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Abstract

The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-
embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-
in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial
interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law
distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution.
The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We
also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from
the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different
distance decay parameters between intra-province and inter-province trips.
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Introduction

A number of social media websites that support geo-tagged

information submission and sharing have been recently introduced

and achieved great commercial success. Various functions have

been provided by these websites, such as social networking

(Facebook), micro-blogging (Twitter), photo sharing (Flickr), and

location based check-in (Gowalla and Foursquare). Each website

has millions of registered members and their submissions form an

important type of big data. Since much information is user-

generated and associated with particular locations, Goodchild

coined the term volunteered geographical information (VGI) for it

[1]. In this paper, we use ‘‘check-in record’’ to denote a piece of

geo-tagged content posted by a user. A check-in record generally

includes a short textual message, a photo, and the time and

location indicating when and where the message was posted. With

a check-in data set, we can extract the footprints of large volumes

of individuals. Although the trajectory of one particular person is

rather stochastic, we can find underlying patterns when the

number of trajectories increases. An interesting example is a map

depicting the last 500 million check-in points on Foursquare that

clearly demonstrate the human activity distribution across the

world (https://foursquare.com/infographics/500million). Much

research has been conducted using check-in data, sometimes with

additional data such as social ties between users, collected from

various sources. Several strands of status quo work can be

identified. At the individual level, human mobility patterns [2,3]

and geographical impacts on social networks [4,5] are investigated.

At the aggregate level, these data enables us to study spatial

activity distributions and spatial interactions between regions [6].

Recently, human mobility patterns have drawn much attention

in the areas of physics [7], geography [8,9], and computer science

[10], with the availability of multi-sourced trajectory data [11].

However, these studies either do not distinguish motion patterns at

different spatial scales or focus on intra-urban trip patterns. It is

natural that inter-urban trips have different mechanisms from

those of intra-urban trips. For example, one in general has two

frequently revisited anchor points (i.e. home and workplace) and

commutes occupy a large proportion in intra-urban trips. On the

contrary, we can only find one anchor point, corresponding to his

(or her) home town, from an individual’s trajectory at the inter-

urban scale. However, whether there exists different mechanisms

account for different human mobility patterns at and across

different scales remains a research question. Little comparison

research on this point has been done due to the lack of individuals’

inter-urban trajectories. Clearly, a check-in data set makes an

investigation of inter-urban mobility possible for its large spatio-

temporal coverage.

In this research, we use a social media check-in data set

submitted by about half millions users to study the inter-urban trip

patterns. At the collective level, these trips represent spatial

interaction strengths between cities. Our research serves three

purposes. First, we intend to reveal the underlying distance effect

in the trips extracted from check-in records. Second, we try to link

patterns at the collective level of spatial interactions versus the

individual level of human movements, and to make a comparison

with intra-urban patterns revealed from mobile phone or taxi data

sets. Last, we investigate the implications of distance decay effect in

regionalizing the study area based on spatial interactions between

cities.
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Background

This section summarizes research in three areas: spatial

interaction, human mobility pattern, and spatially-embedded

network. The first is a fundamental topic in geographical

applications, and the last two have recently drawn much attention

in both geographical and physical studies, with the availability of

spatio-temporally-tagged big data. This research reveals the

underlying connections among them using empirical data set.

1 Distance Decay Effect in Spatial Interactions
Spatial interactions between geographical entities such as cities

and regions help us to understand spatial structure of a region and

plan an efficient spatial configuration. In practice, interaction

strength can be measured by volumes of passengers [12],

migration flows [13], trade flows, currency flows, telecommunica-

tions [14–16], or even toponym co-occurrences [17]. Due to the

complexity of spatial interaction involving pairs of multiple spatial

nodes, much research has also been conducted on effectively

visualizing spatial interactions and delineating meaningful sub-

regions [18,19].

Most spatial interaction systems are governed by the distance

decay effect [20], which is in general expressed in the gravity

model [21]. Derived from Newton’s law of gravity, the gravity

model in geographical applications is formulated as Iij~
kPiPj

f (dij)
,

where Iij and dij denote the interaction from i to j and distance

between two places, and Pi and Pj are repulsion of place i and

attraction of place j, respectively. If we do not distinguish the two

directions, Iij denotes the sum of flows from i to j and j to i.

