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Annina Krüttli1,2., Abigail Bouwman1., Gülfirde Akgül1, Philippe Della Casa2, Frank Rühli1,

Christina Warinner1,3*

1 Centre for Evolutionary Medicine, Institute of Anatomy, University of Zurich, Zurich, Switzerland, 2 Department of Pre- and Protohistory, Institute of History, University of

Zurich, Zurich, Switzerland, 3 Department of Anthropology, University of Oklahoma, Norman, Oklahoma, United States of America

Abstract

Ruminant milk and dairy products are important food resources in many European, African, and Middle Eastern societies.
These regions are also associated with derived genetic variants for lactase persistence. In mammals, lactase, the enzyme that
hydrolyzes the milk sugar lactose, is normally down-regulated after weaning, but at least five human populations around
the world have independently evolved mutations regulating the expression of the lactase-phlorizin-hydrolase gene. These
mutations result in a dominant lactase persistence phenotype and continued lactase tolerance in adulthood. A single
nucleotide polymorphism (SNP) at C/T-13910 is responsible for most lactase persistence in European populations, but when
and where the T-13910 polymorphism originated and the evolutionary processes by which it rose to high frequency in
Europe have been the subject of strong debate. A history of dairying is presumed to be a prerequisite, but archaeological
evidence is lacking. In this study, DNA was extracted from the dentine of 36 individuals excavated at a medieval cemetery in
Dalheim, Germany. Eighteen individuals were successfully genotyped for the C/T-13910 SNP by molecular cloning and
sequencing, of which 13 (72%) exhibited a European lactase persistence genotype: 44% CT, 28% TT. Previous ancient DNA-
based studies found that lactase persistence genotypes fall below detection levels in most regions of Neolithic Europe. Our
research shows that by AD 1200, lactase persistence frequency had risen to over 70% in this community in western Central
Europe. Given that lactase persistence genotype frequency in present-day Germany and Austria is estimated at 71–80%, our
results suggest that genetic lactase persistence likely reached modern levels before the historic population declines
associated with the Black Death, thus excluding plague-associated evolutionary forces in the rise of lactase persistence in
this region. This new evidence sheds light on the dynamic evolutionary history of the European lactase persistence trait and
its global cultural implications.
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Introduction

Lactase persistence (LP) is a common genetic trait in many

European, African and Middle Eastern populations. In Europe,

LP primarily results from a CRT transition located approximately

14,000 bp upstream of the lactase-phlorizin-hydrolase (LCT) gene

in intron 9 of the minichromosome maintenance 6 (MCM6) gene

on chromosome 2 [1,2]. A thymine at this locus (T-13910)

prevents down-regulation of lactase activity after weaning. In

addition to the European C/T-13910 LP SNP, this region also

includes four other SNPs associated with LP in Arab (T/G-13915)

and African (C/G-13907, T/C-13913, G/C-14010) populations

[2–4].

LP is an autosomal dominant trait, such that only homozygous

wildtype individuals cease lactase production after childhood [1].

The enzyme lactase hydrolyses the milk disaccharide lactose into

its component monosaccharides, galactose and glucose for

absorption in the small intestine. If it is absent, the lactose cannot

be absorbed by the intestinal mucosa and therefore reaches the

colon undigested where it is fermented by colonic bacteria, often

causing symptoms such as abdominal pain, bloating and diarrhea

[5]. Modern frequencies of lactase persistence vary throughout

Europe according to a geographic cline. They are highest in

northwestern Europe, gradually declining towards the southeast

[6]. In western Central Europe (Germany and Austria), reported

LP genotype (CT-13910 and TT-13910) frequencies range from

71–79.8% [7–11]. When and where the LP T-13910 polymor-

phism originated and the evolutionary processes by which it

became the majority allele in Europe have been the subject of

strong debate [12–24]. Because milk is the only natural source of

lactose, it is thought that a culture of dairying must correlate with

lactase persistence to some extent.

