
Different Stimuli, Different Spatial Codes: A Visual Map
and an Auditory Rate Code for Oculomotor Space in the
Primate Superior Colliculus
Jungah Lee*, Jennifer M. Groh

Center for Cognitive Neuroscience, Department of Psychology and Neuroscience, Department of Neurobiology, Duke University, Durham, North Carolina, United States of

America

Abstract

Maps are a mainstay of visual, somatosensory, and motor coding in many species. However, auditory maps of space have
not been reported in the primate brain. Instead, recent studies have suggested that sound location may be encoded via
broadly responsive neurons whose firing rates vary roughly proportionately with sound azimuth. Within frontal space, maps
and such rate codes involve different response patterns at the level of individual neurons. Maps consist of neurons
exhibiting circumscribed receptive fields, whereas rate codes involve open-ended response patterns that peak in the
periphery. This coding format discrepancy therefore poses a potential problem for brain regions responsible for
representing both visual and auditory information. Here, we investigated the coding of auditory space in the primate
superior colliculus(SC), a structure known to contain visual and oculomotor maps for guiding saccades. We report that, for
visual stimuli, neurons showed circumscribed receptive fields consistent with a map, but for auditory stimuli, they had open-
ended response patterns consistent with a rate or level-of-activity code for location. The discrepant response patterns were
not segregated into different neural populations but occurred in the same neurons. We show that a read-out algorithm in
which the site and level of SC activity both contribute to the computation of stimulus location is successful at evaluating the
discrepant visual and auditory codes, and can account for subtle but systematic differences in the accuracy of auditory
compared to visual saccades. This suggests that a given population of neurons can use different codes to support
appropriate multimodal behavior.
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Introduction

The superior colliculus is an important model system for the

integration of spatial information from different sensory modalities

[1]. Previous studies have suggested that the SC contains

congruent maps of visual and auditory space (ferret: [2,3]; guinea

pig: [4]; barn owl: [5] ; cat: [6–8]; bats: [9–11]).

The aligned-map hypothesis of multisensory integration pre-

supposes that auditory space is indeed encoded via a map. Such a

map should contain neurons whose receptive fields tile the entire

expanse of space (Figure 1A). When tested with stimuli limited to

the oculomotor or visual ranges - the ranges of space relevant for

the rostral, eye movement-related, superior colliculus - the

signature feature that best characterizes maps is that such

receptive fields would appear circumscribed. That is, a sizeable

population of neurons should have peak responses at some best

target location within the tested range, and much lower responses

for targets on either side. Sound location would be reflected in the

identity of the active population.

However, other ways of encoding stimulus position are known

to exist, particularly for auditory information in primates. In

monkeys and humans, auditory-responsive neurons in areas

upstream from the SC do not appear to have such bounded

receptive fields distributed across the scene [12–17]. Instead, their

‘‘receptive fields’’ exhibit an open-ended structure in frontal space

with peak activity in the periphery. These open-ended response

patterns likely derive from interaural timing and/or level

differences, which reach their maximum values for sounds located

along the interaural axis (Figure 1B, peaks of ‘‘receptive fields’’

cluster at left and right poles). Sound location would then be

encoded not by the identity of the active population but by the

level of neural activity, being proportional to the sine of the

azimuthal location of the stimulus. Such a code is referred to as a

rate code for sound location.

In this study, we investigated the coding format of auditory

responses of rostral SC neurons in detail, to ascertain whether they

exhibit a clos-ed-field organization, similar to visually-driven

activity in this structure and consistent with the formation of a map

of space, or whether they are open-field, like the response patterns

of neurons in the auditory areas that serve as inputs to the SC, and

therefore potentially consistent with a rate code for sound location.
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Results

Behavioral paradigm and analysis of neural data
We assessed the responses of SC neurons (n = 180) in monkeys

making eye movements to visual and auditory targets. Target

locations spanned a range of +/2 24u with respect to the head

from three initial fixation positions (212, 0, 12u, for a range of +/

2 36u with respect to the eyes.) Monkeys (n = 2) performed an

overlap saccade task (Figure 2; see also Materials and Methods)

allowing sensory-related activity (02500 ms after the target) to be

dissociated from saccade-related activity (20 ms before saccade

onset to 20 ms before saccade offset). We selected neurons that

responded significantly for at least one target modality (n = 175,

97% out of 180 neurons, Table 1) for further study. The majority

were bimodal (63 and 84% for sensory and saccade-related activity

respectively). The response patterns for visual stimuli were

predominantly eye-centered during both the sensory and motor

periods, whereas auditory activity shifted from hybrid to eye-

centered coordinates as the saccade approached. This and other

aspects of this neural data set are described in more detail in our

previous study [18]. To eliminate reference frame as a factor for

the present study, we conducted all analyses separately for each

fixation position.

Differences between visual and auditory spatial coding
Neurons showed different spatial response properties depending

on whether the target was visual or auditory. For visual stimuli, the

classic circumscribed receptive field pattern was evident: responses

were largest for a particular target eccentricity, but fell off

substantially for targets located both more centrally and more

peripherally. For example, the neuron shown in Figure 3A shows a

peak response for visual targets/saccades at about 18 degrees

contralateral, for both the sensory and motor period. Activity for

both larger and smaller amplitude target displacements (e.g. 0 or

40u) is considerably lower. The visual responses of the neuron in

Figure 3B are similar.

In contrast, for auditory stimuli, responses typically showed an

open-ended pattern. As target eccentricity increased, responses

either continued to increase, reached a plateau, or showed only a

modest dip in activity. The auditory motor responses of the neuron

in Figure 3A (bottom right panel) reached a plateau at around 15u
and did not drop from this level. The auditory responses of the

neuron in 3B show a small decrease in activity for larger amplitude

targets (Note that the visual and auditory responses within 3A are

from the same neuron, as are those of 3B for a different neuron).

