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Abstract

Plasmodiophora brassicae, the causal agent of clubroot disease of the Brassica crops, is widespread in the world.
Quantitative trait loci (QTLs) for partial resistance to 4 different isolates of P. brassicae (Pb2, Pb4, Pb7, and Pb10)
were investigated using a BC,F, population from a cross between two subspecies of Brassica rapa, i.e. Chinese
cabbage inbred line C59-1 as a susceptible recurrent parent and turnip inbred line ECD04 as a resistant donor
parent. The BC,F, families were assessed for resistance under controlled conditions. A linkage map constructed with
simple sequence repeats (SSR), unigene-derived microsatellite (UGMS) markers, and specific markers linked to
published clubroot resistance (CR) genes of B. rapa was used to perform QTL mapping. A total of 6 QTLs residing in
5 CR QTL regions of the B. rapa chromosomes A01, A03, and A08 were identified to account for 12.2 to 35.2% of the
phenotypic variance. Two QTL regions were found to be novel except for 3 QTLs in the respective regions of
previously identified Crr1, Crr2, and Crr3. QTL mapping results indicated that 1 QTL region was common for partial
resistance to the 2 isolates of Pb2 and Pb7, whereas the others were specific for each isolate. Additionally, synteny
analysis between B. rapa and Arabidopsis thaliana revealed that all CR QTL regions were aligned to a single
conserved crucifer blocks (U, F, and R) on 3 Arabidopsis chromosomes where 2 CR QTLs were detected in A.
thaliana. These results suggest that some common ancestral genomic regions were involved in the evolution of CR
genes in B. rapa.
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Introduction

Plasmodiophora brassicae Woronin, an obligate biotrophic
protist, causes clubroot disease as a symptom of clubbed root
in crucifers, such as Brassica rapa, B. oleracea, B. napus,
Raphanus sativus, and Arabidopsis thaliana [1]. Limitations of
cultural practices or chemical treatments for controlling clubroot
disease have made breeding for clubroot-resistant cultivars
desirable. However, the coexistence of multiple isolates in the
field, broad genetic variation, and complex pathogenicity of P.
brassicae [2—6] has made the breeding of resistant cultivars
difficult, especially for cultivars having broad-spectrum or
durable resistance. The most efficient way to breed such
clubroot-resistant (CR) cultivars is to pyramid different CR
genes.

Some valuable resistant sources to clubroot disease have
been identified in B. rapa, especially in European fodder turnip
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(B. rapa ssp. rapifera) [1,7-9] and other Brassica crops,
including B. oleracea and B. napus. Thus, the European
Clubroot Differential (ECD) hosts 01-04 (B. rapa spp. rapifera)
have been widely used as resistant donors in breeding CR
cultivars in Brassica crops [4,10]. Genetic analysis indicated
that resistance was controlled either by qualitative conferring of
resistance by a single resistance gene in B. rapa or by
quantitative conferring of resistance under polygene or
quantitative trait loci (QTLs) in B. oleracea and B. napus [11].
In B. napus, Werner et al. [10] detected 19 CR QTLs on 8
chromosomes of B. napus, and some other major and minor
genes were also demonstrated [2,12]. In B. oleracea, several
CR QTLs were also indentified [13—16].In A. thaliana, one
dominant CR gene were identified on chromosome 1 [17,18],
several CR QTLs were detected on chromosomes 1, 4, and 5
[19]. QTLs involved in CR were also demonstrated in B. rapa
[20,21].
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Recent studies have revealed 8 CR genes positioned on 5
different chromosomes in B. rapa. With the exception of Crr4
on chromosome A06 [21], which exhibited a minor only effects
on resistance, the rest of the genes behaved as major genes,
including CRa (on chromosome A03) [22], CRb (A03) [23], Crr3
(A03) [24], Crr1 (A08) and Crr2 (A01) [20], CRc (A02), and
CRk (A03) [25]. Recently, Crr1 and CRa have been cloned and
confirmed to carry Toll-Interleukin-1 receptor / nucleotide-
binding site / leucine-rich repeat (TIR-NBS-LRR) structure
[26,27]. However, all of the above-reported CR genes in B.
rapa were identified using clubroot-resistant resources either
from Chinese cabbage or from double haploid lines derived
from a cross between Chinese cabbage and turnips [11]. As
such, this raised the possibility that, besides previously
identified CR genes, some CR genes may have been lost
during the process of transferring CR genes from CR turnips
into Chinese cabbage, since turnips have shown resistance to
more isolates of P. brassicae than most of the commercialized
resistance cultivars [5,28]. This is further supported by the fact
that 10 CR QTLs are present in the A genome of B. napus,
which was resynthesized by a cross between ‘Bohmerwaldkohl’
(B. oleracea) and ECDO04 [10].