Two hypotheses have been proposed to explain the origin of LP

and its association with dairying: the culture-historical hypothesis
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[25] and the reverse cause hypothesis [26]. The culture-historical

hypothesis posits that the LP allele arose from low frequency

through selection in cultures with a long history of dairying. By

contrast, the reverse-cause hypothesis holds that the LP allele may

have already been common in certain populations due to genetic

drift and only these populations would have adopted the cultural

practice of dairying. Additional genetic pressures may have existed

in arid climates where milk is one of the only clean sources of

water [27] or in northern latitudes where, in the absence of

vitamin D, the presence of lactose facilitates the absorption of

calcium by the intestinal mucosa and thus reduces the risk of

rickets and osteomalacia [28]. Rickets and osteomalacia can cause

deformation of the pelvis and are leading causes of obstructed

labor and consequent maternal mortality and perinatal morbidity

in traditional societies without access to modern medical care [29].

Keeping cattle, sheep and goats not only for meat but also for

milk provided important advantages for ancient societies. Milk

contains high quality fat, protein and sugar and high amounts of

calcium [30]. It is a clean liquid that can be converted into a

variety of storable products that may have helped prehistoric

people survive periods of scarcity [17]. It has been estimated that a

prehistoric cow was able to produce 400–600 kg of milk in a

lactation period of three to four months. Even after subtracting the

250–350 kg needed for the raising of a calf, 150–250 kg of milk

would remain available for human consumption. The caloric

content of this milk is almost equivalent to the meat of an entire

cow, and it can be exploited multiple times throughout the

animal’s lifetime [31].

Although archaeological evidence for dairying in prehistoric

Europe is scarce, recent zooarchaeological and biomolecular data

suggest that dairying was practiced from the very beginning of the

Neolithic (ca. 5000 BC) and became more and more important

over time [16,23,32]. Another line of evidence comes from SNP

[13] and microsatellite variation [33] studies that report strong

signals of recent positive selection at the C/T-13910 locus. These

studies estimate that selective pressure on the allele began 2188–

20650 years BP and 7450–12300 years BP, respectively, and

computer simulations place the origin of the allele at 6256–8683

years BP in a region between the central Balkans and Central

Europe [18].

Previous ancient DNA studies of LP have reported low, but

highly variable frequencies for the lactase persistence allele in

Neolithic Europe (Figure 1). In a Neolithic Basque population the

lactase persistence allele was found in seven out of 26 individuals,

of which two were heterozygous and five were homozygous for the

LP allele [34]. In a separate study, one Neolithic individual from

Sweden was also found to be heterozygous [35]. All other studies

reported only homozygous lactase non-persistent genotypes

[14,36,37]. To date, only one published ancient DNA study has

investigated LP prevalence in a post-Neolithic population; in that

study on medieval Hungary (ca. AD 900–1100), local commoners

and foreign conquerors were found to have different LP genotype

frequencies [38]. The foreign conquerors (originating from the

east) were found to have exclusively lactase non-persistent

genotypes, whereas the local commoners exhibited 33% LP

genotypes (CT and TT). As modern LP genotype frequencies in

the region are .60% today [38], these results imply rapid allele

frequency change during the past millennium.

Many questions remain regarding the evolution of LP in

prehistoric and historic Europe. In order to understand this

process in more detail, we investigated a medieval (ca. AD 950–

1200) cemetery located in the village of Dalheim in Nordrhein-

Westfalen, Germany [39] and successfully genotyped 18/36

individuals for LP alleles. We demonstrate that the frequency of

the LP in this western Central European community, had already

reached modern levels by AD 1200, and we report the highest LP

T-13910 allele frequency determined to date for any ancient

population.

Results

MtDNA was successfully amplified for 31/36 individuals (86%).

The five individuals yielding poor or inconsistent sequences and

were excluded from further analysis. Genetic sex typing was

successful for 27 of the remaining individuals, and of these, 18

were also successfully genotyped for LP SNPs.

For the 18 samples that yielded consistent and high quality

DNA sequences for all three genetic targets, Table 1 provides their

mitochondrial HVRI sequences, and Table 2 provides the genetic

sex and LP genotype results. In both tables, genetic data for the lab

analysts are provided for comparison. Genetic sex was consistent

with osteological sex, further authenticating the genetic results,

and real-time PCR revealed asymmetrical molecular behavior

consistent with authentic ancient DNA (Figure 2). We observed a

50% T-13910 allele frequency in the Dalheim samples and a total

LP genotype frequency of 72%: 28% CC, 44% CT, 28% TT.

These values are much higher than those previously reported in

Neolithic and medieval European populations (Table 3; Figure 1).