A difference is also evident in the ‘‘point image’’ of activity

evoked on visual vs auditory trials. Figure 4 shows the average

activity on auditory trials normalized to that observed for visual

trials as a function of target location within the contralateral

hemifield. The relative activity levels increase with increasing

target eccentricity, both during the sensory period and during the

motor period, For the most eccentric targets (.30u), auditory

motor-related activity could exceed that observed for visual targets

(y values greater than 100).

Quantitative population analysis
To quantitatively measure this difference across the population,

we reasoned that a circumscribed receptive field should be fit better

by a Gaussian than a sigmoidal function. In contrast, an open-

ended response pattern with its generally monotonic shape should

be fit by either a sigmoid or a Gaussian – given that the left or right

half of a Gaussian is quite similar to a sigmoid [12]. For the

Figure 1. Different spatial coding formats. When sampling of space must be limited to the oculomotor or visual ranges, maps and rate codes for
sound azimuth can be distinguished by evaluating whether neurons exhibit circumscribed receptive fields (A) or open-ended response functions (B).
Rate coding neurons might show some degree of non-monotonicity if their underlying tuning functions were not all perfectly aligned with the
interaural axis (dotted line).
doi:10.1371/journal.pone.0085017.g001

Table 1. Neural responses were tested for statistical significance during sensory and motor periods in comparison to the baseline
period.

Overlap saccade task (N = 180) Visual Auditory Both

N Total (%) N Total (%) N Total (%)

A) sensory response (two sample t-test p,0.05) 159 88.3 122 67.8 113 62.8

B) motor response (two sample t-test p,0.05) 162 90.0 159 88.3 151 83.9

C) A and B 155 86.1 117 65.0 111 61.7

No-saccade task (N = 148)

sensory response (two sample t-test p,0.05) 142 96.0 111 75.0 105 70.9

The time periods in relation to the events of the task are illustrated in Figure 2. Neurons were included for subsequent analyses on the basis of these screening tests.
doi:10.1371/journal.pone.0085017.t001

Visual Map and Auditory Rate Code in Primate SC
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example neurons shown in Figure 3, the coefficients of determi-

nation, R2, of the Gaussian and sigmoidal fits are both significant

for visual responses. However, the Gaussian R2 is larger, and a

bootstrap analysis shows that this difference is significant for the

visual sensory examples and one of the two visual motor examples

(the sigmoidal R2 was calculated for 100 iterations with 80% of

data for each target location; if the full-data Gaussian R2 exceeded

95% of these subsampled sigmoidal R2 values, it was classed as

significantly greater than the sigmoidal R2 at p,0.05). In contrast,

for the auditory responses of the same neurons the Gaussian and

the sigmoid curve capture about an equal amount of the variance,

indicating that the relationship between activity and sound

location is statistically indistinguishable from being open-ended

(bootstrap analysis, p .0.05).

At the level of individual response patterns, the differences

between visual and auditory spatial sensitivity are small, but at the

population level they are consistent. Figure 5A compares the

Gaussian vs. sigmoidal R2s, depending on whether the target was

visual or auditory, for all the responsive neurons. For visual targets,

the R2 of the Gaussian fits is frequently larger than that of the

sigmoidal fit (data points above the line of slope one), consistent

with circumscribed receptive fields. This is true of both the sensory

period and the motor period (green dots in left panels in Figure

5A; 34.6% for sensory, 32.1% for motor, Table 2). In contrast, for

auditory targets, the Gaussian fits tend not to be much better than

the sigmoidal fits (green dots in right panels in Figure 5A; 4.4% for

sensory, 10.8% for motor, Table 2). The data lie along the

diagonal, indicating open-ended response patterns across the

Figure 2. Experimental design. Spatial layout of the targets (A) shows that the fixation targets (black dots) were located 12u left, 0u and 12u right
at varying elevations depending on the spatial sensitivity of the neuron under study ranged 216 to 6 degree (mean6SD: 24.264,1). Targets were
either auditory (white noise burst) or visual (LED), presented from a stimulus array of 9 speakers each with an LED attached to its face. The speakers
were spaced from 24u left to 24u right with 6u intervals at an elevation of 0u with respect to the animal’s head. B. Events of the overlap saccade task.
The baseline period was 500 ms before target onset, the sensory period was 02500 ms after target onset, and the motor period began 20 ms before
saccade onset and ended 20 ms before saccade offset. C. The no-saccade task was similar except that the targets were near or beyond the
oculomotor range, and the animal was not required to make an eye movement because the fixation light stayed on.
doi:10.1371/journal.pone.0085017.g002
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population. The same was true for the subset of the population

that was bimodal for the response period in question, i.e. the visual

and auditory spatial sensitivity patterns of exactly the same

neurons (Figure S1). The pattern remained when modality-

dependent differences in overall responsiveness or variability were

eliminated (Figure S6-7).

Comparison to simulated data
To verify that this comparison between Gaussian and sigmoidal

fitting can successfully distinguish between such response patterns,

we tested the curve fitting procedure on simulated Gaussian and

sigmoidal data plus noise (see Materials and Methods). For open-

ended response patterns simulated with sigmoids, the sigmoidal

and Gaussian curve fits were equally successful (the R2 values are

essentially identical and the data lie along the line of slope one,

Figure 5B right panel) and the resulting curves are indistinguish-

able from each other in shape (examples). For circumscribed

receptive fields simulated with Gaussians, the Gaussian fits tended

to yield higher R2 values than did the sigmoidal fits (data points

largely above the line of slope one, Figure 5B left panel). The

relative advantage of a Gaussian fit depended on the eccentricity

of the peak location with respect to the sampled range. For

simulated units tuned to the center location, the Gaussian

provided a much better fit (see examples). In contrast, if a

simulated neuron’s peak tuning was more peripheral with respect

to the sampled range, the sigmoidal function also yielded a good

fit.