The interaction between CR genes and P. brassicae has
been found to be isolate-specific and to confer broad-spectrum
resistance in B. oleracea [13—15]. Werner et al. [10] detected
19 QTLs on 8 chromosomes in B. napus, and all of these QTLs
were isolate-specific with respect to resistance. However, the
effectiveness of CR genes has not been tested against more
different pathotypes of P. brassicae, and isolate-specific
resistance also has not been previously reported in B. rapa.
For example, the pathotypes of races 2, 4, and another
unknown race were used to identify CR genes. The pathotypes
of these isolates were characterized by the Williams’
classification [29]. Among 8 CR genes, CRa, CRb, CRk, Crr1,
Crr3, and Crr4 were resistance to race 2 [21,23,25,30], and
CRk and CRc exhibited resistance to an uncharacterized race
[25]. In addition, Crr1 and Crr2 appeared to be resistant to race
4 in a complementary manner [20]. Indeed, there are more
pathotypes of P. brassicae that exhibit significant differences in
pathogenicity [7,29]. In addition, genetic changes in pathogen
populations caused the erosion of commercial CR-resistant
cultivars of Chinese cabbage (B. rapa spp. pekenensis), which
were developed by the introduction of monogenes or
oligogenes [5]. Hence, understanding the interactions between
CR genes and P. brassicae, and the molecular mechanisms
involved in CR could be an efficient strategy to control clubroot
disease by breeding programs.

The objective of this study was to (1) integrate unigene-
derived microsatellite (UGMS) markers into a genetic linkage
map of B. rapa, (2) identify molecular markers linked to novel
CR genes in B. rapa, (3) explore the effects and specificities of
CR genes involved in the control of 4 different P. brassicae
isolates, and (4) compare the published CR genes with CR
QTLs identified in this study and synteny regions where CR
genes are located in between B. rapa and A. thaliana.
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Materials and Methods

Ethics statement

Four field isolates of Plasmodiphora brassicae, including
Pb2, Pb4, Pb7, and Pb10, respectively, were provided by the
following persons:

1. Prof. Xiangqun Shen at Shenyang Agricultural University,
Liaoning;

2. Yuntian Bian, a farmer in Jilin;

3. Dr. Zhizhong Zhao at Shandong Academy of Agricultural
Sciences in Shandong;

4. Prof. Ren Huang at Sichuan Agricultural University in
Sichuan.

All of the field studies were carried out in a closed and
protected green house in Shenyang Agricultural University.
Therefore, the field studies did not involve endangered or
protected species.

Plant materials

Two subspecies of B. rapa, a Chinese cabbage (B. rapa ssp.
pekenensis) inbred line C59-1 and turnip (B. rapa ssp. repifera)
inbred line ECD04, were used as recurrent and donor parents,
respectively. C59-1 is susceptible to clubroot disease, while the
homogeneous line ECD04, which was isolated from ECD hosts
and purified by self-crossing, is resistant to clubroot disease
[7]. A population of 115 BC,F, individuals was obtained by
crossing the C59-1 line onto a single F, plant, and this
population was used to construct a genetic linkage map. For
evaluation of the responses to field isolates of P. brassicae,
young seedlings derived from seeds of each BC,F, plant by
self-pollination were used for inoculation of different field
isolates under controlled conditions, respectively.

Pathogen isolates

Four field isolates of P. brassicae, including Pb2, Pb4, Pb7,
and Pb10, were collected from infected Chinese cabbage
plants cultivated in 4 different areas of China: Liaoning, Jilin,
Shandong, and Sichuan. Based on the Williams’ classification
[29], Pb2, Pb4, Pb7, and Pb10 were characterized as
pathotype races 2, 4, 7, and 10, respectively. After propagation
on the susceptible Chinese cabbage, roots infected by each of
the 4 different isolates were stored at -20°C until use. Resting
spores were diluted to a density of 107 spores per mL in sterile
distilled water after isolation from homogenized clubbed roots.

Clubroot disease resistance test

To determine the genotype of each BC,F,, the seeds from
the corresponding BC,F, families were planted in 50-well
multipots and maintained in a greenhouse under a 16-h
photoperiod at 20-25°C. Resistance tests were performed in a
randomized block design with 2 replications. Eighty-six BC,F,
families were tested against isolate Pb2, 84 were tested
against Pb4, 88 were tested against Pb7, and 90 were tested
against Pb10. For each isolate, 12 (one block) plants per BC,F,
family were tested. Twelve plants from each of two parental
lines and F, progeny were also included in all replicates, and
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were randomly placed between the randomized BC,F, families.
One-week-old seedlings were inoculated by application of 1 mL
of resting spore suspension at the bottom of the stem base of
each seedling. Six weeks after inoculation, symptoms of
disease were scored as follows: 0 = no visible clubs, 1 = clubs
usually confined to lateral roots, 2 = very slight clubs on main
roots, 3 = moderate clubbing on main roots, 4 = larger clubs in
main roots and slight clubs on lateral roots, and 5 = severe
clubbing on main roots and lateral roots. The disease index
(DIl) was calculated according to the formula: DI = [(n, + 2n, +
.. + 5n;)/N; x 5] x100, where n; is the number of plants with
the symptom of / and Ny is the total number of plants tested.
The DI for each BC,F; individual was calculated from the mean
grades of 2 replicates.