By contrast, the Dalheim results compare very closely to

empirically determined T-13910 allele and LP genotype frequen-

cies in modern-day Germany and Austria (Table 4, Figure 1).

Non-European LP SNPs were not identified within our samples.

The Dalheim C/T-13910 allele frequencies do not significantly

differ from Hardy-Weinberg proportions (x2 = 0.11, df = 2,

p = 0.95).

Figure 1. Relative frequency of lactase persistence and non-
persistence genotypes reported in past European populations.
CC: lactase non-persistent (wild type); CT and TT: lactase persistent.
Study sample sizes and references are provided in Table 3. Data for
Germany (AD 950–1200) are from this study.
doi:10.1371/journal.pone.0086251.g001
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Discussion

The European T-13910 LP allele is among the few human

genetic variants with evidence of strong recent selection. Never-

theless, the origin and evolutionary history of this allele remains

subject to great debate. Previous studies have established that the

T-13910 LP allele was largely absent from early European

Neolithic farmers, including LBK populations [14], but little work

has been conducted on later periods. A study of medieval Hungary

found moderate levels of LP in local commoners (33%) ca. AD

900–1100, but extrapolating from these results is complicated by

the region’s history of conquest by lactase non-persistent Asian

invaders [38]. This study of the Dalheim cemetery is the first to

investigate post-Neolithic LP frequency in western Central

Europe, where LP frequencies are .70% today.

Recently, it has been speculated that the major population

declines associated with the AD 1346–1352 Black Death

epidemics may have impacted allele frequencies in Europe either

through selection or drift. Although this discussion has primarily

focused on the CCR5-D32 allele [40,41], it raises the question of

whether Black Death population losses, reportedly 30% of the

entire European population [40], may have also played a role in

altering the frequency of other alleles through drift due to

population decline.

Both direct radiocarbon dating and historical records securely

identify the Dalheim cemetery as a pre-Black Death cemetery,

allowing pre-epidemic LP frequencies to be measured. The high

frequency of C/T-13910 LP genotypes observed in the Dalheim

cemetery (72%) falls within the range of LP frequencies reported

for present-day Germany and Austria (71–80%) and the alleles are

in Hardy-Weinberg equilibrium, suggesting allele frequency

stability over the last millennium. Thus, there is no evidence of

C/T-13910 LP frequency change associated with the Black Death.

Additionally, our results suggest that the incomplete selective

sweep posited for the T-13910 allele [24] may have reached the

present allele frequency in western Central Europe by ca. AD

1200.

Conclusion

Lactase persistence is a genetic trait enabling life-long digestion

of the milk sugar lactose. The ability to rely on ruminant

secondary products, such as milk, likely conveyed selective

advantage during times of resource scarcity, and genetic lactase

persistence has independently evolved at least five times in

European, Middle Eastern, and African populations. Previous

ancient DNA studies have established that genetic lactase

persistence was low or absent in most European Neolithic

populations. In this study, we show that the frequency of lactase

persistence in medieval Germany (72%) is similar to that found

today in Germany and Austria (71–80%), suggesting that the

incomplete selective sweep of the lactase persistence allele may

have reached the present allele frequency in western Central

Europe by AD 1200. Although many aspects of the origin and

early evolutionary history of the T-13910 LP allele remain

uncertain, ancient DNA research has made great strides in

narrowing the period of European LP selection to an approxi-

mately 4,000 year window spanning 3000 BC to AD 1200. Future

ancient studies on this period are likely to reveal the specific

evolutionary forces acting on the T-13910 allele and the

relationship between dairying and LP genotypes.

Materials and Methods

Samples
The Dalheim skeletal assemblage was excavated from 1989–

1990 under the direction of the Westphalian Museum of

Archaeology. The assemblage consists of approximately 150

Figure 2. Results of ancient DNA authentication test of Dalheim human and control samples as determined by real-time PCR. Well
preserved Dalheim human samples included in this study show strong evidence of asymmetrical molecular behavior consistent with ancient DNA.
Poorly preserved Dalheim human samples also show evidence of asymmetrical molecular behavior, but they were excluded from further analysis
because their poor amplification success rate (,50% a the 111 bp length used for genotyping) makes them vulnerable to amplification bias and
allelic dropout. Control samples show no or spurious amplification. Sample sizes are as follows: Dalheim human (included in analysis), n = 10; Dalheim
human (excluded from analysis), n = 5; Dalheim fauna, n = 2; negative controls, n = 4. All amplifications were performed in triplicate.
doi:10.1371/journal.pone.0086251.g002
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individuals recovered from a medieval cemetery attached to a

parish church and convent in the village of Dalheim, located in the

state of Nordrhein-Westphalen, Germany. AMS radiocarbon

dating of human bone collagen indicates that this cemetery was

in use for approximately 250 years, from ca. AD 950–1200 [39].

