(i)

gjk

=½(N{1)(N{2)=2� ð8Þ

where (N{1)(N{2)=2 is the number of pairs of vertices (nodes)

excluding the given node. The shortest paths between two residues

are determined using the Floyd–Warshall algorithm that compares

all possible paths through the graph between each pair of vertices.

Network graph calculations were performed using the python

module Network [124]. The characteristic path length (CPL),

defined as an average of the shortest path length between all pairs

of nodes in the network, provides an estimate of the effect of node

connectivity on communication pathways in a protein.

Supporting Information

Figure S1 The Hsp90-Cdc37 Chaperone Cycle. Clockwise

from top left, ATP binding to the Hsp90-NTD of the apo Hsp90

in the open form induces a fast dynamic exchange between a

nucleotide-free Hsp90 and an intermediate ATP-bound state in

which the ATP lids and Hsp90-NTDs are still open. The kinase-

specific cochaperone Cdc37 acts early in the chaperone cycle and

binds to the Hsp90-NTDs inducing a partially contracted open

form of Hsp90 and stabilizing the nucleotide-free chaperone

conformation. Protein kinase clients are recruited to the Hsp90

system though the action of Cdc37. After ATP binding, Hsp90

reaches the next intermediate state in which the ATP lids are

closed but the Hsp-90-NTDs are still open. Starting from Cdc37-

Hsp90 complexes, ATP binding results in an open-closed

equilibrium. The hydrolysis is inhibited by Cdc37. In an

intermediate ATP-bound complex, with the ATP lids closed but

the Hsp90-NTDs are still separated, the cochaperone Aha1 binds

to the Hsp90-MD via its N-terminal domain and begins to

compete with Cdc37 binding. ATP binding shifts the binding

properties to favor the Aha1 binding, leading to the full

displacement of Cdc37 from complexes. After nucleotide-induced

conformational changes are established, the Hsp90-NTDs are

dimerized leading to the formation of the closed intermediate

state. Aha1 accelerates the ATPase cycle by facilitating dimeriza-

tion process of the Hsp90-NTDs and the formation of a partially

closed state with the dynamically associated ATP. Hsp90 reaches a

fully closed state in which ATP hydrolysis occurs. After ATP is

hydrolyzed, Aha1 is released from the complex and the Hsp90-

NTDs dissociate leading to formation of the semi-open ADP-

bound state. At the final state, ADP is released and Hsp90 comes

back to the nucleotide-free open state. The Hsp90 structure is

shown in a surface representation with a detailed annotation of

structural elements. The Hsp90-NTD is shown in green; the

Hsp90-MD is depicted in blue and the Hsp90-CTD is presented in

red.

(TIF)

Figure S2 Structural Characterization of the Cdc37
Chaperone. (A) The crystal structure of human Cdc37 dimer

from the complex with the Hsp90-NTDs of yeast Hsp90 (pdb id

1US7) [23]. The Cdc37 monomers are colored in cyan and green.

(B) The NMR structure of the complex of the human Cdc37-MD

with the N-terminal domain of human Hsp90 (pdb id 2K5B) [25].

The Hsp90-NTD (residues 14–223) is in green ribbons, the

Cdc37-MD (residues 148–276) is in cyan ribbons.

(TIF)
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