Controlling for the sampling range
Could the apparent open-ended auditory response patterns in

the actual neurons therefore be an artifact of failing to sample

circumscribed auditory receptive fields at sufficiently eccentric

locations? Several points argue against this interpretation. First,

the visual and auditory targets occupied the same locations, so the

sampling of visual and auditory space was identical. If the

sampling was insufficient to observe circumscribed auditory

receptive fields, it should also have been insufficient for visual

receptive fields. Second, the sampling was matched to the range of

space where circumscribed receptive fields should have been found

if they existed. The targets spanned the portion of the oculomotor

range of monkeys that is not normally accompanied by head

movements [19]. Furthermore, we concentrated on sampling the

Figure 3. Two representative SC neurons (A, B) showing
different sensitivity for visual and auditory stimuli (mean
discharge rate +/2 standard error with respect to the horizontal eye-
centered target location or movement amplitude; S R2 and G R2 refer to
the Sigmoidal and Gaussian R2 values). For three out of the four visual
responses (upper panels), the fits of Gaussian function are significantly
better than those of sigmoidal function (the sensory R2 values for A and
B, and the motor R2 value for B; bootstrap analysis, p,0.05). In contrast,
for the auditory responses (lower panels), the fit of both functions are
about equally good (bootstrap analysis, p . 0.05).
doi:10.1371/journal.pone.0085017.g003

Figure 4. ‘‘Point image’’ of auditory activity in comparison to
visual activity as a function of target location. For each neuron,
we calculated the activity for a given target location, modality, or
response period as a proportion of the peak firing rate observed for any
target location, modality, or response period for that neuron. We then
calculated the average of this normalized activity across the population
of neurons as a function of target modality and target location. This
graph plots the average normalized population activity on auditory
trials as a percentage of that observed on visual trials. (Only locations in
the contralateral hemisphere are shown because visual activity is very
low or non-existent for ipsilateral targets, which would make even
modest auditory activity appear very large in comparison.) A value of
100 (horizontal dotted line) indicates that the activity for visual and
auditory stimuli at the corresponding target location was about equal.
As target location becomes more eccentric, the level of activity evoked
by auditory stimuli during the motor period approaches and then
slightly exceeds that observed for visual stimuli (solid line). A similar
increase in auditory activity relative to visual activity with target
eccentricity is observed during the sensory period (dashed line), but at
an overall lower level.
doi:10.1371/journal.pone.0085017.g004

Visual Map and Auditory Rate Code in Primate SC
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rostral region of the SC which codes for smaller saccades: the

mean stimulation-evoked horizontal component of saccade

amplitude at 19 representative sites was 6.4u, and the range was

from 0.67 to 15.2u horizontally (see Materials and Methods)(Figure

S3). Thus our sampling, out to 36u in eye-centered coordinates

generally extended beyond the expected range of peak movement

field locations in our neural data.

Nevertheless, we took two additional steps to address this

question. First, for the sensory period, we expanded the sampling

extent by including some non-saccade trials involving targets near

or beyond the limits of the oculomotor range but still within the

visual scene (148 neurons, targets: 630u 642u and 660u in

addition to original target locations. This corresponds to a range of

672u in eye-centered coordinates). These trials were included on

15.6610.4% (mean6SD) of the trials and differed only in that the

fixation light stayed on and no saccade was required, which

allowed us to investigate the sensory period but not the motor

period. Figure 6A illustrates an example neuron, showing peaked

tuning for visual stimuli but monotonic sensitivity to sound, and

Figure 6B shows that the overall population pattern is very similar

to that seen for the more limited target sampling within the

oculomotor range in the main data set.

Second, for the motor period, we corrected for any effects that

systematic differences in visual vs. auditory saccade accuracy

might have introduced to the sampling range. Auditory saccades

can show some systematic biases like undershooting or upward

shifts [20,21] A tendency to undershoot auditory targets might

cause us to undersample the more eccentric movement amplitudes

for sounds, and would bias us towards concluding open-ended

coding for sounds. Accordingly, to ensure matched visual and

auditory sampling, we limited the visual data to visual saccades that

spanned the same range of space as the auditory saccades. Visual

saccades to a given target that lay more than one standard

deviation away from the mean auditory saccade endpoint for that

target were excluded from the analysis. Some cells had to be

eliminated from the analysis due to too few trials (i.e. if fewer than

20% of the trials were left from the original), and the reduction in

number of trials prevented use of the bootstrap analysis. But

among those neurons that remained (N = 56 cells), the overall

pattern was the same (Figure 6C). If the apparent open-ended

response patterns on auditory trials were due to inadequate

sampling, then when we make the visual sampling identical to the

auditory sampling, the visual code should look open-ended too,

but it does not.

Comparison of monotonicity for visual vs. auditory
stimuli

Although the auditory response patterns were generally open-

ended, they were not always perfectly monotonic. In some

neurons, the responses for the most contralateral target were a

little lower than they were for sounds at more intermediate

locations (Figure 7A, also see Figure 3A). However, this drop-off

was usually small and could have been due simply to variability in

neural responses.

To determine how often the drop-off exceeded chance

variation, we compared the activity at the most contralateral

position with the activity at the best location (Figure 7A and inset).

For the neuron shown in Figure 7A, the best location on visual

trials (top) was about 6 degrees to the right, and the activity evoked

at that location exceeded that for the most contralateral location

by about 30 spikes per second. On auditory trials (bottom), the best

location was about 24 degrees to the right, exceeding the most

contralateral location’s response by about 10 spikes per second. To

take into consideration the variability in as well as the difference in

responsiveness, these values were then converted to a Z score

(Figure 7A inset). A large Z score indicates a large drop from the

peak activity for more eccentric targets, i.e. a non-monotonic

(circumscribed) response pattern. The visual response pattern of

the neuron shown in Figure 7A had a Z score of 1.84, whereas the

auditory response pattern’s Z score was 0.57.

