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Abstract

Background: In recent years, several path-breaking findings on human mobility patterns point out a novel issue which is of
important theoretical significance and great application prospects. The empirical analysis of the data which can reflect the
real-world human mobility provides the basic cognition and verification of the theoretical models and predictive results on
human mobility. One of the most noticeable findings in previous studies on human mobility is the wide-spread scaling
anomalies, e.g. the power-law-like displacement distributions. Understanding the origin of these scaling anomalies is of
central importance to this issue and therefore is the focus of our discussion.

Methodology/Principal Findings: In this paper, we empirically analyze the real-world human movements which are based
on GPS records, and observe rich scaling properties in the temporal-spatial patterns as well as an abnormal transition in the
speed-displacement patterns together with an evidence to the real-world traffic jams. In addition, we notice that the
displacements at the population level show a significant positive correlation, indicating a cascading-like nature in human
movements. Furthermore, our analysis at the individual level finds that the displacement distributions of users with stronger
correlations usually are closer to the power law, suggesting a correlation between the positive correlation of the
displacement series and the form of an individual’s displacement distribution.

Conclusions/Significance: These empirical findings make connections between the two basic properties of human mobility,
the scaling anomalies on displacement distributions and the positive correlations on displacement series, implying the
cascading-like dynamics which is exhibited by the positive correlations would cause the emergence of scaling properties on
human mobility patterns. Our findings would inspire further researches on mechanisms and predictions of human mobility.
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Introduction

The statistical patterns of human daily movements directly

affect the physical contacts between humans and thus deeply

impact on the dynamics of many social systems. The understand-

ing of real-world human mobility patterns would be very helpful

for the advancements of many aspects of social dynamics, such as

epidemics spreading [1–4], the designing of traffic systems [5], or

localized recommendations [6,7]. Since the pioneering work of

Brockmann et al (2006) [8], the temporal-spatial statistical

properties in human movements have become a new issue in

complex sciences and have attracted much attention in recent

years.

The most dramatic discovery in the statistical patterns of human

mobility is the existence of wide-spread scaling properties [8–10].

The first one is the power-law-like displacement distribution,

which has been empirically observed not only in many analyses of

real-world human movements [8,9,11] but also in the study of

virtual world of online-games [12]. This result sharply differs with

the traditional understanding based on random walks, and reveals

long-range correlations in human travels and social interactions.

Other scaling properties include the staying time distributions

which denote that humans usually stay in a few locations for quite

long periods of time [9], and the visitation frequency distributions

are dominated by a few locations that are usually much more

frequently visited [9,10], and so on.

Many other abnormal properties are also found in human

mobility patterns, including ultra-slow diffusion[8,9], anisotropism

[9], high predictability [13], and the limitation of roads [14].

These discoveries reveal abnormal features in real-world human

mobility, in stark contrast to the traditional understandings based

on the hypothesis of random-walk-like human mobility or on that

of Lévy flights with the same scaling displacement distributions.

However, these findings are still facing several controversies.

Due to the limitation of original data, most previous works are at

the population level, and a direct analysis of individuals is rarely

seen. Recently, Yan, et al. [15] reported the diversity in individual-

level mobilities and found out that most of the individuals’

displacement distributions do not obey the scaling law. Moreover,

several recent researches indicated that the move length in human

urban trips or the travels by a single type of transportation do not

obey well a power law [16–18]. These controversies require the
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confirmation from a more in-depth empirical analysis of human

mobility patterns.

Recent studies also proposed many models to explain the

underlying mechanisms that drives the emergence of these

anomalies in human mobility. Generally, the basic dynamics of

previous modeling works can be divided into the following classes:

i) The descriptive models: Lévy flights [11], Self-similar least action

walk (SLAW) [19], and Continuous-time random walks [8]; ii) The

exploration of new locations and the preferential return to visited

places [10]; iii) The effect of hierarchical traffic systems [20]; iv)

the effect of few dominant trips [21]; v) The spatial heterogeneity

of population density or the geographic locations [18,22]; vi) The

radiation model proposed by Simini et. al. [23], which can

reproduce many mobility patterns at the global level; vii) The

aggregation of individuals without scaling properties [15]. These

models can reproduce parts of the empirical findings. Neverthe-

less, it is difficult to identify common rules from these models, and

thus it remains controversial what drives the emergence of these

abnormal properties in human mobility. It would therefore be

helpful if the empirical analysis can identify characteristic factors

affecting the emergence of these anomalies.

In this paper, based on the empirical analysis of GPS data sets,

we report one of the characteristic factors that is relevant to the

scaling displacement distributions: the correlation of the series of

displacement. We first show the aggregated temporal-spatial

properties at the population level (Section II) and then we analyze

the correlation of the aggregated series of displacements (Section

III). Finally, we discuss the diversity in individuals’ mobility

patterns and the relationship between the correlation of the series

of displacements and the scaling properties of displacement

distributions (Section IV). We show that the correlation is indeed

a tool that allows to investigate the underlying mechanisms from

the empirical data.