DNA extraction and marker analysis

DNA was extracted from the young leaves of 115 BC,F,
plants and parental lines according to the cetyl-trimethyl-
ammonium-bromide method [31] with minor modifications. A
total of 1099 SSRs, including 380 BAC-derived SSRs
(designated by ‘cnu’, ‘nia’, and BRPGM) from Choi et al. [32],
Kim et al. [33], and Li et al. [34], 74 genomic sequence-derived
SSRs (prefixed by ‘hri’) from Suwabe et al. [21,35] and Choi et
al. [32], 53 SSRs (prefixed by ‘pbc’, ‘Ra’, ‘aaf, and ‘BnGMS’)
from Choi et al. [32], 592 EST-derived SSRs, including 570
UGMSs developed in our laboratory (prefixed by ‘sau_um) [36]
and 22 (prefixed by ‘ACMP’) from Ramchiary et al. [37], and 24
intron polymorphic (IP) markers from Panjabi et al. [38] were
used for a polymorphism survey between the parental lines
C59-1 and ECDO04.

To identify the location of the B. rapa CR genes in the
genetic map constructed in this study, 22 previously reported
markers linked to different CR genes [20,21,23,25,39,40] were
also used. Procedures for the PCR assay and marker
genotyping were conducted as described in the above reports.

PCR products were resolved by electrophoresis on 8%
polyacrylamide gels as described by Ge et al. [36]. Segregation
of each marker in the BC,F, population was visually scored.

Construction of linkage map

The genetic map was constructed using JoinMap version 4
[41,42]. Logarithm of the odds (LOD) scores 4.0 to 6.0 was
used to assign the markers into linkage groups (LGs) and
Kosambi’'s [43] mapping function was used to convert the
recombination value into the map distance (cntiMorgans, cM).
The threshold for goodness-of-fit was set to < 5.0, with a
recombination frequency of <0.4 and minimum LOD scores of
2.0. The map was drawn using Mapchart 2.1 [44].

Statistical analysis and QTL mapping

Microsoft Excel was used to analyze the frequency
distribution of mapping populations and their parents for
resistance to each isolate of P. brassicae, using the DI of
clubbed plants. Correlation analysis was conducted with SPSS
software (SPSS, Inc., Chicago, IL, USA).

QTL detection was performed using the composite interval
mapping (CIM) function provided in Windows QTL
Cartographer version 2.5 [45]. Tests for the presence of QTL
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were performed at 2 cM intervals using a 10 cM window and 5
background cofactors (Model 6). For declaring the presence of
a QTL, genome-wide threshold values (P = 0.05) were
estimated from 1,000 permutations of trait data across all
genetic intervals [46,47]. The QTL locations were defined by
the significance threshold of LOD value (3.3, 3.2, 3.8, and 3.0
for Pb2, Pb4, Pb7, and Pb10, respectively). QTLs were
designated as Pb (for Plasmodiophora brassicae), followed Ba
(for Brassica rapa), linkage group number, and QTL number.
QTLs detected in overlapped confidence intervals were
considered the same QTL region. Graphic representations of
maps were generated using Mapchart 2.1 [44].

Comparative analysis of clubroot resistance in B. rapa
and A. thaliana

To find the physical locations of each CR QTL region
identified in the present study and previous reports, the
sequences of flanked markers were assigned to the B. rapa
genome  (http://www.brassicadb.org) by BLASTn. The
sequences of each marker linked to CR loci were found by
aligning the primer sequences to the B. rapa genome. When
the primer pair was identical to the sequence fragment of the
same chromosome and its defined length was similar to the
respective marker, the sequences were considered to be the
marker sequence. Additionally, the marker sequence was
aligned against the genome sequences of Arabidopsis by
BLASTn in TAIR (http://www.arabidopsis.org) and crucifer
building blocks [48] in order to identify the syntenic regions
between B. rapa and A. thaliana. Based on the E value < 10,
the syntenic region was determined if 2 or more common
homologous loci existed in the corresponding regions between
B. rapa and A. thaliana. When the E-value was between 10-"°
and 10%, they were also considered as homologous synteny
region if the presence of SSR sequence was manually
confirmed and neighboring SSR loci were relatively conserved.
Markers showing homology to the Arabidopsis genome
sequence or genes were mapped based on the physical
positions of these genes.