These values mean little on their own, but can be compared to

the expected distribution of the Z scores under chance. To

calculate this distribution, we performed a Monte-Carlo simula-

tion in which the actual target location was scrambled (Figure 7B).

For auditory responses, only about 21% of neurons showed a non-

monotonic pattern or Z score that was significantly larger than

expected by chance (i.e. was greater than 95% of the scrambled Z

scores, dotted vertical lines, p,0.05, grey bars in top panels of

Figure 7B). In contrast, almost 60% of visual responses met the

criteria (grey bars in bottom panels of Figure 7B). The percentages

of neurons exceeding criteria are illustrated in Figure 7C. This

discrepancy between the visual and auditory patterns remains even

when data for more eccentric locations are excluded, limiting the

sampling to smaller ranges (Figure. 7D), again suggesting that

sampling range cannot account for the pattern of results.

A read-out algorithm: a possible way to resolve the
discrepancy of coding formats

How is the location of a target extracted from the pattern of SC

activity? The SC controls saccadic eye movements, which are

generally similar regardless of target modality [22]. Yet SC

neurons respond differently depending on target modality, even

during the motor period when their activity is most likely to

Table 2. Summary of the statistical significance of the curve fits shown in Figure 5A.

N
Gaussian and Sigmoid
(p,0.05, %) Gaussian only Sigmoid only Neither

Bootstrap Gaussian .

Sigmoid (p,0.05,%)

Visual sensory 477 83.6 10.5 0.0 5.9 34.6

Visual motor 486 87.4 8.8 0.0 3.7 32.1

Auditory sensory 366 54.9 10.1 1.1 33.9 4.4

Auditory motor 477 83.4 9.2 0.4 6.9 10.7

Column 1: Each included neuron contributed three fits, one for each eye position. Columns 225: The proportion of Gaussian and sigmoidal curve fits that were
individually significant. Column 6: The proportion of neuron-eye position combinations for which the observed Gaussian R2 value was significantly greater than 95% of
the bootstrapped sigmoidal R2 values generated for that neuron and eye position; corresponds to the proportion of green data points in Figure 5A.
doi:10.1371/journal.pone.0085017.t002

Visual Map and Auditory Rate Code in Primate SC
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Figure 5. Comparison of the goodness of fit for Gaussian versus sigmoidal functions. Results for the population of SC neurons (A), with
the color and symbol type indicating whether the Gaussian curve fit was significantly superior to that of the sigmoid (bootstrap analysis, p,0.05).
Each neuron contributed 3 points to these panels, one for each fixation position. B. Simulation of the expected R2 values of Gaussian and sigmoidal
curves if the underlying functions are Gaussian (left) vs sigmoidal (right). Units were simulated as Gaussians or sigmoids of varying parameters with
noise, then fits were calculated for each unit and plotted in color indicating the location of the peak (left panel) or inflection point (right panel). The
examples illustrate individual units with different peak or inflection point locations. (See: Table 2 for statistical significance of fits; Figure S1 for the
experimental data limited to bimodal neurons; Figure S2 for the real data color coded by the eccentricity of the peak of the Gaussian or inflection

Visual Map and Auditory Rate Code in Primate SC
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contribute to saccade programming. Thus, the premotor circuitry

between the SC and the eye muscles must somehow resolve these

differences. Either this downstream circuit must successfully read

signals in both formats regardless of modality through a read-out

algorithm that is robust to these differences, or there must be a

modality-dependent switch that adjusts the SC’s readout depend-

ing on the target modality.

point of the sigmoid; Figure S3 for data at sites tested with microstimulation; Figure S4 for the same data plotted as a correlation coefficient R for
comparison with our previous studies [12,15]; and Figure S5 for histograms of the difference between the Gaussian and sigmoidal R2; Figure S6 for
the subset matching the visual and auditory responsiveness; and Figure S7 for the subset matching the visual and auditory response variability)
doi:10.1371/journal.pone.0085017.g005

Figure 6. Two tests of the effect of sampling range. Results in for an example neuron (A) tested out to 72u relative to the eye (ipsilateral
fixation, interleaved non-saccade task). B. Population results, format similar to the corresponding panels of Figure 5A. C. Results for the motor period
when excluding visual saccades that did not match the auditory saccade range. Only bimodal motor neurons are included in these panels; no
bootstrap analysis of these curve fits was performed due to the limited numbers of trials available. All other details are as in Figure 5A.
doi:10.1371/journal.pone.0085017.g006

Visual Map and Auditory Rate Code in Primate SC
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As proof of concept of the first option, we conducted a

simulation to determine if a candidate circuit for reading the SC’s

visual signals might be able to read auditory signals as well. We

employed a model in which the weighted sum of activity in the SC

was calculated [23225]. The weights were determined from a

training set based on the visual motor responses of the neurons in

our data set (Figure 8A, see Materials and Methods). The output of

the model was then tested using either the visual or auditory motor

activity of our neurons as inputs.

The model successfully produced an estimate of visual target

location from our recorded SC visual activity that scaled well with

target location (Sigmoidal fit, R2 = 0.99, Figure 8B, black line).

This is to be expected because the visual responses were used to

establish the weights. More importantly, the model also performed

well when the auditory activity patterns were fed into the model

(Sigmoidal fit, R2 = 0.99, Figure 8B, grey line). Again, the model’s

estimate of target location scaled accurately with the actual

auditory target location, and there was no overall offset. Even

though we made no attempt to equate the intensity of the auditory

stimuli in comparison to the visual stimuli, the model produced a

very similar estimate of target location regardless of target

modality. A likely reason the model worked is that when

calculating a weighted sum, the same answer can be produced

either because of the weights (wi) – the location of activity for visual

trials – or the sum – the amount of activity (ai) for auditory trials.