Historical records place the abandonment of the church-convent

complex ca. AD 1400, following outbreaks of plague in AD 1348/

1350 and AD 1383 and a late 14th century battle [42]. The

assemblage includes the skeletal remains of both sexes ranging in

age from neonates to the elderly [39], and there is no evidence for

age or sex structuring within the cemetery. In 2005, the skeletal

assemblage was donated to the University of Zürich’s Institute of

Anatomy for scientific investigation [39]. The handing history of

the assemblage prior to its arrival at the University of Zürich is not

well documented, but appears to have been minimal. Dentine

samples from 36 randomly selected adults were collected for

genetic analysis. No permits were required for the described study,

which complied with all relevant regulations.

Contamination prevention
All DNA extractions were performed in a dedicated ancient

DNA laboratory facility at the University of Zurich’s Centre for

Evolutionary Medicine. The Ancient DNA Laboratory, composed

of four self-contained rooms with an independent HEPA air

filtration system, is dedicated solely to ancient DNA research and

follows established contamination control workflows, including

physical separation from all laboratories in which PCR is

performed, unidirectional work flows to avoid cross-contamina-

tion, regular sterilization of all work surfaces with 1–2% sodium

hypochlorite (NaOCl) solution, overhead UV lights for daily air

and surface decontamination, and the use of full body Tyvek suits,

masks, and gloves by all researchers. Reagents used for amplifi-

cation were additionally decontaminated using a combination of

UV irradiation and reagent pretreatment with heat labile double-

stranded DNAse (ArcticZymes, Norway) to purify dNTPs,

primers, BSA, and enzymes [43]. Within the Ancient DNA

Laboratory, sample collection was performed in a dedicated

sample preparation area containing an additional HEPA-filtered

vacuum system, and all sensitive aspects of DNA extraction and

PCR set-up were performed within HEPA-filtered laminar flow

hoods located in separate rooms within the laboratory dedicated to

extraction and PCR set-up. Negative controls (non-template

extraction controls and reagent blanks) were processed in parallel

with all samples and were continuously monitored for contami-

Table 1. Consensus mitochondrial HVRI data for Dalheim human samples and laboratory analysts.

16… 051 093 163 172 182 183 184 189 192 234 311 324 342 354 356 362 368

rCRS* A T A T A A C T C C T T T C T T T

Dalheim samples

B7 . . . . . . . . . . . . . .

B11 . . . . . . . . . . . . . .

B14 . . . . . . . C . . . . . . . C .

B15 . . . . . . . . . . . . . .

B26a . . . . . . . . . . . . . .

B27 . . . . . C . . . . . . . .

B30b2 . . . . . . . . . . . . . .

B32 . . . . C . .

B36 . . . . . . C

B39 . C . . . . . . . . . . . . . C .

B40 . . . . . C . . . . . . . .

B57 . . . . . . T . . . . . . .

B59 . . . . . . . . . . . . . .

B78 . . . . . . . . . . . . . .

B82 C . . . . . .

B85 G . . . . . . . . . . . . .

B85a1 . . . T . . .

G12 . . . . C C .

Lab Analysts

GA{ G C . . . . T C . T . . C . . . .

AK` . . . . . . . . . . . . . . . C .

AB` . . . C . . . . . . . . . . . . .

CW . . . . C C . C . T . C . . . . .

Notes:
*Polymorphic sites are numbered according to the revised Cambridge Reference Sequence (rCRS).
Reported data consist of the consensus sequence for a minimum of two successful amplifications. A dot indicates identity to the rCRS sequence, and blank cells indicate
HVRI loci for which no PCR amplification was attempted.
{Performed DNA extractions.
`Performed DNA amplifications.
doi:10.1371/journal.pone.0086251.t001
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Table 2. Results of genetic sex and LP allele genotyping.