Results

The scaling properties at the population level
The data set in our analysis contains records from 165

volunteers that have been gathered over three years (April, 2007

– Sep., 2010). The GPS trajectories result from the Microsoft

Research Asia in Geo-life Project [24–26]. More details can be

found in Materials and Methods.

We determine the effective staying positions from the dataset

using a resolution of 10 meters in space and 120 seconds in time.

Fig. 1 illustrates for a case of two staying positions, S1 and S2, that

are obtained from a sequence of GPS records. Details of our

approach will be discussed in Materials and Methods. The

geographical distance between two consecutive staying positions,

e.g. S1 and S2 in Fig. 1, is defined as the displacement of travel.

The staying time in each staying position is defined as the time

interval between the first and last GPS records in the given staying

position.

Using the above method, we obtain 927 trajectories with

recording times longer than 6 hours that contain 19376 effective

staying points. The total staying time is 4463 hours, and the total

displacement is 95472.33 kilometers. From each of these

trajectories, we can obtain a sequence that contains the staying

positions, displacements and staying times.

We combine the displacements and staying times in all 927 files

to calculate the displacement distribution and the staying time

distribution at the population level. After log-binning, the

displacement distribution P(d) generally obeys the following

power-law function with two different regimes (Fig.2 (a)):

P(d)*
d{1:25, (dv6:5km),

d{1:90, (d§6:5km):

(
ð1Þ

This power-law displacement distribution indicates that the

typical behavior consists of many short-range trips and few long-

range travels. This conclusion is in substantial agreement with the

conclusions of several previous findings [9,10]. The transition at

d^6:5km is related to the average extend of the urban district of

cities, indicating the difference between human urban movements

and intercity travels. This difference may be due to the

convenience of urban movements and the dominant high-

frequency movements between few positions (such as home and

working places) [15,21].

A similar scaling property is also observed in the staying time

distribution P(ts) at the population level, which can be well fitted

by a power-law function with an exponent {1:98 (Fig. 2 (b)),

indicating that humans usually stay in few positions for quite a

long time. This result is also close to previous findings based on

other data sets [9,11,16,27].

The distribution P(te) of the elapsed time te that individuals

spend on the way from an effective staying position to the next one

has also been studied. As shown in Fig. 2 (c), P(te) shows a strange

behavior where two power-law-like sections are separated by an

unusual bump when 104
vtev2|104 seconds. It seems that this

bump results from the traffic jams. This result is somewhat

different to the previous findings in urban taxi data [17].

Moreover, we calculate the average speed vi~di=tei for every

user i, and plot each pair (vi,di) on the plane to get the pattern of

the relationship between speed and displacement. We surprisingly

find that v vs. d generally obeys two-section scaling form, in which

the first section (dv103 meters) is almost linear (slope &1:0),

whereas another part (dw103 meters) is sub-linear (slope &0:5), as

shown in Fig. 3. The point of transition d&103 meters and v&1
m/s, could relate to the length and speed of walking, therefore the

two sections would correspond to the travel by foot or by

automobile, with humans preferring a trip by automobile (bus, car,

etc.) for distances longer than 1 kilometer.

Figure 1. Illustration of the distinguishing on effective staying
positions. P1–P17 represent 17 track points recorded by a GPS
equipment from which we obtain two staying points S1 and S2. The
displacement of travel is defined as the distance between the centers of
the two staying points.
doi:10.1371/journal.pone.0084954.g001
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In addition, some movements have ultraslow speed, as indicated

by the dashed line in Fig. 3. The corresponding displacements of

these ultrashow movements are generally between 102 meters and

103 meters, and the corresponding elapsed time is mainly in the

range from 104 seconds to 2|104 seconds, corresponding to the

bump in P(te) displayed in Fig.2, possibly indicating displacements

hampered by traffic jams.

Correlations of displacements at the population level
For each sequence of displacements of individuals, the

correlation between two consecutive displacements reflects the

trends and causal relationship in human travels. To get the pattern

of the correlation, we plot each of the data points (di,diz1) and

calculate the density of these data points. Here di and diz1 denote

the i-th and the (iz1)-th displacement in the series~dd. As shown in

Fig. 4(a), most of the data points (di,diz1) accumulate close to the

diagonal line diz1~di, corresponding to a positive correlation.

We also plot the pattern using the related displacement
�dd~d=d�, where d� is the average displacement of the user. We

first calculate the average displacement of each user and then

obtain the sequences of �dd from each file. Fig. 4(b) shows the

pattern of the density of the data points (�ddi,�ddiz1), where the

positive correlation is much clearer.