Meanwhile, Pi and Pj are often approximated by the sizes of the

places. The gravity model has been widely used for estimating

traffic and migration flows. In the model, distance decay function

can vary with applications of interest (e.g., traffic flow versus

migration) and technological renovation [22], and one fixed decay

function might not fit all problems. Population size might not be

able to accurately describe the ability of repulsion or attractiveness

of places. A number of studies have then used the observed

interaction strengths and distances between geographical entities

to fit the gravity model, resulting in the theoretical size (or nodal

attraction) of each entity and the distance friction function f(d).

Wang [23] summarized several forms of f(d), among which the

power law function d2b is widely used. The distance decay

parameter b reveals the distance impacts on interaction behavior

due to the scale free property of d2b. We can compare different

interaction behaviors using their b values. A greater b implies

faster decay effect and the interactions are more influenced by

distance.

A number of practical methods have been developed for fitting

the gravity model, including linear programming [24] and the

simplified algebraic method [25,26]. Recently, the particle swarm

optimization (PSO) method was introduced to fit the gravity model

[11]. The merit of this method is twofold. First, it works well for

interaction networks with low density, that is, the interactions of

certain pairs of nodes are absent. Second, we can use different

distance friction functions beyond the power law when optimizing

the model to estimate the nodal attractions.

2 Human Mobility Patterns
Understanding human mobility patterns can help us in many

fields including epidemic control and traffic management [27–29].

A number of data sources are introduced to study human mobility

patterns. They include mobile phone call records [7,30], GPS

(Global Positioning System) enabled taxi trajectories [8,9,31],

smart card records in public transportation systems [32], and

check-in data [2,3].

A number of measurements can be used to quantify human

mobility patterns [33,34]. Among them, the distribution of

displacements is extensively investigated. Existing studies reveal

that the probability of a movement with distance Dd, denoted by

P(Dd), decreases with an increase of Dd, indicating the distance

decay effect. Different studies suggest that P(Dd) can be fitted by

different statistical distributions such as power law P(Dd),Dd2b

[2,10], exponential law P(Dd),exp(2kDd) [30,31], or exponentially

truncated power law P(Dd),exp(2kDd)Dd2b [7,9]. The parameters

in the above distributions are critical in applications such as

epidemic or virus diffusion [28,35]. Particularly, when P(Dd)

follows a power law distribution in which 1,b,3, and the

direction distribution is uniform, the trajectory can be modeled by

a Lévy flight.

Various models have been proposed to interpret the observed

human mobility patterns. They takes into account different

influencing aspects such as population characteristics [7], individ-

uals’ activities (e.g. returning to particular points, [36]), geograph-

ical environments [30,37–39], and distance effects [3,9,40]. These

aspects are central to human geography such that the big-data-

based human mobility research can shed light on understanding

human environment interactions from a new perspective.

3 Spatially-embedded Network
Given a set of geographical entities with known interaction

strengths between them, we can construct a spatially-embedded

network (or spatial network), in which each node is located in

space so that the distance between each two nodes can be

measured [41]. A spatial network may be tangible (e.g. street

networks) or intangible (e.g. flight networks or networks construct-

ed from social media). With the advances in complex network

research, many geographical studies introduce complex network

methods into geographical analyses [42–43].

In complex network analyses, detecting communities is an

important task. Given a network, a community is a subset with

relatively dense node-to-node connections. Many algorithms have

been proposed for detecting communities, including the Girvan-

Newman method [45], multilevel method [46], fastgreedy method

[47], infomap method [48], walktrap method [49], and others. In

a community detection procedure, the modularity of a graph is

widely used for measuring how good a division is. For a weighted

graph, the modularity is computed as.

Q~
1

2m

X

i,j

(Aij{
kikj

2m
D(ci,cj)) ð1Þ

where m is the number of edges, Aij is the edge weight between

nodes i and j, ki and kj are the sum weights of edges linked to the

two nodes. ci and cj denote the community of i and j and D(x,y)

equals 1 when x = y and 0 when x?y.