For example, an output value of 15 arbitrary units can be

produced either because 1 input neuron fires 5 spikes each of

which is multiplied by a synaptic weight of 3, or because 5 input

neurons with graded weights [1,2,3,4,5] (an average weight of 3)

all fire 1 spike each.

The modality-dependent difference in the model’s output that

does exist is subtle, but it is mirrored in the animals’ behavioral

performance. The model produces a slight compression of space

for sounds compared to visual stimuli (compare the grey and black

Figure 7. Monotonicity index methods and results. An example neuron showing a drop-off in responses at the most contralateral target
positions (sensory responses shown) (A). We compared the responses at the peak location to the responses at the most contralateral location (black
dots) and expressed the result as a Z-score (inset). Data for the ipsilateral fixation was used for this analysis. B. The distribution of Z scores for each
modality (grey bars), in comparison to the Z scores expected if the relationship between activity and target location is scrambled (Monte-Carlo
simulation, black bars). The dotted lines illustrate the 95% confidence threshold; real Z scores to the right of this point are considered to show
statistically significant decrements in activity for more peripheral targets (p,0.05) C. The proportion of neurons showing significant non-
monotonicity. D. Same as C, but for targets limited to different cut-off points in our sampling range. The disparity between visual and auditory non-
monotonicity is present for all cut-offs, and only with a 36 degree cutoff for sound does the level of non-monotonicity reach that seen for a 12 degree
cutoff for visual stimuli.
doi:10.1371/journal.pone.0085017.g007

Visual Map and Auditory Rate Code in Primate SC
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lines in Figure 8B and note the more sigmoidal shape for auditory

targets). A similar compression of space is evident in the monkey’s

behavior on auditory trials (Figure 8C). This behavioral pattern

may be unavoidable because the SC, by using a read-out

algorithm calibrated for visual targets, provides a slight underes-

timate of the eccentricity of sound locations to the oculomotor

premotor circuitry.

The above simulation does not rule out a modality-dependent

adjustment to the read-out algorithm, particularly in concert with

other potential read out algorithms (see ref. [23]). For example,

under vector averaging the level of activity in the SC would be

removed through a normalization mechanism – seemingly

inconsistent with our findings - but this algorithm could

nevertheless produce an accurate SC read-out if there is sufficient

heterogeneity in the positions of the near-edges of the auditory

movement fields to form a quasi- place code, as has previously

been suggested [6]. Such heterogeneity would create a point-

image of activity that was larger and centered more caudally in the

SC for more eccentric targets than for less eccentric ones. The

output of a vector averaging computation would therefore vary

proportionately with target eccentricity, but might require an

additional modality-dependent adjustment to ensure the resulting

movement had the correct gain when the target was auditory.

Discussion

Similarity of coding of visual and auditory space has long been

assumed to be a prerequisite for integrating information from

these two sensory systems. While many previous studies have

tested the primate SC’s responses to sounds [18,26229], to our

knowledge we are the first to quantitatively characterize the shape

of auditory spatial sensitivity for the population of recorded

neurons.

Here we have shown that auditory-evoked activity in the SC

involves a format different from that of visual-evoked activity in

the same population of neurons. This format difference was

evident in three different types of analyses: the "point image" of

auditory-evoked compared to visually-evoked activity across the

population (Figure 4), the curve fitting analysis comparing

Gaussian and sigmoidal fits (Figures 5-6 and Figure S1-7), and

the monotonicity analysis (Figure 7). These converging lines of

evidence suggest that the difference in format is robust to the type

of analysis or sampling range used to investigate it.

The predominantly monotonic response patterns for auditory

targets occur even in the motor-related activity, which likely is

involved in programming saccades to both visual and auditory

targets In our sample, non-monotonicity of auditory response

functions was slight although not completely absent. If the SC

contained an auditory map of space, neurons with the closed field

structure indicative of participating in such a map should be

abundant: their closed fields should tile the oculomotor range and

should ensure adequate representation of central locations. This is

the case for visually-evoked but not auditory-evoked activity in the

SC.

Although our study focused on the response patterns of

individual neurons, the impact of these individual response

patterns on the aggregate population response can be visualized

as shown schematically in Figure 9. A visual target would evoke a

"hill" of activity at a particular location in the SC, corresponding

to the bounded visual-sensory and visual-motor response fields of

neurons at that site (left column). Different visual locations would

evoke activity at different sites. In contrast, auditory targets at the

same set of locations would evoke activity throughout the SC but

at a level that varied with sound location.

The disparities we observed between the visual and auditory

codes in the primate SC illustrate that bimodal populations of

neurons can use different ways of representing different sensory

signals. Such differences may account for subtle modality-

dependent differences in the behavioral responses guided by such

populations.

Exactly how the disparities are resolved as signals progress from

the SC to the muscles controlling eye movements is not yet clear.

Our modeling suggests that it is in principle possible for the circuit

that "reads" the SC to produce a similar answer for a similar target

location despite modality-dependent differences in the activity

evoked. Further experimental work will be needed to determine if

this in fact what happens or if the circuitry intervening between the

SC and the extraocular muscles interprets SC activity differently

depending on target modality.

Receptive fields that do not fully close on the eccentric side have

been reported in the superior colliculus before. Such response

patterns have been most extensively characterized in the monkey

SC by Munoz and Wurtz [30], who reported that about a third of

SC neurons with motor-related activity to visual targets did not

exhibit a clear outer boundary to their movement fields. Some of

the examples shown in that study exhibited monotonic responses

to target eccentricity whereas others showed a clear peak response

Figure 8. Read-out of SC motor activity for visual and auditory saccades. A read-out model involving graded weights depending on the
location of neurons in the SC (A). The weights were fit based on the motor activity on visual trials, combining all fixations and producing an eye-
centered estimate of target location. B. Results of the simulation indicate that the model can successfully calculate target location from the input
pattern, regardless of modality. C. Behavioral estimates of target location for visual and auditory trials (data from trials during the recording of the
neurons). A slight compression of auditory space relative to visual space is seen both for the model (B) and the actual behavior (C).
doi:10.1371/journal.pone.0085017.g008
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to nearer targets and considerably weaker responses to more

eccentric ones. In our study, we emphasized monotonicity as the

key factor, and we report that monotonicity is substantially more

prevalent when saccades are evoked by sounds than by visual

stimuli.