Taking into account the heterogeneous d , we use the rank-

based correlation coefficient named Kendall’s Tau to quantify the

strength of this correlation. We first set ~ddi =

fd1,d2, � � � ,di, � � � ,dN{1g, and ~ddiz1 = fd2,d3, � � � ,diz1, � � � ,dNg
for every series, where N is the total number of the displacements

in the corresponding file. The detailed introduction of Kendall’s

Tau can be found in the second section of Materials and Methods.

The value of the Kendall’s Tau tK~0:424 for the series ~ddi and
~ddiz1, and the confidence interval with 95% significance level is

0:015. For the related displacement series~�dd�ddi and~�dd�ddiz1, tK~0:435
which represents a significant positive correlation.

This remarkable positive correlation shows that a trip can have

effect on the next one: if the current displacement is long, the next

one has a high probability to be only slightly different. The change

in displacement is usually gradual. This gradual change agrees

with our daily experience. For example, if we travel to another

city, we first need to find a hotel in the city. The movement from

our city to the target hotel generally is a long travel (the length may

be several hundred miles). In the next several days, we might leave

the hotel to visit some places around the city (generally tens of

miles). During each trip, our visit will contain many short moves

(usually less than one mile). A direct trip from our city to the place

in the target city rarely appears.

Furthermore, to investigate the long-term correlations in human

mobility, we calculate the Kendall’s Tau tK of the series ~ddi and
~ddizm (m~1,2, � � �), and find that the function tK vs. m shows a

remarkable slow decay, which can be well fitted by a power-law

function with an exponent {0:276 (Fig. 5(a)), implying that the

effect of previous movements can continue a very long time. To

ensure it, we plot the Pearson correlation coefficient Rm between

log(~�dd�ddi) and log(~�dd�ddizm). It does obey a power-law decay with a

slope c~{0:367 (Fig. 5(b)). The value H~1zc=2^0:82 is the

well-known Hurst exponent that denotes the long-term correla-

tions in the fluctuation of the series [28]. Using the method of

detrended fluctuation analysis (DFA) [29] (see the third section in

Materials and Methods), we obtain a similar Hurst exponent value of

H~0:87, indicating a strong long-term correlation among the

displacement series.

Two other correlations have also been studied, namely the

correlation among the series of staying times, and the correlation

between the staying time and the displacement. The series of

Figure 2. Aggregated mobility patterns. (a) The aggregated displacement distribution P(d), (b) the staying time distribution P(ts), (c) and the
elapsed time distribution P(te) in log-log plots.
doi:10.1371/journal.pone.0084954.g002

Figure 3. The relationship between the average speed v and
the displacement d. The slopes of the upper lines are 1.0 and 0.5
respectively, whereas the slope of the lower dashed line is 1.0.
doi:10.1371/journal.pone.0084954.g003
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staying times show only a weak positive correlation (its tK~0:120
with the confidence interval 0:015), and the staying times and

displacements are almost independent (its tK~5:30|10{3).

Mobility patterns at the individual level
The above discussions showed the scaling patterns and positive

correlation of human movements at the population level.

Nevertheless, since the above results are aggregated over all

individuals, we can not directly conclude that the movements of

each individual also exhibit the same properties. Actually, power-

law-like displacement distribution at the population level can even

be observed in a system where all the individuals’ movements are

Poissonian [15,30]. Because of the lack of direct evidence, it

remains controversial whether the scaling mobility patterns are

universal at the individual level. Recently, Yan et al. reported the

diversity of human mobility patterns at the individual level and

that many individuals’ displacement distributions usually are

dominated by some frequently-appearing mobilities [15]. Due to

the limitations in the original data sets of Yan’s work, this

conclusion still needs to be confirmed by more in-depth empirical

studies based on datasets with higher resolution.

Among the 100 remaining users, we choose the users who had

more than 200 effective staying positions to study their mobility

patterns at the individual level. We choose 200 to be the minimum

number of effective staying points in order to obtain efficient

statistical patterns. By doing this, 32 effective individuals with 698

files and 15189 staying positions are chosen. The number of

effective staying positions ns and the number of displacements nd

of each of the 32 users are listed in Table 1.

Plotting the displacement distribution P(d) and correlation

patterns (di,diz1) for each of the 32 users, we remark that users

with stronger positive correlation seem to have usually a

displacement distribution that is closer to a power law. The

trajectories, displacement distributions and correlation patterns

(di,diz1) of two typical users are shown in Fig. 6. User No. 9 has

many long-range movements, and his/her displacement distribu-

tion obeys well a power law. Significant positive correlation is also

observed. In contrast, the displacement distribution of user No. 22

is bimodal-like, and the correlation is also not obvious.