Results

Linkage map with newly integrated UGMS

For the construction of the genetic linkage map, SSRs and
CR gene-linked markers were screened for polymorphism
between the parental lines. Of the 380 BAC-derived SSRs, 74
hri_ BRMSs, and 53 markers prefixed by ‘pbc’, ‘Ra’, ‘aaf’, and
‘BnGMS’ screened, only 130 BAC-derived SSRs, 19
hri_BRMSs, and 18 other markers were polymorphic between
ECDO04 and C59-1. Among 560 successful amplifications from
592 EST-derived SSR markers, only 117 (20.9%) were
polymorphic between the 2 parental lines. In addition, 5 IP
markers displayed polymorphism. Of the 22 markers linked to 8
CR genes, only 5 were found to be polymorphic between the 2
parental lines. Thus, a total of 294 markers could be used to
genotype the population. After excluding the seriously distorted
and ungrouped markers, a total of 230 markers, including 132
genome sequence-derived SSRs, 93 UGMS SSRs, 5 markers
linked to 5 CR genes, were assigned to the 10 linkage groups,
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Figure 1. Genetic linkage map of Brassica rapa. Linkage groups were numbered A1 to A10 according to the anchor markers.
The distances in centiMorgan were given on the left and the marker numbers are indicated on the right. The newly mapped markers
were marked with boldface and asterisks. The markers linked to published clubroot resistance genes were underlined.

doi: 10.1371/journal.pone.0085307.g001

corresponding to the 10 chromosomes of B. rapa (Figure 1).
Alignment of marker sequence to the corresponding
chromosome indicated that most of markers arrange in that
order of physical position in the B. rapa genome (data not
show).

Of the 93 UGMS SSRs, 78 UGMSs were newly mapped and
integrated into the 10 linkage groups in this study, although
they were previously developed by Ge et al. [36]. These
UGMSs were distributed in all of the linkage groups, and the
number of markers ranged from 3 in A07 to 15 in A09 (Table
S1). Additionally, 13 BAC-derived SSRs were newly mapped.
The total length of the map was 923.3 cM, with an average
marker interval of 4.01 cM. The length of the individual linkage
groups ranged from 54.5 cM in A04 to 150.0 cM in A09. Each
linkage group was named according to the internationally
accepted Brassica reference map based on the anchor SSR
markers reported by Choi et al. [32], Kim et al. [33], Ge et al.
[36], and Ramchiary et al. [37].
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Resistance to P. brassicae isolates

Between 84 and 90 BC,F, families from the BC,F, population
were tested with 4 pathotypes of P. brassicae. In each test, two
parents and F, were also included. The resistant parent ECD04
had a DI of 0.0, the susceptible parent C59-1 showed a DI of
100.0 (Figure 2). However, F, plants showed an intermediate
DI value between two parental lines. The frequency distribution
of BC,F, families for resistance to all isolates showed
continuous segregation patterns (Figure 2). More individuals
were closer to the susceptible parent C59-1 when inoculated
with isolates Pb2, Pb7, and Pb10, while a large number of
individuals were closer to ECD04 when isolate Pb4 was tested.
These observations suggested that resistance to Pb4 is
controlled by few genes with large genetic effects, while
multiple genes are involved in resistance to the rest of the
isolates. DI appeared different among the 4 isolates in the
population, suggesting variation in the virulence of the 4
isolates. Meanwhile, the disease reaction was significantly
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Figure 2.
brassicae in BC,F, families.
doi: 10.1371/journal.pone.0085307.9g002

Table 1. Correlation coefficients among the disease index
values after inoculation of BC,F, families derived from the
cross C59-1 x ECDO04 with 4 isolates of Plasmordium
brassicae.

Pb4 Pb7 Pb10
Pb2 0.454™ 0.721" 0.565"
Pb4 - 0.407" 0.401™
Pb7 - - 0.550"™
™ Significant at P < 0.01
doi: 10.1371/journal.pone.0085307.t001
correlated among the 4 isolates (Table 1). The lower

correlation was found between isolate Pb4 with other isolates,
indicating that different genes might control these different
pathotypes. However, a high correlation was observed
between Pb2 and Pb7.

Isolate-specific QTLs for CR in B. rapa

Composite interval mapping identified 6 QTLs for partial
resistance against 4 P. brassicae isolates, which were
positioned in 5 CR QTL regions (Figure 3, Table 2). The
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for clubroot resistance to the 4 isolates of Plasmordium

resistance alleles of all QTLs were found to be contributed by
the resistant parent ECD04. The phenotypic variance explained
by each QTL ranged from 12.2% to 35.2% depending on the
respective isolate. The large range of phenotypic variance
could be explained by different disease pressures on the
isolates.