Closed-field receptive fields do not appear to be required for

coding locations in frontal, horizontal auditory space. Neurons

with open-ended spatial receptive field have been found in many

mammalian brain areas including the superior olive [31233],

inferior colliculus [15,34237], medial geniculate body [38,39],

and auditory cortex [12,17,40242]. The majority of spatially-

selective neurons in these studies appear be most responsive to

lateral locations [12,17,34236,41,42]. Recent studies using

imaging suggest that sound location coding in human auditory

cortex is largely similar to these animal studies, and involves an

overall monotonic pattern of azimuthal sensitivity [13].

The emerging picture from a variety of species and brain areas

suggests that spatial location may often be encoded via ‘‘meters’’

rather than maps. In a meter, the level of activity in a population

of broadly-responsive neurons can provide an indication of the

location of sounds [13,14,43248], an idea that originated with

von Bekesy [49]. Of course, maps of neurons with circumscribed

receptive fields could be computed from these meters [16], and

this process may occur in some species. In the primate, such maps

remain to be discovered.

Finally, it should be noted that here we have only varied the

horizontal component of sound location. How SC neurons signal

the vertical component of sound location is unknown. Vertical

information derives exclusively from position-depending differ-

ences in the frequency filtering properties of the external ear,

known as spectral cues. Unlike interaural timing or level

differences which vary monotonically with sound azimuth, the

relationship between spectral cues and sound elevation is complex.

The SC and other auditory-responsive structures may therefore

use a quite different method for encoding this dimension of the

auditory scene.

Materials and Methods

Ethics statement
Two rhesus monkeys (Macacca mulatta, one male and one female,

ages 429) participated in the studies. The animal experimental

protocols were approved by the Institutional Review Board and

the Institutional Animal Care and Use Committee of Duke

University, respectively. Animal procedures were conducted in

accordance with the principles of laboratory animal care of the

National Institutes of Health (publication 86223, revised 1996)

and involved standard operative and post-operative care including

the use of anesthetics and analgesics for all surgical procedures.

Specifically, prior to surgery, animals were pre-anesthetized

with ketamine (I.M., 5220 mg/kg) or ketamine/dexdomator

(I.M., 3.0 mg/kg ketamine and 0.07520.15 mg/kg dexdomitor)

and were maintained under general anesthesia with isoflourane

(inhalant, 0.523.0%). Systemic anti-inflammatory medications

(dexamethasone, flunixin, or keterolac) were given as indicated by

veterinarian. After surgery, animals were treated with burprenor-

phine analgesic (I.M., 0.0120.02 mg/kg doses) for three days.

Animals were housed in a standard macaque colony room in

accordance with NIH guidelines on the care and use of animals.

Specifically, the animals were housed in Primate Products

Apartment Modules (91 cm*104 cm*91 cm), including pair or

group housing when compatible partner monkeys were available.

Pair and group housed animals exhibited species-typical prosocial

behavior such as grooming. Animals also had frequent access to

Primate Products Activity Modules (91 cm*104 cm*183 cm),

allowing for more exercise including a greater range of vertical

motion. All animals had visual and auditory interactions with

conspecifics in the room (,10 animals). Animals were enriched in

accordance with the recommendations of the USDA Environ-

mental Enhancement for Nonhuman Primates (1999), and the

National Research Council’s Psychological Well-Being of Nonhu-

man Primates (1998), and the enrichment protocol was approved

by the IACUC. Specifically, the animals had access to a variety of

toys and puzzles (e.g. Bioserv dumbbells (K3223), Kong toys

(K1000), Monkey Shine Mirrors (K3150), Otto Environmental

foraging balls (model 300400) and numerous other toys and

puzzles). Material from plants such as Bamboo and Manzanita was

also placed in the cage to give the animals additional things to

climb on and interact with. The temperature in the animal

facilities was 20225 degrees C and the colony room was kept on a

12hr/12hr light/dark cycle. The animals had approximately an

hour of audiovisual contact with at least two (and often several)

humans per day. The animals’ diets consisted of monkey food

(LabDiet 5038 or LabDiet 5045) delivered twice a day, plus daily

supplementary foods such as bananas, carrots, mango, pecan nuts,

dried prunes, or other treats (typically acquired from local

supermarkets or online vendors) to add variety to the animals’

diets. No animals were sacrificed during this study - at the time of

Figure 9. Schematic of the differences in activity evoked in the
SC by visual and auditory targets. When a target is visual, a "hill" of
activity will be evoked at a location in the SC that corresponds to the
visual response field of the neurons. Visual stimuli at different locations
would evoke activity at different sites in the SC (A, B, C left panels). In
contrast, auditory stimuli at different locations will evoke activity across
the SC but with different discharge rates (A, B, C right panels). We note
that this schematic does not address the code for the vertical
dimension, nor does it consider the possibility that the inflection
points of auditory response functions might vary with location in the
SC. If the latter is true, then the auditory code would show some
topography, with the edge of a broad hill varying with target location.
doi:10.1371/journal.pone.0085017.g009
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the submission of this manuscript both animals that participated in

this study are in good general health.

Animal preparation
The subjects underwent sterile surgery for the implantation of a

head post holder, eye coil and recording chamber [50,51]. After

behavioral training, a recording cylinder was implanted over the

left (Monkey W-male) and right (Monkey P-female) SC using

stereotaxic techniques. The location of the cylinder was verified

with MRI scans at the Duke Center for Advanced Magnetic

Resonance Development.