For a spatial network, a community corresponds to a region,

which may be spatially connected or disconnected (i.e. with

enclaves). Community detection methods are therefore extended

to take into account specific spatial characteristics, such as

adjacency constraint [17] and distance effect [50], for regional-

ization. However, some research directly uses conventional

community detection methods for spatial networks, including

global flight networks [51], telephone communication networks

[52,53], and networks constructed from movements [54,55]. It is

interesting that such networks yield spatially connected regions,

and some regions coincide with administrative units rather well.

Patterns of Inter-Urban Trip and Interaction
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For instance, De Montis et al. reported that the communities

obtained from commuters’ flows of Sardinia, Italy, in many cases

match administrative configurations [54]. In this research, we try

to interpret the spatial connectedness using the distance decay

effect.

Materials

1 Data Description
This research uses a check-in data set collected from a major

Chinese LBSNS (location-based social network service) provider,

which can be viewed as a counterpart of Foursquare in the western

world. We obtained the data set due to the collaboration between

our laboratory (Geosoft@PKU) and the LBSNS provider. The

data set contains check-in records posted by approximately

521,000 registered users in one year, from September 2011 to

September 2012. Note that fake check-ins exist in the data set. A

fake check-in record means that the distance between its real

location, denoted by geographical coordinates, and its declared

venue is greater than a threshold. After filtering out fake check-ins,

we obtain about 23,500,000 records. The heat map of all check-in

points clearly highlights the urbanized areas in China (Figure 1A).

For the sake of qualitative analyses, the data set also records place

names to describe the footprints. All place names are pre-defined

and correspond to different levels of administrative units. From the

data set, we identified 370 places in total, including the 4 Direct-

Controlled Municipalities (Beijing, Shanghai, Tianjin, and

Chongqing), Macau, Hong Kong, 332 prefecture-level units, 13

county-level units, and 19 cities in Taiwan. There are actually 333

prefecture level units in China up to 2013. In the data set, we do

not find any check-in record inside Shigatse, Tibet. The

administrative division system of China is rather complicated

and the readers may refer to a Wikipedia entry (http://en.

wikipedia.org/wiki/Administrative_divisions_of_the_People’s_

Republic_of_China) and a webpage in Chinese (http://www.

gov.cn/test/2005-06/15/content_18253.htm) for a better under-

standing. In this research, a place is abstracted to a point that is

the capital city’s (or town’s, in very rare cases) location of the

units. All check-in locations inside the place are captured to the

point so that we can investigate the aggregate level of spatial

interaction (see Tables S1 and S2 in the Supporting Information

for spatial interactions and distances between cities, and

geographical locations of the 370 cities). For simplicity, we use

the term ‘‘city’’ for a cluster of check-in points. It is natural that

the total check-ins within a city would be positively correlated

with its size. This is confirmed by the distribution of check-ins

(Figure 1B), which is consistent with the rank size distribution of

Chinese cities [56].

Given a user, his or her trajectory can be formalized as

{,City1, T1., ,City2, T2., …, ,Cityn, Tn.}, where n is the

check-in number of the user, and the Cityi was visited at time

Ti (1#i#n). Figure 2A plots the distribution of all users’ check-

in numbers, which follow a power law distribution well. From

the footprints of each user, we can extract the cities that he or

she visited. The distribution of visited cities is shown in

Figure 2B also illustrates a heavy tailed distribution. Among all

users, 237,000 (45.6%) individuals have visited at least two

cities, and we can thus construct inter-urban scale trajectories

for these users (Figure 2C).