Sexa C/T-13910b

Individual Osteological Sex Genetic Sexc Extraction 1 Extraction 2–3
Consensus
Genotype

Inferred
phenotype

C T C T

Dalheim samples

B7 I M 18 0 4 0 CC Non-LP

B11 M M 5 11 1 4 CT LP

B14 M M 4 8 1 1 CT LP

B15 M M 0 8 0 13 TT LP

B26a * F 18 0 4 0 CC Non-LP

B27 I F 10 4 2 3 CT LP

B30b2 * F 0 7 0 14 TT LP

B32 I M 14 3 23 3 CT LP

B36 M M 17 3 15 21 CT LP

B39 M M 8 7 3 22 CT LP

B40 M M 0 18 0 2 TT LP

B57 F F 16 0 3 0 CC Non-LP

B59 M M 18 0 4 0 CC Non-LP

B78 F F 9 10 16 8 CT LP

B82 I F 0 16 0 3 TT LP

B85 F F 2 12 5 7 CT LP

B85a1 * F 0 14 0 4 TT LP

G12 F F 15 0 5 0 CC Non-LP

Lab analysts

GA{ CC Non-LP

AK` CC Non-LP

AB` TT LP

CW TT LP

*Tooth sample was collected from a mixed burial assemblage containing multiple individuals.
{Performed DNA extractions.
`Performed DNA amplifications.
aM, male; F, female; I, indeterminate. Osteological sex determination is from [39].
bA minimum of two independent DNA extractions were performed for each individual.
LP genotype was determined from sequence clones obtained from a minimum of two successful amplifications from Extract 1 and a minimum of one successful
amplification from Extract 2 and/or Extract 3. The combined sequencing results are reported for each extract, as well as the consensus LP genotype and inferred
phenotype.
cConsensus genetic sex determined from a minimum of two successful amplifications.
doi:10.1371/journal.pone.0086251.t002

Table 3. Reported C/T-13910 genotype frequencies in ancient DNA studies.

Period Date Region N CC CT TT
T-13910
freq. LP freq. Reference

Neolithic 5500–5000 BC Eastern Europe 8 1.00 0 0 0 0 [14]

Neolithic 5000 BC Spain 7 1.00 0 0 0 0 [37]

Neolithic 3000 BC France 26 1.00 0 0 0 0 [36]

Neolithic 3000–2500 BC Basque 26 0.73 0.08 0.19 0.23 0.27 [34]

Neolithic 2800–2200 BC Scandinavia 10 0.90 0.10 0 0.05 0.10 [35]

Medieval AD 900–1000 Hungary 13 1.00 0 0 0 0 [38]

Medieval AD 900–1000 Hungary 9 0.67 0.11 0.22 0.28 0.33 [38]

Medieval AD 950–1200 Germany 18 0.28 0.44 0.28 0.50 0.72 This study

doi:10.1371/journal.pone.0086251.t003
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nation. All PCR amplification and post-PCR analyses were

performed in physically separated laboratory facilities. Although

there are no perfect criteria for contamination exclusion and

ancient DNA authentication [44], we have attempted to use

prudence in designing the following experiments, in self-critically

evaluating contamination sources and risks, and in developing

clear and objective criteria for sample inclusion and exclusion.

DNA Extraction
The tooth material was cleaned with sterile single use towels

soaked with 2% NaOCl to remove any surface contamination and

then soaked in a small volume of DNA-free water (molecular

biology grade, DNAse-free, and UV-irradiated) to remove

remaining NaOCl. Dentine was pulverized using a SPEX freezer

mill 6770, and mill cartridges were cleaned with a 2% NaOCl

solution between samples. Approximately 100 mg of dentine

powder was digested overnight in 1 ml of a 0.45 M EDTA and

10% Proteinase K (Qiagen) buffer at 55uC, and then for an

additional 24 hours on a rotating nutator at room temperature.