Experimental setup and stimuli
All experimental and behavioral training sessions were con-

ducted in a dimly illuminated sound-attenuation room (IAC,

single-walled) lined on the inside with sound-absorbing foam

(Sonex PaintedOne). Stimulus presentation and data collection

were controlled though Gramakln 2.0 software (Ryklin Software,

developed from the laboratory of Dr. Paul Glimcher). Eye position

was sampled at 500 Hz. EyeMove (written by Kathy Pearson,

from the laboratory of Dr. David Sparks) was used to analyze the

eye position traces. Velocity criteria to detect saccade were 20

degrees/s for both saccade onset and offset. All subsequent

analysis was performed in Matlab 7.1 (Mathworks software).

Sensory targets were presented from a stimulus array which was

58 inches in front of the monkey. The array contained nine

speakers (Audax, Model TXO25V2) with a light-emitting diode

(LED) attached to each speaker’s face. The speakers were placed

from 24u left to 24u right of the monkey in 6u increments at an

elevation of 0u (Figure 2A), with additional speaker-LED

assemblies positioned at 6 30u, 42u and 60u for the non-saccade

task described elsewhere. Fixation LEDs were located 12u left, 0u
and 12u right, and were positioned above or below the row of

LED-speaker assemblies such that the latter were within the

receptive/movement field of the neuron under the study.).

Auditory targets were band-pass white noise burst (500 Hz to

18 kHz; rise time of 10 ms) at 50dB 6 2dB SPL. The luminance

of each LED was ,26.4cd/m2.

Behavioral Task
The monkey performed an overlap saccade task to auditory and

visual targets, in which all conditions were randomly interleaved

(Figure 2B). After fixating a fixation target for 900 – 1,200 ms, a

visual or auditory target was presented. After a delay of 6002900

ms, the fixation light was extinguished and the monkey had 500ms

to shift its gaze to the location of the target to receive a liquid

reward. For 148 neurons, an additional non-saccade task (Figure

2C) was interleaved on average 15.6% of trials. This task was

similar to the overlap saccade task except that the target locations

were near or beyond the oculomotor range, the fixation light

stayed on and no saccade was required.

Recording Procedure and Strategy
At the start of each recording sessions, a stainless-steel guide

tube was manually advanced through the dura. Next, the monkeys

performed the overlap saccade task while a tungsten electrode

(FHC, impedance between 2 and 4.5 MV at 1 kHz) was extended

further into the brain with an oil hydraulic pulse micropositioner

(Narishige-group.com). Extra-cellular neural signals were ampli-

fied and action potentials from single neurons were isolated using a

PLEXON system (Sort Client software, PLEXON.INC). The time

of occurrence of each action potential was stored for off-line

analysis.

When a neuron was isolated, we qualitatively determined the

elevation of the receptive or movement field while monkeys

performed the overlap task. The elevation of the fixation was

chosen near that preferred elevation of the neuron on that session.

The target modalities (auditory VS visual), the locations of fixation

and the locations of targets were randomly varied on a trial by trial

basis. Data were collected as long as the neuron was well isolated

and the monkey performed the task. On average, we collected

11.16 6 5.41 (mean u6 SD) successful trials per task condition

(fixation location x target location x target modality).

Data Analysis
We analyzed neural activity by counting action potentials

during several time periods. The baseline period was the 500 ms

before target onset, and the sensory target period was the 500 ms

period after target onset (Figure 2B). The motor-related activity

period was synchronized with the saccade, beginning 20ms before

saccade onset and ending 20ms before saccade offset (latencies

chosen based on the minimum latency of stimulation-evoked

movements in the SC [52255]). The sensory and motor time

windows did not overlap as the monkeys were cued to withhold the

saccade to the target by the continued presence of the fixation light

for at least 6002900 ms after target onset. Counts of action

potentials were converted to discharge rates to account for the

differences in duration of these different time periods. The sensory

period activity was analyzed with respect to the horizontal

component of target location, and the motor period activity was

analyzed with respect to the horizontal component of the

movement to that target location, thus taking into account any

variations in behavioral response and concomitant neural varia-

tions. Neural responses were converted to spike rates.

Curve fitting
Sigmoidal and Gaussian curve fitting was accomplished as

follows. Both curves had the same number of free parameters (i.e.

4). The Gaussian equation was

Gauss value~amplitude| exp (
{(x{mu)2

2
|sigma2)zoffset

And the sigmoidal equation was

Sigmoid value~
amplitude

(1z exp ({slope|xzflex))
zoffset

The sigmoidal and Gaussian curve fitting was accomplished

using Matlab and the ‘‘lsqnonlin’’ function, which involves an

iterative search to minimize the least squares error of the function.

We found the optimal curve fits using a variety of initial starting

conditions. Each curve fit was also visually inspected for adequacy.

Neuronal population
The intermediate and deep layers of the SC provided the bulk

of the recorded neurons. Neurons were included for the relevant

analysis if they responded significantly during the sensory or

motor-related periods on visual or auditory trials compared to

baseline (two-tailed paired t test, p,0.05). For this t-test, all target

locations were pooled together because this proved to be the most

inclusive criterion. The majority of neurons showed significant

responses to both visual and auditory targets during the saccade-

related bursts (Table 1). There were very few neurons that showed
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saccade-related bursts for only one modality (n = 11, 7% out of

162 visual neurons, n = 8, 5% out of 159 auditory neurons),

indicating that the overwhelming majority of neurons that

exhibited saccade-related bursts were recruited regardless of target

modality. A smaller majority of neurons were bimodal during the

sensory period (n = 113, 63% out of 180 neurons, visual only:

n = 46, 29% out of 159 visual neurons and auditory only: n = 9,

7% out of 122 auditory neurons).