For isolate Pb2, 2 QTLs showing partial resistance to
clubroot disease were distributed on A01 and A03. The first
QTL, designated as PbBa1.1, was linked to the marker BSA3
(LOD = 4.5) on A01. The other QTL (PbBa3.1) was linked to
the makers sau_um438a (LOD = 4.1) on A03. One possible
QTL (PbBa3.3) was also detected near the marker cnu_m327
(LOD=2.8) on A03 (Table S3). Since PbBa3.3 was identified as
a major QTL by Pb7, it might be a positive QTL for controlling
partial resistance to Pb2. PbBa3.17 and PbBa3.3 were
independent since they were mapped to the different regions of
AO03. For isolate Pb4, only PbBa8.1 was detected near the
marker cnu_m490a (LOD = 8.5) on AO8.

For isolate Pb7, 2 QTLs showed linkage to the BSA3 marker
(LOD = 5.0) on A01 and to sau_um398a (LOD = 5.2) on AQ3.
Of the two QTLs, one was located in the region of PbBa1.1,
one was a newly identified QTL. This new QTL was designated
as PbBa3.3. In addition, one positive QTL (LOD=2.9) was
identified in the region of PbBa8.1 although it did not show
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Figure 3. Linkage maps of four Brassica rapa chromosomes with detected QTL for clubroot resistance. The distances in
centiMorgan are given on the left and the marker numbers are indicated on the right. The markers on the peak of each QTL are
underlined and marked with boldface. The boxes indicate confidence intervals of QTL detected with the 4 isolates.
doi: 10.1371/journal.pone.0085307.g003

Table 2. Details of the quantitative trait loci detected for clubroot resistance against 4 different isolates of Plasmordium

brassicae.

Isolate Linkage group QTL name Lop® Closest marker Peak position (cM) Confidence interval (cM) Rz(%)b Ac

Pb2 A01 PbBa1.1 4.5 BSA3 47.8 46.0-49.9 13.2 +0.72
AO03 PbBa3.1 4.1 sau_um438a 16.5 15.3-23.2 12.2 +0.71

Pb4 A08 PbBa8.1 8.5 cnu_m490a 10.4 8.4-14.6 35.2 +1.10

Pb7 A01 PbBa1.1 5.0 BSA3 46.0 44.0-49.8 18.7 +0.95
A03 PbBa3.3 5.2 sau_um398a 76.1 72.5-79.9 16.5 +0.89

Pb10 A03 PbBa3.2 45 BrSTS61 60.3 54.8-63.2 14.0 +0.79

@ The logarithm of odds (LOD). LOD indicates the likelihood at the peak of the QTL.

b The R? indicates the percentage of phenotypic variance explained by each QTL.

¢ Additive effect value of the QTL. Positive additivity indicates that the QTL allele originating from the parental ECD04 was resistant to clubroot disease.
doi: 10.1371/journal.pone.0085307.t002
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significance at the LOD threshold of 3.8 (Table S3). In this
interval, where previous identified Crr1 was located [20], a
major QTL PbBa8.1 was also detected by Pb4. For isolate
Pb10, only one QTL PbBa3.2 was identified by linkage to the
BrSTS61 markers (LOD = 4.5) on A03. This QTL was
independent of all QTLs detected from isolates Pb2, Pb4, and
Pb7.

Among the QTLs revealed in this study by the 4 different
isolates, only 1 single locus of PbBa8.1 was involved in
controlling resistance against the isolate Pb4, and also
PbBa3.2 to Pb10. Resistance to the remaining 2 isolates was
controlled by the polygenes, indicating a quantitative effect
against the different isolates in line ECDO04. In addition, 3 CR
QTL regions contributed partial resistance to 2 different isolates
when PbBa3.3 and PbBa8.1 detected by Pb2 and Pb7,
respectively, were considered to be positive. For instance, 2
QTLs, PbBa1.1 on chromosome A01 in the region between
cnu_m235a and hri_ mBRMS056 and PbBa3.3 on A03 in the
region between cnu_m327a and cnu_mO073a, provide partial
resistance to both Pb2 and Pb7, explaining 7.8%—18.7% of the
phenotypic variation (Table S3). PbBa8.1 in the region between
hri mBRMS173 and sau_um353a was partial resistance to
Pb4 and Pb7. Another 2 QTLs were found to contribute partial
resistance only to 1 isolate, i.e., PbBa3.1 was partial resistance
to isolate Pb2, while PbBa3.2 was partial resistance to Pb10.
These 2 QTLs explained 12.2% and 14.0% of the phenotypic
variation, respectively. The results obtained here suggested the
presence of isolate-specific-resistant QTLs to clubroot disease
in B. rapa.