After centrifugation, the supernatant was extracted twice with a

phenol, chloroform and isoamyl alcohol mixture (25:24:1),

followed by a final chloroform step. QiaQuick PCR purification

columns were used to isolate the DNA, which was eluted into

30 ml of EB buffer twice following manufacturer’s instructions. At

least two independent DNA extractions were performed for each

individual, and two non-template control extractions were

performed in parallel for every twelve samples. The DNA yield

of 1 ml of extract was measured with a Qubit fluorometer high

sensitivity assay. The non-template extraction controls contained

no detectable amounts of DNA.

mtDNA analysis
To exclude laboratory analysts as a potential source of human

DNA contamination, we PCR-amplified one or more overlapping

fragments of the mitochondrial hypervariable region I (HVRI) of

the Dalheim samples in duplicate and compared the resulting

sequences to analyst mtDNA HVRI sequences. The primer

positions and sequences were as follows: Primer Set 1, 16288–

16423 (136 bp; 98 bp internal), 1F 59-TACCCACCCTTAA-

CAGTACA-39, 1R 59-TATTGATTTCACGGAGGA-39; Primer

Set 2, 16206–16346 (141 bp, 99 bp internal), 2F 59-AAGTA-

CAGCAATCAACCCTC-39, 2R 59-CTGTAATGTGCTATG-

TACGGTA-39; Primer Set 3, 16112–16247 (136 bp; 96 bp

internal), 3F 59-CACCATGAATATTGTACGGT-39, 3R 59-

TTGCAGTTGATGTGTGATAG-39; Primer Set 4, 16017–

16179 (163 bp; 125 bp internal), 4F 59-TTCTCTGTTCTT-

TCATGGG -39, 4R 59-GATGTGGATTGGGTTTTTA- 39.

The PCR reactions were set up as follows: 0.2 ml Phusion Hot

Start II polymerase, 4 ml 5X Phusion HF buffer, 2 ml of 2 mM

dNTPs, 1 ml of 2.5 mg/mL BSA, 1 ml of 10 mM forward primer,

1 ml of 10 mM reverse primer, and 9.8 ml H2O, plus 1 ml of sample

extract. Cycling conditions were performed as follows: enzyme

activation at 98uC for 30 s, followed by 46 cycles of denaturation

at 98uC for 10 s, annealing at 54uC for 20 s, and elongation at

72uC for 15 s, and ending with 72uC for 10 min. Successful

amplicons were analyzed by Sanger sequencing on an ABI 3730xl

instrument (GATC Biotech) and aligned to analyst HVRI

sequences and the revised Cambridge Reference Sequence (rCRS

[45]; NC_012920.1) using CLC Main Workbench 5 (v.5.7.1)

software. The HVRI sequence for each Dalheim sample was

distinct from analyst sequences. Because mtDNA occurs at greater

copy number than nuclear DNA and is known to have greater

preservation in ancient samples, any extract that did not amplify

the mtDNA target in at least two independent reactions and yield

consistent results was excluded from further analysis.

Genetic sex typing
As an additional test of DNA authenticity we performed genetic

sex typing on the Dalheim samples and compared the results to

osteological sex determinations for each individual. Genetic sex

was assessed using a quantitative PCR (qPCR) TaqMan duplex

assay (Applied Biosystems) to detect X (112 bp) and Y (106 bp)

chromosome sequences of the amelogenin gene [46]. In brief, the

primer sequences were: forward, 59- CCCTGGGCTCTGTAAA-

GAATAGTG-39, reverse, 59-ATCAGAGCTTAAACTGG-

GAAGCTG -39. The MGB probe sequences were FAM-

TATCCCAGATGTTTCTC and VIC-CATCCCAAATAAA-

GTG. Real-time PCR set up was as follows: 7.3 ml LightCycler

480 Probes Master Mix, 0.4 ml 406 Custom Genotyping Assay

(each primer 36 mM, each probe 8 mM, Applied Biosystems),

6.3 ml H2O, and 1 ml sample extract. Real-time PCR was

performed on a Roche LightCycler 480 with the following cycling

conditions: enzyme activation at 95uC for 10 min, followed by 60

cycles of denaturation at 95uC for 15 s and annealing and

extension at 58uC. Each extract was analyzed a minimum of six

times, and three non-template extraction controls and three

reagent blanks were processed in parallel with each qPCR run. No

amplification was observed in any non-template extraction control

or reagent blank. Any extract that failed to amplify the amelogenin

locus at least three times was excluded from C/T-13910 genotype

analysis.

LP genotyping
LP genotypes were assessed by PCR-amplifying a 111 bp target

[14] containing four LP SNPs (C/G-13907, C/T-13910, T/C-

13913, T/G-13915), followed by cloning and sequencing (Table 2).