2 Data Evaluation: a Comparative Approach
The inter-urban movements extracted from check-in records

are associated with representativeness issues. In other words, not

all individuals are registered users of a LBSNS. According to the

statistics of Foursquare (http://www.factbrowser.com/tags/

foursquare/), a large proportion of its registered users are young

and the users are likely to check in at particular places such as

airports. The same is true for the Jiepang data set. To evaluate

data, we introduce the flight passenger data of year 2011 as a

comparison. The flight data set includes 79 cities and 541 pairs of

flows, denoted by Tfij for cities i and j. Tfij is the number of

passengers between cities i and j in 2011. From the check-in data,

we also compute the trip numbers Tcij for the 541 city pairs. Tcij

and Tfij are roughly positively correlated with a low R2 = 0.533

(Figure 3A). The low R2 indicates that the check-in records either

capture movements beyond the flight data or underestimate a

number of flight trips. To investigate the first case, we calculate

Tcij/Tfij and select 50 pairs with the highest Tcij/Tfij (Figure 3B).

Three trends are found in the 50 city pairs. First, the distances

between 32 pairs of cities (64%), depicted in blue color in

Figure 3B, are less than 1,000 km. Within this distance interval,

flight trips are not dominant and railway travels is a major

competitor in China. Hence, we can obtain relatively more

movements from check-in records than from flight data.

Additionally, a direct flight line does not exist for very short

distance city pairs, such as Beijing-Tianjin and Guangzhou-

Shenzhen. The trips between these city pairs can be estimated by

the check-in data. Second, as a new mobile application, a LBSNS

has different acceptance rates across the country, depending on

the regional ICT (information and communications technology)

development level. Among the 50 city pairs, 44 pairs (88%) include

Shanghai or Beijing. This can be attributed to the high ICT

development level of the two cities and more registered users

relative to the other cities. Last, it is interesting that the city list

covers some China’s top tourism destination places (e.g.

Jiuzhaigou in Sichuan, Lijiang in Yunnan, Zhangjiajie in Hunan,

Sanya in Hainan, and Guilin in Guangxi), indicating a person is

more likely to check-in when he (or she) is on a tour. It is natural

since one may be excited during a tour and want to share some

new contents with his (or her) friends via a social media

application. This leads to a high check-in probability and we

can thus extract more trips. On the contrary, the low Tcij/Tfij

values can always be interpreted by either long trip distances or

low ICT development levels. Note that we only introduce the flight

data as a comparison due to the data limitation. If we have the

flows of other transportation modes such as railway, similar results

can still be obtained, in other words, flows derived from different

datasets are not well correlated and their ratios are influenced by

the features of cities.

Results

At present, most human mobility research is conducted based

on a large population instead of a single person [7–9,30]. Hence,

the movement frequency between two places can be used to

measure the interaction strength between them. Distance has been

widely accepted as an important factor in both individual

movements [3,9,40] and collective spatial interactions [20,21].

There is little research on linking these two aspects. Hence, we

construct a spatially-embedded interaction network and introduce

the gravity model to quantify the distance impact behind the

network and to examine whether the distance decay can

reproduce the observed displacement distribution, which is critical

in human mobility studies. Network science provides a new

perspective to understand spatial interactions. Recently, much

literature has introduced community detection methods to

regionalize a study area [52,57]. The distance decay effect,

however, has not been considered in such studies, despite its

Patterns of Inter-Urban Trip and Interaction
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importance in modeling spatial interactions. In the following

sections, we focus on displacement distribution and community

detection, two important topics in human mobility patterns and

spatially-embedded networks, using two fundamental concepts in

geographical analyses: spatial interaction and the distance decay

effect.

Figure 1. Heat map of all check-in points and frequency distribution of check-ins in the 370 cities. (A) The map, created using density
estimation, clearly depicts the distributions of cities and transportation networks in China. Note that The South China Sea Islands are not shown for
simplicity. (B) As shown by the CCDF (complementary cumulative distribution function), the frequency distribution exhibits a heavy tail characteristic.
Shanghai and Beijing, the two biggest cities in China, have the most check-in records.
doi:10.1371/journal.pone.0086026.g001