The positive correlation reflects a gradually changing nature of

human displacements. Previous studies in the temporal patterns

have found that this gradually changing process, or say the

cascading effect, is of close relevance to the emergence of

burstiness in human activities [31], as well as the long-term

persistences [32,33]. Our results seem to indicate that the positive

Figure 4. Aggregated displacement correlations di vs. diz1 (a) and �ddi vs. �ddiz1 (b) in scatter plot. The figure shows a high density of points
near the diagonal line diz1~di .
doi:10.1371/journal.pone.0084954.g004

Figure 5. Long-term correlations in human mobility. (a) The decay of Kendall’s Tau tK between~ddi and~ddizm as a function of the interval m. (b)

Pearson correlation coefficient Rm between log(~�dd�ddi) and log(~�dd�ddizm) as a function of the interval m.
doi:10.1371/journal.pone.0084954.g005
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correlation in the displacements is related to the scaling properties

in human mobility patterns.

To prove this hypothesis, we need to test the relationships

between the strength of the correlation and the form of the users’

displacement distributions.

Using the method introduced above, we first calculate the

Kendall’s Tau of the series ~ddi and ~ddiz1 for each user, as shown in

Table 1. Although all tK of the 32 users are positive, the value

varies in a wide range from 0.2 to 0.5, showing a great diversity in

the correlation. More than 2/3 of all users (23/32) have the

Kendall’s Tau tKw0:3 and exhibit significant positive correlation.

The correlation coefficients Ra of each user’s displacement

series are also calculated. Due to the heterogenous displacements,

the logarithm of displacement ln d is used here, so Ra is defined as:

Ra~
S( log (di){ log (d�))( log (diz1){ log (d�))T

s2
, ð2Þ

where d� is the average displacement of the user and s is the

variance of the displacement series ~dd . The values of Ra for all 32

users are shown in Table 1. All of them are higher than 0.5,

showing strong positive correlation in agreement with the above

results for the method of Kendall’s Tau. And also, to quantify the

long-term correlations, we calculate the Hurst exponent H of the

series log~dd of each user using DFA and find Hw0:5 for all of

Table 1. Information and fitting parameters of the 32 individuals, where ns and nd are the number of effective staying positions
and displacements of each user, d� and dmax are the average displacement and the maximum displacement of the user, and a is
the fitting exponent of P(d) using the estimated lower bound xmin.

user
ID ns nd d�/m dmax/m tK Dt Ra H pKS xmin a p0KS R0d R0t

1 424 407 10980 879844 0.231 0.085 0.360 0.83 4:37|10{3 49.9 1.496 1:21|10{17 20.978 20.989

2 278 257 12180 258183 0.360 0.108 0.500 0.85 3:98|10{1 3203.3 1.604 1:05|10{7 20.983 20.980

3 747 716 14311 5261960 0.312 0.065 0.421 0.80 6:42|10{1 404.9 1.469 2:22|10{26 20.989 20.993

4 232 220 7301 257901 0.390 0.113 0.515 0.66 6:76|10{1 4477.9 2.084 3:97|10{13 20.968 20.991

6 323 310 1373 40117 0.327 0.099 0.392 0.79 2:41|10{1 97.6 1.547 1:13|10{5 20.989 20.974

8 237 228 905 21326 0.300 0.111 0.325 0.55 3:89|10{1 152.5 1.649 2:91|10{4 20.980 20.991

9 1036 996 3161 490551 0.368 0.056 0.504 0.84 1:23|10{1 9.9 1.426 1:21|10{1 20.994 20.993

10 563 541 2022 158233 0.367 0.075 0.457 0.86 5:18|10{1 98.6 1.543 5:64|10{7 20.992 20.997

12 299 290 1086 21866 0.288 0.100 0.348 0.51 9:51|10{1 97.6 1.752 7:32|10{18 20.966 20.993

15 240 218 47632 526428 0.187 0.116 0.227 0.72 3:43|10{1 35114.0 2.065 9:23|10{13 20.976 20.980

22 1050 986 3055 60918 0.230 0.055 0.344 0.69 4:72|10{1 5601.9 3.232 1:10|10{24 20.964 20.972

26 2702 2650 370 16074 0.376 0.034 0.546 0.85 3:62|10{1 15.2 1.656 3:07|10{10 20.987 20.996

27 297 287 10732 639964 0.380 0.104 0.546 1.00 1:44|10{1 35.4 1.335 1:71|10{3 20.985 20.986

28 729 681 5271 103931 0.326 0.068 0.403 0.72 1:74|10{7 10.1 1.277 1:82|10{7 20.985 20.983

29 296 279 14295 867024 0.188 0.103 0.217 0.70 8:50|10{1 132.7 1.512 2:92|10{17 20.984 20.986