Syntenic analysis of CR QTL regions in B. rapa and A.
thaliana

Published available markers, especially those markers
closely linked to the previously mapped major CR genes,
allowed us to compare the identical QTLs revealed in this study
to those previously reported CR genes. Meanwhile, it was also
possible to identify other CR genes that may have been lost
during introgression of CR genes from CR turnip into Chinese
cabbage. Of 22 CR gene-linked markers, 5 markers, including
BSA3, m6R, BrSTS061, TCR05, and BRMS173, which are
closely linked to Crr2, CRe, Crr3, CRb, and Crr1, respectively,
showed polymorphism between the two parental lines ECD04
and C59-1. Additionally, all the sequences of markers linked to
those CR loci were aligned to the corresponding chromosome
and could arrange in that order of physical position in the B.
rapa genome (Figure 4). PbBa1.1 and Crr2 were mapped to
the region from 4.93 to 6.42 Mb on chromosome AO01, and
PbBa8.1 and Crr1 were in the region from 10.39 to 13.67 Mb
on A08. Four CR QTLs were positioned on A03, including CRa
and CRb in the region of 23.59-27.23 Mb, PbBa3.1 in the
region of 1.95-6.61 Mb, PbBa3.2, CRk, and Crr3 in the region
of 13.54-16.37 Mb, and PbBa3.3 in the region of 18.43-19.56
Mb. These results suggested that PbBa1.1, PbBa3.2, and
PbBa8.1 was identical or closely linked to Crr2, CRk and Crr3,
and Crr1, respectively.

However, there were still 2 CR loci identified in this study for
which we could not find resistant counterparts that were
previously reported in the A genome, including PbBa3.1 and
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PbBa3.3, at the different physical regions on the same
chromosome A03. Interestingly, no QTLs were detected in the
regions where the common linkage markers of m6R and
TCRO05 were located, implying that homologous genes to CRc
on A02 and CRb on A03 did not exist in either parental line in
this study.

Additionally, DNA sequences of the markers linked to each
CR gene were also compared with the genomic sequences of
Arabidopsis to find syntenic regions between B. rapa and A.
thaliana. It was revealed that each CR QTL region could be
assigned to a syntenic region in Arabidopsis chromosomes
(Figure 4; Table S2). PbBa1.1 and Crr2 from AO01, PbBa8.1
and Crr1 from AO08, and CRa and CRb from AO3 were aligned
to the U block one single genomic region from 8.04 to 15.16
Mb on Arabidopsis chromosome 4. The markers in the region
of PbBa3.2, CRk, and Crr3 showed colinearity to the F block on
Arabidopsis chromosome 3 as well. In addition, PbBa3.3
aligned to the F block as PbBa3.2. The syntenic region of
PbBa3.1 was found in the R block on chromosomes 5 of
Arabidopsis.

Discussion

Mapping of UGMS markers in B. rapa

UGMS markers have great advantages and utilities for
molecular breeding and evolutionary studies since they are
developed from coding regions and show high transferability
across species. Although the development and mapping of
UGMS markers in B. rapa have advanced further in recent
years [36,37,49], the exact genomic locations of many UGMS
markers have not yet been identified. Here, we assigned 93
UGMS markers, of which 78 were newly mapped into 10
linkage groups. UGMS markers showed much higher
polymorphism (20.9%) than the 14% previously reported by
Ramchiary et al. [37] and the 16.4% previously reported by Ge
et al. [36]. This can be explained by the different parental lines
used in each study. Ramchiary et al. [37] and Ge et al. [36]
used 2 diverse Chinese cabbage lines (B. rapa ssp.
pekinensis). In this study, we used 2 different subspecies of B.
rapa, Chinese cabbage and turnip (B. rapa ssp. repifera).
Greater polymorphism (20%) was also observed between
Chinese cabbage and rapid-cycling B. rapa [37]. These
findings indicated that SSRs located in coding regions were
conserved, but exhibited more variance between subspecies of
B. rapa.

CR genes in the A genome of Brassica species

In total, 5 CR QTL regions originating from ECD04 were
identified from 4 different isolates of P. brassicae and were
spread over 3 chromosomes of B. rapa. Comparative results
indicated that ECD04 possessed the homologous or identical
CR alleles Crr1, Crr2, and Crr3, which have previously been
reported [20,24]. Meanwhile, ECD04 was also found to contain
2 additional novel loci, including PbBa3.1 and PbBa3.3 on A03.
However, all QTLs explained from 12.4% to 35.2% of
phenotypic variance, indicating that not all of the genetic
variance was explained by these QTLs. Further, only one QTL
was detected with the isolate Pb10. This may result from the
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doi: 10.1371/journal.pone.0085307.g004