Figure 2. Characteristics of check-ins from the perspective of users. For each user, we compute the number check-ins, Nh, and the number
of visited cities, Nc, so that the inter-urban movements can be extracted. Note that Nh and Nc are not well correlated, since a user may check in many
times in the same city. (A) Complementary cumulative distribution of Nh. (B) complementary cumulative distribution of Nc. One user visited 83 cities,
which is the maximum of all users. (C) Five anonymous example individuals’ trajectories.
doi:10.1371/journal.pone.0086026.g002
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1 Fitting the Gravity Model
From the extracted trajectories, we can compute both the

check-in number for each city and the movement between each

two cities. An undirected weighted network, denoted by G, is

constructed from the interaction strengths (Figure 4A). Note that

the movements between cities are actually directed, and we sum

the flows in two directions to represent the interaction strengths. G
has 370 nodes and 15101 edges (graph density = 0.351). In terms

of other statistics of G, the graph diameter is 3, the average degree

SkT = 81.6, the average shortest path SlT = 1.781, and the average

clustering coefficient SCT = 0.657. Compared with a random

network, the relatively low SlT and high SCT suggest that G has

properties of a small world network.

The edge weights follow a power law distribution (Figure 4B). It

is similar to the spatial interaction distributions identified from

different data sets [15,16,32]. Kang et al. have argued that such a

power law distribution mainly derives from the city size

distribution, given that its distance decay effect is weak [15].

In this research, we quantitatively estimate the distance decay

effect by fitting the gravity model. Because of the low graph

density, we adopt the PSO method to find the best fit. According

to the PSO method, we try different b values, from 0.1 to 2.0 with

a step of 0.1, in the gravity model. The goodness of fit (GOF) is

measure using the correlation coefficient between the observed

and estimated interactions. For each fixed b value, say 1.0, the

PSO method is used to search the best GOF, where each particle

is a 370-dimensional vector denoting the theoretical sizes of all

cities.

The maximum GOF = 0.985 is achieved when b= 0.8. The

exponent is close to the value observed from air passenger flows in

China [11] but lower than the distance parameters, which vary

between 1.0 and 2.0, estimated using intra-urban movement data

[9,30]. Figure 5 plots the relationship between the estimated

interactions and real interactions between cities. The high GOF

indicates that the inter-urban interactions are governed by the

gravity model with a power law distance decay effect.

Figure 3. Comparison between trips extracted from check-in records, denoted by Tcij, and flight trips Tfij. (A) Scatter plot of Tcij versus
Tfij, indicating a weak positive correlation. (B) 50 city pairs with the top highest Tcij/Tfij.
doi:10.1371/journal.pone.0086026.g003

Figure 4. Characteristics of interaction strengths between the 370 cities. (A) Interaction map of the 370 cities. The red lines indicate stronger
interactions. The maximum value is 137,847, which is the number of trips between Shanghai and Suzhou, extracted from the check-in data set. The
red dots represent capital cities of provinces in China. (B) Complementary cumulative distribution of edge weights (or interaction strengths) between
cities.
doi:10.1371/journal.pone.0086026.g004
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Some research has pointed out shortcomings of the gravity

model [40,57]. They have argued that the gravity model cannot

well predict human movements at both the individual level and the

collective level. Recently, Masucci et al. compared the gravity

model versus the radiation model developed in Ref. [40] using

several empirical data sets but did not reach a clear conclusion

[58]. In these studies, populations are directly used in the gravity

model as the nodes’ sizes. However, the ‘‘mass’’ of a place that

leads to its observed interaction strengths does not necessarily have

a positive linear correlation to that place’s population. As shown in

Figure 1b, the check-in number in Shanghai is much greater than

that in Beijing, although the populations of the two cities are close.

Hence, we suggest do not negate the gravity model easily. The

appropriate way to adopt the gravity model is fitting the model

according to the real interaction strengths and distances between

places instead of predicting interactions directly based on

populations or other similar attributes.