34 243 233 1682 34774 0.443 0.110 0.554 0.99 8:35|10{1 264.9 1.692 3:16|10{5 20.975 20.967

37 243 237 731 25306 0.231 0.110 0.307 0.78 9:61|10{1 21.7 1.692 2:88|10{5 20.982 20.983

39 731 673 1138 6481 0.153 0.068 0.244 0.53 6:37|10{21 10.0 1.316 6:03|10{21 20.898 20.959

40 379 365 1234 18140 0.518 0.093 0.655 0.88 9:56|10{1 2282.1 2.344 1:32|10{11 20.963 20.996

41 234 224 1533 33011 0.373 0.114 0.471 0.81 1:06|10{1 116.9 1.498 4:49|10{5 20.986 20.983

42 290 278 982 37454 0.363 0.101 0.446 0.79 7:77|10{1 225.8 1.706 2:24|10{4 20.984 20.990

43 382 357 4419 72620 0.369 0.090 0.438 0.91 1:39|10{3 10.7 1.293 1:15|10{3 20.987 20.989

44 361 354 212 9105 0.333 0.091 0.544 0.88 4:25|10{1 20.8 1.827 6:84|10{5 20.979 20.982

46 215 204 2206 19166 0.260 0.119 0.333 0.66 2:58|10{1 73.2 1.443 1:44|10{7 20.970 20.989

52 258 248 1497 39341 0.242 0.106 0.308 0.54 3:73|10{1 867.4 2.023 2:44|10{8 20.981 20.992

54 823 796 8716 1159507 0.442 0.064 0.578 0.82 1:04|10{1 9.9 1.408 1:02|10{1 20.992 20.993

78 319 306 4432 151888 0.416 0.096 0.509 0.79 8:21|10{1 17.5 1.427 2:63|10{2 20.990 20.993

79 549 530 1038 78978 0.444 0.076 0.568 0.81 1:72|10{1 12.7 1.490 7:41|10{3 20.991 20.985

116 272 261 567 13700 0.390 0.105 0.412 0.82 8:14|10{1 10.9 1.525 7:65|10{1 20.986 20.986

123 247 234 6133 255818 0.437 0.114 0.576 0.83 9:76|10{1 3999.2 2.024 3:58|10{13 20.970 20.994

134 360 340 9839 624928 0.348 0.094 0.416 0.86 1:01|10{1 47.5 1.339 5:37|10{10 20.985 20.984

137 528 483 21151 1291274 0.374 0.079 0.479 0.81 6:66|10{3 92.6 1.304 8:13|10{7 20.991 20.997

The definition of other parameters can be found in the main text.
doi:10.1371/journal.pone.0084954.t001
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them (Table 1), showing significant long-term persistence on

displacements.

To check whether individual-level displacement distributions

exhibit a power-law form, we plot these distributions and find that

most of them seem to be power-law-like after log-binning. Here

the Kolmogorov-Smirnov Test (KS Test) [34] is used to test the

power-law fits of these empirical data points. After estimating and

setting a lower bound xmin in the dataset, KS test will return

confidence probability pKS . Generally speaking, the bigger pKS is,

the better the fit is. Table 1 shows pKS of the log-binning

displacement distribution for each user, in which most of them

have pKSw0:1 and have a well-fitted power-law-like section.

However, several users have very large estimated values for xmin

in the KS test, showing that the power-law-like section only covers

a small range in the tail of P(d). We therefore fix xmin to 10 meters

to test if P(d) can be well fitted by a power law in all of the range.

This yields the confidence probability p0KS . Unfortunately, in only

a few users is the requirement p0KSw1 fulfilled, as shown in

Table 1, indicating that for most of these users a power law is

observed over only a small range.

To quantify the differences between P(d) and a strict power

law, one can also directly linear fit the data points of P(d) under a

double-logarithmic coordinate system to get the Pearson correla-

tion coefficient R0d between the fitting curve and P(d)[35]. The

better fitting corresponds to smaller negative values of R0d due to

the decaying power-law function, and Rd~{1 relates to a strict

power law. As shown in Table 1, all users’ R0d are less than {0:9.

Now we have five quantities for each individual, tK , Ra and H
are the ones for the correlations of user’s displacements, pKS and

R0d are the ones for the quality of the power-law fitting. We plot six

relationships of these quantities and respectively calculate their

Kendall’s Tau values, as shown in Fig. 7. Most of these

correlations are significant, and in supporting of our previous

guess that the scaling mobility patterns usually correspond to

higher correlation of displacements. This result implies that the

cascading-like processes play an important role in the emergence

of the scaling properties in human movements.

However, unlike the previous findings in human communica-

tions [32,33], the long-term correlations of move-lengths look

independent of the power-law exponents of P(d) (The Kendall’s

Tau between a and H is {0:129 with 95% significance level

confidence interval 0:262).