backcross population and its relative smaller population size or
from the choice of the significance threshold, which may have
prevented the detection of minor QTLs. For example, PbBa3.3
and PbBa8.1 were detected by Pb2 and Pb7 at the respective
LOD value of 2.8 and 2.9, but not at the LOD significance
threshold value of 3.3 and 3.8. However, these 2 QTLs were
confirmed to be major QTLs for partial resistance to the isolate
of Pb7 and Pb4, respectively. Therefore, PbBa3.3 and PbBa8.1
might be the positive QTLs, and act with minor effects to Pb2
and Pb7, respectively. This was also supported by the
evidence that the genomic region of PbBa8.1 was aligned to
the U block where a CR QTL (Pb-At4) was located in
Arabidopsis [19]. The effects of these 2 QTLs remain to be
confirmed in the later study. Phenotypic variance in the range
of 12.4% to 67.5% explained by the respective CR QTLs was
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also observed by Werner et al. [10], who used ECD04 as a
resistant donor parent in the resynthesized B. napus.
Previously mapped CR genes, such as CRa, CRb, CRk, and
Crr3, and also PbBa3.1, PbBa3.2, and PbBa3.3 identified in
this study, were all distributed on chromosome A03. These CR
loci were either independent or located in the near region.
Physical mapping of the public markers linking to CRa and
CRb revealed that they were located between 23.59 and 27.23
Mb. Cloning of CRa have confirmed that it is positioned in this
region [27]. The CRb gene remains to be cloned for
understanding the relationship between CRa and CRb.
However, we did not detect any counterpart QTLs on this
region, although TCROS5 linked to CRb was mapped. Sakomoto
et al. [25] suggested that CRk was next to Crr3. We also found
that the PbBa3.2, Crr3, and CRk were located in the physical
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region from 13.54 to 16.37 Mb, indicating that they were the
same allele or closely linked. However, the physical location of
the major QTL PbBa3.1 (LOD = 4.1) between 1.95 and 6.61
Mb and another major QTL PbBa3.3 (LOD = 5.2) between
18.43 and 19.56 Mb suggested that they were independent
from other CR genes on AO3. To reveal the precise relationship
between these CR loci, fine mapping or even cloning of these
QTLs is required in future experiments.

Combinations of 2 or 3 CR genes were suggested in the B.
rapa ECD hosts ECD01 to ECD04 [50,51]. However, resistant
sources were not found in the germplasm of Chinese cabbage
[4], the main leafy vegetable crops in East Asian countries.
Therefore, the CR European turnips have been used to breed
CR cultivars of Chinese cabbages by introducing respective
CR genes, such as CRc and CRk from ECD01, CRa and CRb
from ECDO02, Crr1 and Crr2 from Siloga, and Crr3 from Milan
White [52]. However, CR cultivars have been challenged from
clubroot disease, while CR turnips are still resistant to clubroot
[5,28]. This suggests that some of CR genes were lost during
introgression of CR genes from CR turnips into Chinese
cabbage. The QTLs identified here contribute only partial
resistance. It is therefore easy to see why partial resistance is
lost during the intrgression process as demonstrated by
Cowling et al. [53]. The Crr2 gene has been shown to be lost
during breeding of commercial CR Chinese cabbage, but has
also been found to be resistant to more virulent pathotypes in
combination with Crr1 [20]. It is also possible that more durable
CR turnips were not used as a resistant resource. The
identification of new CR QTLs indicates that some other CR
genes are still present in CR turnips. The molecular markers
linked to these partial resistance genes will be informative for
the breeding of CR cultivars in B. rapa by pyramiding CR
genes.

Isolate-specific resistance to P. brassicae in Brassica
crops

The differential effects of published CR genes toward
different pathotypes of P. brassicae indicated isolate-specific
resistance in B. rapa [11]. QTL mapping of CR with 4 different
P. brassicae isolates allowed us to further anatomize the
performance or specificity of each CR gene identified in this
study. QTL analysis indicated that none of QTLs identified here
were effectively resistant to all isolates tested, they contribute
only partial resistance. PbBa3.1 and PbBa3.2 showed partial
resistance to only 1 isolate, Pb2 and Pb10, respectively. Others
were effective against 2 different isolates. Resistance to more
than 2 different isolates was also controlled by CRb [23] and
CRk [25]. All these results suggest that CR is isolate-specific in
B. rapa. Such isolate-specific partial resistance was also found
in the resynthesized B. napus for which ECD04 was used as a
resistant donor parent in a study by Werner et al. [10]. The
interaction of these CR genes with other pathotypes remains to
be further studied with more isolates.