As pointed in Section 3.2, check-in data only partially capture

inter-urban movements and there exist sampling biases. Sampling

biases also exist in the air passenger data or even a data set

collected based upon other transport modes (e.g. railway) as users

of different modes are often correlated with their socio-economic

attributes. A single data set represents one aspect of human trips

and thus they might not be consistent with each other. It is

interesting that the check-in data and the air travel data can be

well fitted by different gravity models with different distance

parameters and theoretical size sets. Figure 6 demonstrates a

framework for integrating different interaction systems. Suppose

we have N cities and K interaction systems constructed from

different data sources. Let Ikij denote the flow strength between i

and j in the kth system and dij is the distance (i,j = 1,…,N and

k = 1,…,K). Since {Ikij} and {dij} are known, ideally, we can get K

gravity models. For the kth model, the distance parameter bk and

the theoretical sizes fŜSk1,:::,ŜSkNg can be estimated. Since a city

plays different roles in various interaction systems, a comparative

investigation on the derived theoretical size set

fŜS1i,:::,ŜSKig,1ƒiƒN helps us better understand the ith city. In

conclusion, although the check-in data are biased, they still obey

geographical laws and we can obtain particular findings from the

data that might be hidden in other data.

In terms of the human mobility pattern, the displacement

distribution can be well fitted by an exponential distribution

P(Dd),exp(2aDd), where a = 0.003 and Dd is measured in

kilometers (Figure 7). It is interesting that the inter-urban

displacement distribution do not have a heavy tail. Similar

distributions have been observed using other data sets such as taxi

trajectories [9,31] and mobile phone records [30]. Liu et al.

attributed the observed distribution to the impact of geographical

environments such as population distribution [9]. With regard to

the inter-urban trips, the cities’ locations and their populations will

influence the displacement distribution.

The exponential displacement distribution is seemingly incon-

sistent with the power law distance decay, which implies a slower

distance decay effect. Liu et al. [9] and Liang et al. [39] suggested

that the observed displacement distribution can be well interpreted

by integrating the inherent distance decay effect with geographical

heterogeneity, and thus proposed a probability form of the gravity

model:

Pr(Tij)~
kPiPj

d
{b
ij

ð2Þ

Figure 5. Plot of estimated versus observed interaction
strengths when b = 0.8, indicating the observed inter-urban
interactions can be well fitted using the gravity model. The inset
depicts the correlation in a log-log scale. Note that the estimated
interaction strengths for some city pairs are less than 1 and thus
negative values exist in the log-log plot.
doi:10.1371/journal.pone.0086026.g005

Figure 6. Different data sets represent different aspects of ‘‘the
ground truth’’ of human movements and thus can be used for
revealing different roles of the same city. Given two known data
sets for the same group of places, we can obtain two gravity models,
denoted by ÎI1ij~ŜS1i ŜS1j=d

b1

ij and ÎI2ij~ŜS2i ŜS2j=d
b2

ij . b1 and b2 represent

the distance effect in the two interaction systems. Additionally, ŜS1i and

ŜS2i indicate the importance of city i according to different data sets. For
example, in the flight network, the attraction of Beijing is a bit greater
than that of Shanghai, according to Ref. [11]. With regard to the check-
in data, on the contrary, Shanghai is much more important than Beijing.
Such a difference is caused by the fact that Beijing is China’s political
center with more flight lines but Shanghai exceeds Beijing in both
economy and ICT development. If we have a third inter-urban
interaction data set for example collected from railway passenger
flows, similar comparative investigation can also be conducted.
doi:10.1371/journal.pone.0086026.g006

Patterns of Inter-Urban Trip and Interaction

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e86026



where Tij denotes the event that there is a movement between i

and j. We adopt the estimated city sizes and distance decay

parameter b= 0.8 to randomly generate the same number of

synthetic trips with the number of observed trips using the Monte

Carlo simulation approach. The distributions of both observed

and synthetic displacements are shown in Figure 7. We can see

that the two distributions match well, further confirming the

underlying gravity model.