Similarly, we calculate the Pearson correlation coefficient R0t
between the staying time distribution P(ts) and power law fits for

each individual, as shown in Table 1. However, R0t does not show

significant correlations with R0d and p0KS (Kendall’s Taus

respectively are 0.214 and 20.048 for the confidence interval

0:262), and weak negative correlations with Ra and tK (Kendall’s

Taus respectively are 20.266 and 20.262 with the confidence

interval 0:262). Combining these results with the observation that

the staying time does not correlate with the displacement at the

population level, we infer that the effect of the dynamics on the

staying time is rather unrelated to that on the displacement.

At last, we compare the empirical correlations of the

displacement series with the ones that are generated by typical

models. Several models that are based on the random walks on

either hierarchical or self-similar organization, e.g. SLAW [19]

and the hierarchical-traffic-system model (HTS model for short)

Figure 6. Mobility patterns for two typical users. Trajectories (a, d), displacement distributions P(d) (b, e), staying time distributions P(ts)
(insets in (b, e)) and correlation patterns (c, f) of two typical individuals (upper and lower three panels for individual No. 9 and No. 22 respectively.
doi:10.1371/journal.pone.0084954.g006
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[20], can create displacement series with inherent positive

correlation and long-term correlations, which are mainly caused

by the cascading-like process since each movement can activate a

series of movements with similar changing trends on displace-

ments. A more detailed discussion can be found in the fourth

section in Materials and Methods. These models partially explained

the origin of the correlations in human mobility, nevertheless, the

explanation is not complete. How to understand the long-term

correlations is still of heightened interest in the future studies.

Discussion

By analyzing the dataset of GPS carriers, we observe the scaling

temporal-spatial properties in the aggregated human movements

as well as individual-level diversities. The displacement distribu-

tion at the population level is well-fitted by a power law. However,

the individuals’ mobility shows much diversity: some of them

display common scaling properties, but others are irregular, in

agreement with several recent studies [15].

Our most remarkable finding is the significant positive

correlation of the series of displacements both at the population

level and at the individual level, showing that the gradually

changing nature is wide-spread in human mobility. We surpris-

ingly find that the strength of the correlation for each individual is

significantly related to their displacement distribution: the

individuals with stronger displacement correlation have a higher

probability to possess a power-law-like displacement distribution.

This result is confirmed by four types of correlations (Fig. 7) and

implies that the cascading-like dynamics is an important mecha-

nism in the emergence of scaling properties of human mobility.

Although the total number of samples in our analysis is not very

big, this result is still highly believable, as most of the correlations/

correlations well pass the test with 95% significant level and

support each other.

We notice that the displacements and staying times are largely

independent both at the population level and at the individual

level, indicating that the mechanisms that drive the emergences of

their scaling laws are also independent. This result is helpful for

the modeling, as it indicates that we can divide the empirical

findings into several classes that may have similar dynamics

according to their correlations, and then can be modeled

independently.

Finally, the speed-displacement pattern shows the abnormal

transition from a linear to a sub-linear relationship (Fig. 3), which

may indicate the change of transportation from walks to

automobile and the average longest walking distance in daily life.

In addition, the impact on human mobility patterns due to traffic

jams are observed here.

In summary, we find that the positive correlation of the series of

displacements that describes the cascading-like movements, is a

characteristic factor that is relevant to the underlying mechanisms

of the scaling of mobility patterns from the empirical analysis. Our

findings and the methods used provide some useful insights for

further empirical and modeling studies of human mobility

patterns.

Materials and Methods

Dataset descriptions and the judgement of effective stay
positions

The data used in this study has been provided by the Microsoft

Geo-life project and contains over 2 years of GPS trajectories

(from April 2007 to August 2009) of 165 individuals. The dataset is

available at the website: http://research.microsoft.com/en-us/

downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/. The GPS

data was collected by different GPS handheld equipments or GPS

phones. In most of them, the interval of recording time ranges

from 2 to 5 seconds. The dataset includes more than 10,000

trajectories, the total recording distance is more than 1 million

kilometers, and the total recording time is more than

48,000 hours. The trajectories are widely distributed in the world,

covering more than 30 cities in China, and several cities in North

America, Europe, South-east Asia, etc. The movements recorded

by the dataset include not only trips to work or home, but also

many daily-life activities, such as shopping, sightseeing, dining,

hiking, and cycling, etc. The recording time for different

Figure 7. Patterns of six correlations. (a) p0KS vs. tK , (b) p0KS vs. Ra, (c) p0KS vs. H , (d) R0d vs. tK , (e) R0d vs. Ra , (f) R0d vs. H . Kendall’s Tau of these
correlations respectively are (a) 0.367, (b) 0.246, (c) 0.278, (d) 20.274, (e) 20.286, (f) 20.254, with 95% significance level confidence interval 0.262.
doi:10.1371/journal.pone.0084954.g007
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individuals is different, and ranges from several weeks to several

years. A trajectory file consists of a sequence of the records of

trajectory points, and each record provides information on the

latitude, longitude, and altitude of the position of the GPS holder,

and the corresponding recording time.