Because cytosine deamination damage at the site of the primary

SNP of interest (C/T-13910) could result in base misincorporation

during PCR using a conventional Taq-based enzyme and

therefore falsely increase our estimate of the derived allele, we

chose to use Phusion, a high fidelity DNA polymerase that fails to

amplify damaged DNA [47], resulting in more accurate SNP

typing. The PCR reaction was set up as follows: 0.2 ml Phusion

Hot Start II polymerase, 4 ml 5X Phusion HF buffer, 2 ml of

2 mM dNTPs, 1 ml of 2.5 mg/mL BSA, 1 ml of 10 mM forward

primer 59-GCGCTGGCAATACAGATAAGATA-39, 1 ml of

reverse primer 59-AATGCAGGGCTCAAAGAACAA-39, and

9.8 ml H2O, plus 1 ml of sample extract. Cycling conditions were

performed as follows: enzyme activation at 98uC for 30 s, followed

by 48 cycles of denaturation at 98uC for 10 s, annealing at 58uC
for 20 s, and elongation at 72uC for 15 s, and ending with 72uC
for 5 min. Samples that failed to yield successful amplicons from at

least two extractions were excluded from analysis. Successful

Table 4. Reported C/T-13910 allele frequencies in modern
DNA studies of western Central Europe.

Location N CC CT TT
T-13910
freq. LP freq. Reference

Austria 220 0.21 0.42 0.37 0.58 0.79 [7]

Austria 490 0.29 0.51 0.20 0.45 0.71 [9]

Austria 94 0.20 0.53 0.27 0.53 0.80 [11]

Austria 258 0.24 0.49 0.28 0.52 0.76 [10]

Germany 417 0.21 0.53 0.26 0.52 0.80 [8]

doi:10.1371/journal.pone.0086251.t004

Lactase Persistence in Medieval Europe

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e86251



amplicons were cloned into pBluescript KS vectors (Stratagene)

following manufacturer instructions and then transformed into

competent Escherichia coli cells using standard protocols. For each

sample, at least ten colonies from a minimum of two amplifications

from the first extraction and at least five colonies from one or more

amplifications of a subsequent extraction were randomly picked

and PCR amplified. The PCR reaction was set up as follows:

0.2 ml GoTaq Polymerase (Promega), 5 ml 5X Green GoTaq Flexi

buffer, 0.5 ml of 10 mM dNTPs (Thermo Scientific), 2.5 ml of

25 mM MgCl2, 1 ml of 10 mM T3 primer, 1 ml of 10 mM T7

primer, and 14.8 ml of PCR grade H2O. Cycling conditions were

performed as follows: enzyme activation at 95uC for 10 min,

followed by 20 cycles of denaturation at 95uC for 30 s, annealing

at 50uC for 30 s, and elongation at 72uC for 30 s, and ending with

72uC for 10 min. Successful amplicons were analyzed by Sanger

sequencing ABI 3730xl instrument (GATC Biotech). The resulting

sequences were aligned to the human reference genome

(GRCh37.p5) using CLC Main Workbench 5 (v.5.7.1) software

and genotyped for each LP allele. LP genotypes of the lab analysts

are also provided in Table 2.

Ancient DNA authentication
In order to further authenticate our results, we tested the

Dalheim samples for appropriate asymmetrical molecular behav-

ior consistent with ancient DNA. Ancient DNA is known to be

highly fragmented to sizes less than 500 bp [48], and in many

cases is less than 250 bp in length. Additionally, shorter fragments

are generally found in excess compared to longer fragments,

resulting in asymmetrical amplification efficiency based on target

length [35,49].