As mentioned earlier, inter-urban (or region) interaction is a

traditional topic in geographical analyses, while human mobility

patterns have recently drawn much attention thanks to the

availability of big trajectory data. This research indicates that the

aggregate level of spatial interactions and individual level of

movements can be viewed as two sides of the same coin. If the

collective spatial interactions can be interpreted by the gravity

model (Figure 5), then it is possible that the individual level

movements are governed by the gravity model with an identical

distance decay parameter (Figure 7). Note that there are some

efforts to introduce the gravity model or similar models for

mobility patterns. For example, Bazzani et al. proposed a

chronotopic model that takes into account attractivity to simulate

intra-urban movements [59]. Recently, Liang et al. proved that

the exponential displacement distribution can be obtained from

the gravity model [39]. Besides the gravity model, some models are

built based on benefits (or opportunities) and thus distance plays

an indirect role [3,38,40]. These models take into account the

decision when individuals plan a trip to a random destination,

such as finding a restaurant. However, many inter-urban

movements, such as returning to hometown during holidays, are

nonrandom, implying that the benefit based models do not apply.

It should be pointed out that an ecological fallacy exists in

extending collective level statistics to the individual level. Although

various existing models, including the gravity model in this

research, closely reproduce the observed displacement distribu-

tion, it is still questionable that each individual’s movements follow

the same gravity model. Figure 8 demonstrates two extremely

contrary cases with the same collective statistics. The data set

contains four individuals’ (denoted by #1, #2, #3, and #4)

trajectories, the displacement distributions of which are represent-

ed using different colors. The first plot (Figure 8A) actually

represents the model described by Equation 2, that is, each

individual’s movements exhibit a clear distance decay effect.

However, we cannot deny the situation depicted in Figure 8B,

where each individual moves with a roughly fixed distance, just

like the commute trips inside a city. Most real individual level

movements are the mixture of the two cases. We need further

studies to decouple them using more detailed trajectory data sets.

2 Identifying Network Communities
For a spatially-embedded network, the community detection

method can help us to reveal its structure. In this research, we

create a Voronoi diagram based on the 370 cities and merge

Voronoi polygons containing cities in the same community so that

all communities can be spatialized and visualized. The multilevel

algorithm developed by Blondel et al. [46] is adopted to optimize

the modularity measure. Additionally, considering that most

community detection algorithms are associated with randomness,

and thus different iterations of the same algorithm will yield

slightly different results, the method proposed in Ref. [57] is

adopted. We perform the algorithm 20 times and the result is

depicted in Figure 9, where the thicker borders indicate that they

are boundaries in more resulting maps of community detection.

From Figure 9, we can draw two conclusions about the partition

result. First, all communities are spatially connected, although we

do not impose the adjacency constraint during the procedure.

Second, a number of communities roughly coincide with the

administrative units, that is, the provincial units in China.

Provinces such as Jilin, Henan, Guizhou, and Guangdong are

clearly delineated in the resulting map. Note that the slight

inconsistency between community boundaries and province

boundaries is partially due to that the Voronoi polygon instead

of the actual administrative area of a city is used to visualize the

communities.

The partition pattern has been observed from various spatial

networks [51–54]. The first feature, spatial connectedness, can be

attributed to the distance decay effect in spatial interactions.

Because of the distance decay, closer places generally have

stronger interactions and thus are likely to be classified in to the

same community. However, the second observation, i.e., coinci-

dence of the identified communities with administrative units, has

not been well interpreted yet. We suggest that the distance decay

effect is different for intra-province trips and inter-province trips.

Due to the political characteristics of China, city pairs within the

same administrative unit are typically more socioeconomically

integrated than cities located in disparate administrative units,

indicating a high frequency of intra-province movements. In other

words, the distance decay effect in intra-province trips is weaker

than that in inter-province trips. Unfortunately, the number of

intra-province city pairs (2053, about 1/7 of the total city pairs)

extracted from the check-in data is small and cannot fit the gravity

model very well. We simply redraw Figure 5 in a log-log plot and

use different symbols to distinguish intra-province and inter-

province interactions (Figure 10). It is clear that intra-province

interactions are in general greater than inter-province interactions

when compared with the estimated interactions computed from

the gravity model, suggesting that the gravity model with b= 0.8

underestimates the intra-province interactions and we should use a

smaller exponent instead. In other words, administrative bound-

aries play a role of obstacle for human inter-urban movements and

communications. This provides a reasonable explanation to the

Figure 7. Displacement distributions of observed and estimat-
ed trips. The observed displacements follow an exponential distribu-
tion. We can find a small peak when Dd<1200 km, since the distances
between a number of big cities in China, such as Beijing-Shanghai,
Beijing-Wuhan, Shanghai-Guangzhou, and Shanghai-Shenzhen, are all
approximately 1200 km. There are a great number of trips for these city
pairs (see Figure 4A). The closeness of two best fit lines indicates that
the gravity model provides a reasonable explanation of the observed
mobility pattern.
doi:10.1371/journal.pone.0086026.g007
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community detection result, as well as the findings reported based

on different data sets [52,54,57].