The dataset is composed by a series of geographic locations with

corresponding time recordings ordered by the time sequence.

They can not directly show the positions that users really have

stayed in, so first of all we should distinguish the effective stay

positions from the record. We set the resolutions for distinguishing

of staying positions to 10 meters for the displacement which is the

critical spatial resolution of a handheld GPS equipment, and 120

seconds for the time which is the interval of traffic signals.

Consider a trajectory labelled by fP1,P2, � � � ,PNg, where a

continuous sub-sequence fPj , � � � ,Pkg (where 1ƒjƒkƒN) satis-

fies the following two conditions: the distances between two

consecutive track points are less than 10 meters, and the total time

length of the sub-sequence fTj , � � � ,Tkg is larger than 120 seconds.

The average position of the sub-sequence is recorded as an

effective stay position, and ts~Tk{Tj is the staying time of the

stay position. As illustrated in Fig. 1, the average position S1 of

track points from P3 to P7 are considered as an effective stay point,

as all the geographical distances from P3 to P7 are no more than

10 m and T7{T3v120s. The same holds true for S2 for the track

points from P10 to P15. The straight-line distance between S1 to

S2 is set as the user’s displacement for the movement from S1 to

S2.

Most of the files in the dataset only contain the records of a few

minutes or hours. Since the critical staying time in each stay

position is set as 120 seconds, we usually can not obtain enough

effective stay positions to achieve good patterns of user’s mobility,

and we therefore abandon all the files where the recording time is

less than 6 hours, and we are left with 927 files from 100 users.

Using the above algorithms, we distinguish the effective stay

positions of each of the 100 users from the 927 files, which are

used in our analysis at the population level. An example of the

extraction of the effective staying positions is shown in Fig. 8. In

comparison with the original trajectory (the left panel of Fig. 8), all

the noneffective stay points are filtered out (the right panel of

Fig. 8).

However, in our empirical analysis at the individual level, the

number of effective stay positions of more than half of the 100

users is too small to extract its patterns. We thus remain with the

data of 32 users with a number of effective stay positions that is

larger than 200. Notice that we analyze the files of a same user one

by one, and the statistical patterns of the user are aggregated from

all of his/her files.

Kendall’s Tau
In our empirical analysis, the displacements of the users are very

heterogeneous, covering several orders of magnitude. Thus

classical measurements like the Pearson coefficient are not suitable

in analyzing the correlation of these displacements. We therefore

use the rank-based correlation coefficient named Kendall’s Tau. For

two series ~xx~fx1,x2, � � � ,xmg and ~yy~fy1,y2, � � � ,ymg, the

Kendall’s Tau is defined as [36]

tK~
2

m(m{1)

X
ivj

sgn½(xi{xj)(yi{yj)�, ð3Þ

where sgn(x) is the signum function, which equals +1 if xw0, 21

if xv0, and 0 if x~0. tK ranges from +1 (exactly the same

ordering of ~xx and~yy) to 21 (reverse ordering of ~xx and~yy), and two

uncorrelated series have tK&0. Obviously, as tK is calculated

based on the order of the elements in two series, the magnitudes of

differences on the value of the elements do not impact tK .

Detrended fluctuation analysis
The detrended fluctuation analysis (DFA) is a method proposed

to evaluate the self-affinity of a time series in stochastic processes.

It was first developed by Peng, et al. [29], and is helpful to reveal

the extent of long-term correlations of a time series. Using the

DFA method, the Hurst exponent can be derived through the

following procedures.

i) Considering a time series {dt,t[N}, we first need to calculate

the integration D(t) of the time series,

D(t)~
Xt

i~1

(di{vdtw): ð4Þ

where v
:
w means an average over all t0s.

ii) Then divide D(t) into mutually disjoint boxes of size Dt.

iii) In each box, using the least square method, we can get a n-

order polynomial fit Dfit(t), which is called the n-order trend. The

residual series, in which the trend has been eliminated, can be

derived by applying a subtraction.

Y (t)~D(t){Dfit(t): ð5Þ

iv) Calculate the mean square error of each box over the size Dt
after eliminating the trend.

E(Dt)2~
XDt

t~1

Y (t)2, ð6Þ

Figure 8. An example of the distinguishing of effective staying
positions. The figure left shows original trajectory of one GPS carrier.
The figure right shows the effective staying positions connected by
lines in order, where each vertex represents an effective staying
position.
doi:10.1371/journal.pone.0084954.g008
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v) Calculate the root-mean-square deviation, or say fluctuation,

over different (Dt)0s.