To test for asymmetrical molecular behavior supporting ancient

DNA authenticity, we used real-time PCR to amplify the human

LP allele region using four primer pairs targeting increasing

template lengths from a subset of Dalheim samples and control

samples. The forward primer (same as above) was held constant,

while the reverse primers were designed to generate small (62 bp,

59-AGGAGGAGAGTTCCTTTGAGG-39), medium (111 bp,

same as above), long (170 bp, 59-ATGCCCTTTCGTAC-

TACTCCC-39), and very long (441 bp, 59-ACTTCAGGGGAA-

GAGGGCTA-39) amplicons. If the DNA present in the samples is

authentically ancient, the short primer pair is expected to amplify

more efficiently than the medium and long primer pairs, and no

amplification is expected for the very long primer pair. We tested

these primer pairs on a subset of the Dalheim human samples

analyzed in this study (n = 10; B7, B11, B14, B26a, B27, B30b2,

B36, B40, B57, and B59), faunal controls recovered from the same

site (sheep dentine, n = 2), and negative controls (non-template

reagent blanks, n = 4). Additionally, we also analyzed a subset of

Dalheim human samples (n = 5; B17, B34, B43, B50, and B52)

that were excluded from this study for failing to meet minimal

DNA preservation thresholds.

All samples and controls were analyzed in triplicate by SYBR

Green assay using a LightCycler 480 real-time PCR instrument

(Roche). The 20 ml real-time PCR reaction was set up as follows:

10 ml LightCycler 480 SYBR Green I Master Mix, 1 ml of 10 mM

forward primer, 1 ml of reverse primer, and 7 ml H2O, plus 1 ml of

sample extract. Cycling conditions were performed as follows: pre-

incubation at 95uC for 5 minutes, followed by 55 cycles of

denaturation at 95uC for 10 s, annealing at 60uC for 15 s, and

elongation/SYBR Green acquisition at 72uC for 20 s. After

amplification, the melting curve was determined according to

manufacturer instructions. Successful amplifications and amplifi-

cation artifacts (e.g., primer dimers) were also visualized and

evaluated using gel electrophoresis. Comparisons between samples

were made on the basis of amplification success and relative

template abundance inferred by Cp value.

The results of the real-time PCR analysis conform to

expectations of asymmetrical molecular behavior for ancient

DNA and support the authenticity of the Dalheim human ancient

DNA results (Figure 2). For all four primer pairs, no product was

observed in the negative control amplifications (0/48), despite the

fact that the real-time PCR was allowed to continue to 55 cycles.

This confirms that our decontamination precautions have resulted

in a highly clean laboratory environment. Real-time PCR of the

Dalheim faunal controls resulted in one positive amplification (1/

24) of the shortest human primer pair at a Cp value of 40.7.

Subsequent visualization by gel electrophoresis confirmed the

presence of a faint band, but there was insufficient PCR product

for sequencing. This result indicates that prior handing of the

Dalheim skeletal collection has resulted in trace human contam-

ination; however, the fact that this contamination amplified at a

late cycle, yielded insufficient product for sequencing, and could

not be replicated indicates that this contamination poses minimal

risk to the results of this study.

In contrast to the controls, the Dalheim human samples

analyzed in this study showed good DNA preservation with high

amplification replicability and asymmetrical molecular behavior

consistent with authentic ancient DNA. All amplifications were

successful for the short 62 bp DNA target (30/30), and nearly all

amplifications were successful for the medium length 111 bp DNA

target (28/30) used for allele genotyping in this study. However,

amplification was much less successful for the long 170 bp DNA

target (18/30), and no amplification was observed for the very long

441 bp DNA target (0/30). This inverse relationship between

successful DNA amplification and target length is consistent with

known patterns of ancient DNA fragmentation. Additionally, the

mean Cp value for successful amplifications was 35.661.4,

indicating a relatively high number of starting template molecules

per PCR reaction, and the highest Cp value was 39.7.

For comparison, we also analyzed a subset of Dalheim human

samples that had been excluded from the study because they were

found to have a high amplification failure rate during mtDNA

analysis, sex typing, and LP genotyping. Real-time PCR analysis

revealed that these samples also exhibited asymmetrical molecular

behavior consistent with ancient DNA, but their amplification

success rates were much lower, a result consistent with our earlier

observations. Thus, while these samples likely also contain

authentic ancient DNA, their DNA quantity and/or quality is

lower, making them less reliable sources of genotyping data and

more susceptible to amplification bias and allelic dropout. By

excluding these samples and instead relying on only well-preserved

ancient human samples, we reduce the risk of potential bias,

artifacts and contamination in our data.

Statistical analysis
A statistical evaluation of Hardy Weinberg equilibrium was

assessed by a Pearson’s Chi-squared test of observed and expected

genotype data in 362 contingency table using R statistical software

(v. 3.0.1) [50].
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