However, the CR mechanism through which Crr2 acts as an
enhancer for the expression of Crr1, facilitating resistance to
more virulent pathogen infection, rather than isolate specificity,
was also hypothesized by Suwabe et al. [21]. Similarly,
PbBa8.1 (LOD = 8.5), which colocalized with Crr1, was
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effectively resistant to the Pb4 isolate, but only slightly resistant
(LOD = 2.9) to Pb7. The expression of PbBa1.1 and PbBa3.3,
conferring partial resistance to Pb7, might require the aid of
PbBa8.1. PbBa1.1 in the same genomic region as Crr2 and the
additional QTL PbBa3.3 were partial resistant to Pb2 and Pb7
through different mechanisms. PbBa1.1 acted as a major
resistance gene against both isolates. In contrast, PbBa3.3
acted as a major resistance gene against Pb7, but had a
weaker effect toward Pb2. This suggested that the same CR
locus in B. rapa can act as either a major gene or as a minor
QTL, depending on the isolate. Supporting results have also
been obtained in other Brassica crops. In B. napus, a dominant
major gene for resistance to isolate Pb137-522 of P. brassicae
had a weaker effect against K92-16 [2]. Rocherieux et al. [15]
identified a major resistance gene that regulated resistance to
isolates Pb137-522, K92, and K92-16, but showed weaker
effects against Ms6 and eH in B. oleracea.

The genetic origin and candidate loci for CR in B. rapa

Based on comparative mapping, the genomic regions
containing CR genes identified in the present study and earlier
studies in B. rapa were aligned to the 3 blocks (R, F, and U) on
the 3 chromosomes of A. thaliana. Furthermore, these studies
permitted a comparison between the B. rapa CR QTL and
those CR QTLs identified in Arabidopsis. PbBa3.2, together
with Crr3 and CRk, revealed the conserved F block on the top
chromosome 3 of Arabidopsis, as reported by Saito et al. [39].
We also found that PbBa3.3, a novel QTL, was aligned to the F
block. Three genomic regions containing CRa and CRb,
PbBa1.1 and Crr2, and PbBa8.1 and Crr1 were mapped to the
U block between 6.56 and 15.16 Mb of chromosome 4, where
Pb-At4, a QTL for CR in Arabidopsis, is located [19]. The
common origin of Crr1 and Crr2 was also presented by
Suwabe et al. [21]. Three hypothetical resistance genes that
have nucleotide-binding site and leucine-rich repeat (NBS-
LRR) motifs are located in the Pb-At4 region. Among them,
RPS2 confers specific resistance to Pseudomonas syringae pv.
Tomato [54]. PbBa3.1 also showed synteny to the CR QTL
region of Arabidopsis. A major CR QTL, Pb-At5.1,
corresponding to PbBa3.1, was identified in the R block on the
chromosome 5 of Arabidopsis [19]. Identification of the syntenic
regions about CR genes between B. rapa and A. thaliana
indicates that several common ancestral genomic regions are
possibly involved in the evolution of CR genes in B. rapa. For
example, the common ancestor of Pb-At4 on the U block might
have diverged into triplicate resistance genes residing in the B.
rapa chromosomes A01, A03, and AO8 as revealed by Suwabe
et al [21]. The evolutionary origin for QTLs controlling the same
morphological traits was also found in the conserved U blocks
of the Brassica genome [55]. . Without a doubt, these CR
genes may also have evolutionally originated from clustering
resistance genes, since the clustering of disease resistance
genes is common in the Arabidopsis [56] and other plant
genomes [57,58]. However, our data showed that 2 novel CR
QTLs, PbBa3.1 and PbBa3.2, were from the R and F block in
the Arabidopsis chromosome 3 and 5, respectively.
Identification of the R and F blocks in this study indicates that
more than one ancestral gene were involved in the evolution of
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the CR genes in B. rapa. In addition, we also observed that
PbBa3.1, PbBa3.2 and PbBa3.3 was only located on one
paralogous block (R and F, respectively) even these 2 blocks
are present in 3 chromosomes of B. rapa [48], suggesting that
the loss of CR gene might be happened during the triplication
event of the B. rapa genome, or due to the functional inactivity
of paralogous gene. There is also one possibility that the
isolates employed in this study limited to find the conserved R
and F blocks in other chromosomes of B. rapa due to the
presence of isolate-specific resistance to clubroot disease.

Identification of candidate loci in the Arabidopsis CR QTL
region will be informative for the cloning of CR genes in B.
rapa. However, some genes involved in the auxin response,
signaling pathways, and cell division should be also considered
to be candidates, since the symptoms of clubbed root are likely
caused by abnormal cell enlargement and uncontrolled cell
division [59]. Fine mapping and cloning of underling CR genes
will provide a fundamental understanding of the mechanisms of
CR and should help with the development of appropriate
programs for breeding CR cultivars in Brassica crops.
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