F (Dt)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Dt
E(Dt)2

r
: ð7Þ

vi) If the time series dtf g satisfies a power-law distribution, the

quality F (Dt) will also follow a power-law increasing function,

F (Dt)*(Dt)H , ð8Þ

where H is the Hurst exponent that we want to calculate. Here

H~0:5 represents the time series are completely uncorrelated,

and 0:5vHv1:0 indicates the time series are of long-term

correlation.

Long-term correlations in individual level and the
comparison with modeling series

Our findings have shown that there exists significant positive

and long-term correlations among the displacements of human

movements at the aggregated level. Meanwhile, at the individual

level, as shown in Fig. 9(a), the curves of Kendall’s Tau tK

between ~ddi and ~ddizm versus the interval m for different users are

diverse. The curves tK vs. m generally are closer to the power-law

form for the users with higher tK (m~1) (e.g. users Nos. 9, 26, 54

and 137), and fluctuate dramatically for the users with lower

tK (m~1) (e.g. users Nos. 22 and 39). On the whole, long-term

correlations of displacement series are also widely existed at the

individual level.

Researchers have proposed a series of agent-based models to

explain the origin of human mobility patterns. We can compare

the modeling displacement series with our empirical findings to

test these agent-based models. Since the scaling property of

displacement distribution is the first thing that would be taken into

consideration when modeling, our testing therefore will mainly

focus on the comparison of the correlations among displacement

series.

One of the simplest models is the pure Lévy flight, which

describes the random walk completely with power-law distributed

move-lengths (displacements). Obviously, its expected correlation

between two successive move-lengths is zero. Similarly, the

CTRW model [8] which considers both the random staying times

and the random displacements does not introduce any correlation

into displacements. Moreover, Song’s model [10], which is based

on two hypotheses: the exploration of new locations and the

preferential return to former visited locations, can only satisfy parts

of the empirical findings on correlations. The correlation between

two successive displacements is positive (tKw0:2). However, the

tK between~ddi and~ddizm is close to zero when m§2, which greatly

deviates from the empirical findings.

Several models can create correlation patterns more similar to

the empirical results. One is SLAW [19], which describes that an

agent preferentially moves to the nearby point in a fractal

landscape with self-similarly distributed points. Here the prefer-

ential movement is expressed by the probability pi~d{a
i =Sd{a in

which the i-th point is chosen to be the next staying point, and d is

the distance between the point that the agent currently locates and

the i-th point. The fractal landscape is controlled by the Hurst

exponent H that defines the distribution of the distance x between

any two immediate neighboring points p(x)*x{b, and b
negatively depends on H. As shown in Fig. 9(b), for small interval

m, when H is lower, stronger correlations between movements

appear, but the decay of tK is quicken to be the exponential form.

Another model is the hierarchical-traffic-system model (HTS

model) reported in Ref. [20]. The basic rules and results of the

model can be briefly introduced as follows: Firstly we create a

hierarchical geographic network on a two-dimensional plane. In

the plane, K top-layer nodes, K(M{1) 2nd-layer nodes, � � �,
KMn{2(M{1) nth-layer (nw2) nodes, � � �, and KMN{2(M{1)
Nth-layer nodes are randomly distributed on the plane. Each node

is then connected to its nearest up-layer node. For the nth-layer

node, its weight is wn~rN{n, where rw1, represents that the

upper layer nodes have more attraction for agents. After the

construction of the hierarchical network, an agent randomly walks

on it. The probability for an agent to move to a neighboring city is

proportional to its weight. Obviously, due to the hierarchical

organization, the probability that walkers directly move from a

top-layer node to a bottom layer node is small. Since the long

range movements only exist between two higher layer nodes, the

displacements of the agents are gradual changed and has inherent

positive correlation. tK of the displacement series is 0.39, very

Figure 9. The decay of Kendall’s Tau tK between ~ddi and ~ddizm versus the interval m for several typical users (a) and modeling series
(b). The wine dashed line in panel (a) is the fitting curve of user No. 26. The red, green and blue data points in panel (b) are respectively the results of
HTS model, and SLAW model with different Hurst exponent H . Each data point in the modeling results is an average of ten runs of simulations.
doi:10.1371/journal.pone.0084954.g009
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close to our empirical results. In addition, tK of the modeling

series also shows the power-law-like decay when m increases, as

shown in Fig. 9(b), however, the decay is quicker than empirical

results. Ref. [37] also mentioned a model based on the hierarchical

structure on purpose cluster graph. Although we can not test it

directly for its result is partially depending on the empirical data, it

would be reasonable to take the view that its correlation patterns

would be similar to the HTS model because of its hierarchical

hypothesis.
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