Discussion

Human mobility patterns have been a hot research topic in

many areas. However, existing studies do not differentiate

movements at different spatial scales. Particularly, due to the data

limitation, little literature has investigated nationwide inter-urban

trips. For the first time, this research adopts the check-in data to

analyze inter-urban movements. Our findings include the follow-

ing four aspects. First, the inter-urban displacements follow an

exponential distribution and do not have a heavy-tail property.

This distribution is similar to that observed in intra-urban

movements. Liu et al. suggested that the geographical environ-

ment is a reason for the thin tail in intra-urban displacement

distributions. For inter-urban trips [9], this impact still exists. If all

cities in this research are identical and have the same mass value in

Equation 2, the movements will obviously follow a power law

distribution. It is the size and location characteristics of all cities

that lead to the difference between power law distance decay and

exponential displacement distribution.

Second, the spatial interactions reflected by the check-in data

can be well fitted by the gravity model. This confirms again the

power law distance decay effect in spatial interactions, which has

been observed from many different data sets. Some existing

research has argued that the gravity model cannot well predict

spatial interactions if the place populations are directly used as the

masses in the model. This research, on the contrary, illustrates that

fitting the gravity model to estimate both the places’ theoretical

sizes and the distance decay function is an appropriate approach.

Third, this research points out the connection between spatial

interactions and human mobility patterns. The distance decay

function d2b can also be used to interpret individuals’ movements.

The distance parameter b= 0.8 is less than those estimated from

intra-urban movements, indicating a weaker distance decay effect.

We also clarify the ecological fallacy issue in modeling human

mobility patterns. Hence, a safe statement is that we ‘‘cannot

reject’’ an individual level model if the statistics of the synthetic

trajectories generated based on the model match the observed

Figure 8. Different individual level movement patterns may lead to the same collective statistics. (A) The four persons’ movements are
all influenced by the distance decay effect. (B) Distance decay effect is not clear for each person. However, the four persons’ movements collectively
exhibit the distance decay effect.
doi:10.1371/journal.pone.0086026.g008
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statistics. To construct a precise individual level model requires

long-term and detailed trajectory data.

Last, by constructing a spatially-embedded network from the

check-in data, we regionalize China’s territory using a community

detection method. The result exhibits a similar pattern to previous

studies, in which most communities are spatially consecutive and

coincide with geographical units (provinces in the case of this

research). Such patterns can also be attributed to the distance

decay effect that generally influences closer cities to form stronger

connections and thus be clustered together. We also find a

difference between the distance decay effects in intra-province and

inter-province trips. It is this difference that makes interactions

between cities in the same province relatively stronger and

therefore classified into the same community.

Human mobility patterns and spatially-embedded networks

have drawn much attention in recent complexity science studies,

where much literature focuses on finding the underlying

geographical impacts. Meanwhile, spatial interactions in different

spatial scales are widely investigated in geographical analyses.

Distance obviously plays an important role in human mobility

patterns, spatial interactions, and spatially-embedded networks.

The distance decay effect decreases the probabilities of long-

distance movements as well as the interaction strengths between

faraway places, and consequently shapes the topological structures

of spatial networks. Based on an empirical data set, this research

makes an initial effort to bridge the three concepts using the

distance decay effect. Inversely, with the rapid development of

complexity science, human mobility patterns and spatially-

embedded networks provide a new perspective and new tools to

revisit conventional geographical analyses. This is especially

valuable in the era of big data since it is becoming easier for us

to collect various data for representing movements, measuring

interactions, and constructing spatial networks.
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