Microstimulation
To assess the locations of the recording sites with respect to the

SC’s motor map, we microstimulated using standard techniques

after recording at 19 sites in monkey P. These sites were

distributed in 5 out of the 6 guide tube locations which we used

for recording from monkey P. During each microstimulation

session, the monkey performed a task involving fixating one of

three initial eye positions (212, 0 and 12 degree from the center).

The vertical position of the fixation LEDs was the same as in the

immediately prior recording session. After fixating for 150ms, the

fixation LED was turned off and a stimulation train was applied

for 150ms. To allow the subject to earn a reward unconnected to

any evoked saccade, a visual saccade target was presented 300ms

after the stimulation (20u above fixation and 212, 0 and 12u to the

left or right). For comparison purposes, catch trials, identical but

without stimulation, were presented 20% of the time.

Simulation of circumscribed and open-ended response
functions

The circumscribed receptive fields shown in Figure 5B were

simulated with Gaussian functions varying in peak location, tuning

width and height. Open-ended monotonic response patterns were

simulated with sigmoidal functions varying in inflection point,

slope, and height. The responses on individual trials were

simulated by adding noise drawn from a normal distribution.

The resulting activity patterns, whether Gaussian or sigmoidal in

origin, were then in turn fit by both Gaussian and sigmoidal

functions.

Read-out model
Each neuron was included in the model twice, as originally

sampled and mirror flipped as if it were recorded in the SC on the

opposite side. A training set to establish weights was created from

only the visual motor responses. The mean and standard deviation of

the responses to visual targets at each target location was calculated,

and then draws were made from a normal distribution with those

parameters. The weights were fit using a least-squares regression

equation with each neuron providing a term to the equation:

S~
P

wiaizc

where S is the amplitude of the saccade, and wi and ai are the

synaptic weight and motor activity level of the ith neuron and c is a

constant term. The model was then tested by plugging in the mean

visual motor responses and the mean auditory motor responses.

We used the motor period rather than the sensory period because

the reference frame of visual and auditory signals is more similar

(i.e. auditory signals are more fully eye-centered and thus better

matched to the visual reference frame) during this trial epoch [18].

Supporting Information

Figure S1 Gaussian – sigmoid R2 plots with bimodal
neurons. This figure corresponds to Figure 5A in the main paper

except that the sample is limited to neurons with sensory or motor

activity for both visual and auditory targets.

(EPS)

Figure S2 Gaussian - sigmoid R2 plots colored by the
eccentricity. We re-plotted the R2 values from Figure 5A of the

main paper with using color to indicate the eccentricity of the peak

of the Gaussian (for visual activity) or inflection point of the

sigmoid (for auditory activity), similar to the simulation in figure

5B. For visual responses, sigmoidal and Gaussian fits were more

comparable if the Gaussian peak was more eccentric (warmer

colors for the data points near the line of slope 1). This was not

seen for auditory activity.

(EPS)

Figure S3 Saccades evoked by microstimulation at 19
representative sites in the SC. Average saccade vectors

evoked by microstimulation at the central fixation position (A). B.

Distribution of the horizontal component of the microstimulation

evoked saccades. Triangle indicates the mean value. C. Gaussian-

sigmoid R2 plots for the neurons recorded at these sites. The

pattern is very similar to that of the main data set (Figure 5A

bottom panels).

(EPS)

Figure S4 Results using the correlation coefficient, R,
rather than the coefficient of determination, R2. These

data represent the square root of the values shown in Figure 5A.

This figure provides a point of direct comparison with our

previous studies for which we plotted the correlation coefficient

[12,15].

(EPS)

Figure S5 Comparison of the relative magnitudes of the
Gaussian and sigmoidal R2 values. The histogram in each

panel involve the subtraction of the sigmoidal R2 from the

Gaussian R2 values illustrated in Figures 5A, 6B, and 6C for the

data sets shown. The visual and auditory distributions in all four

panels differ significantly from one another (t-test, p,0.05).

(EPS)

Figure S6 Relationship between response amplitude
and the Gaussian vs. sigmoidal R2 comparison. In

bimodal neurons, average visual sensory responses tended to be

slightly stronger than average auditory sensory responses (data

points below the line of slope one) (A, see Table 1). 113 neurons

were included and the data for each fixation position were treated

separately, yielding N = 339 condition data points (grey dots).

Responses were averaged across target locations. To determine if

differences in response amplitude affected the curve-fitting analysis,

we selected a subset of cases where this difference was minimal, i.e

for which the difference in responsiveness for the two modalities

was fewer than 10 spikes/s (Number of conditions = 113, red dots).

B-C. The Gaussian-sigmoid R2 plots for this subset exhibited a

pattern very similar to that of the main data set (Figure 5A Top

panels). D-F. Same as A-C but for the motor period (Number of

bimodal neurons = 151; see Table1; number of conditions = 453,

grey dots). A slightly larger criterion of 15 spikes/s was chosen to

more closely match the number of conditions included (N = 129,

red dots). These results suggested that the difference in response

amplitude is not likely to account for the difference between the

visual and auditory curve fitting results.

(EPS)

Figure S7 Relationship between response variability
and the Gaussian vs. sigmoidal R2 comparison. Similar to

Figure S6 but assessing the effects of response variability instead of
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amplitude. Criteria for inclusion for analysis was a variance

difference of fewer than 2 spikes2/sec2 for the sensory period

(N = 111, red dots; A-C) and fewer than 6 spikes2/sec2 ( for the

motor period (N = 101, red dots; D-F). Note that the scale of

variance for the motor activity is triple that for sensory activity,

and the larger criterion for the motor period permits a rough

match between the numbers of conditions included in the subset

for both analyses. Overall, the pattern is again very similar to that

of the main data set (Figure 5A Bottom panels) suggesting that

differences in response variability are not likely to account for the

difference between the visual and auditory curve fitting results.

(EPS)
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