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Abstract

Human geneticists are increasingly turning to study designs based on very large sample sizes to overcome difficulties in
studying complex disorders. This in turn almost always requires multi-site data collection and processing of data through
centralized repositories. While such repositories offer many advantages, including the ability to return to previously
collected data to apply new analytic techniques, they also have some limitations. To illustrate, we reviewed data from seven
older schizophrenia studies available from the NIMH-funded Center for Collaborative Genomic Studies on Mental Disorders,
also known as the Human Genetics Initiative (HGI), and assessed the impact of data cleaning and regularization on linkage
analyses. Extensive data regularization protocols were developed and applied to both genotypic and phenotypic data.
Genome-wide nonparametric linkage (NPL) statistics were computed for each study, over various stages of data processing.
To assess the impact of data processing on aggregate results, Genome-Scan Meta-Analysis (GSMA) was performed.
Examples of increased, reduced and shifted linkage peaks were found when comparing linkage results based on original
HGI data to results using post-processed data within the same set of pedigrees. Interestingly, reducing the number of
affected individuals tended to increase rather than decrease linkage peaks. But most importantly, while the effects of data
regularization within individual data sets were small, GSMA applied to the data in aggregate yielded a substantially different
picture after data regularization. These results have implications for analyses based on other types of data (e.g., case-control
GWAS or sequencing data) as well as data obtained from other repositories.

Citation: Walters KA, Huang Y, Azaro M, Tobin K, Lehner T, et al. (2014) Meta-Analysis of Repository Data: Impact of Data Regularization on NIMH Schizophrenia
Linkage Results. PLoS ONE 9(1): e84696. doi:10.1371/journal.pone.0084696

Editor: Ferdinando Di Cunto, University of Turin, Italy

Received August 30, 2013; Accepted November 26, 2013; Published January 14, 2014

Copyright: � 2014 Walters et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Institutes of Health grants R01 MH086117 and U24 MH068457. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Dr. Brzustowicz serves as a consultant for the Janssen Pharmaceutical Companies of Johnson & Johnson. All remaining authors report no
competing interests. This does not alter their adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: kimberly.walters02@nationwidechildrens.org

Introduction

For the past two decades, NIMH-funded investigators conduct-

ing genetic research have been strongly encouraged to contribute

biospecimens, along with whatever corresponding genotypic and

phenotypic information they have assembled, to a centralized

repository housed at the Center for Collaborative Genomic

Studies on Mental Disorders at Rutgers University and Washing-

ton University. The repository grows immortalized cell lines,

supplies DNA to researchers, and also provides downloadable

copies of clinical and genotypic data files through the Human

Genetics Initiative (HGI, nimhgenetics.org). The HGI is an

enormous resource for the psychiatric genetics community,

particularly insofar as it facilitates joint analysis of multiple studies,

allowing analyses based on far larger sample sizes than can be

accomplished by any one research project. (Note that the HGI has

recently been renamed the NIMH Repository and Genomics

Resource.)

At the same time, large-scale data repositories such as the HGI

present challenges that must be approached with care. Differences

due to study design, ascertainment strategies, and evolving

standards in psychiatric genetic practice make it challenging to

standardize data across contributing studies for purposes of

combined analysis. Additionally, while errors in their own data

are likely discovered by researchers before publication, there are

no formal mechanisms to ensure corresponding corrections in

repository files after the initial data deposit. Researchers may also

have access to additional clinical information not conveyed by the

repository files, perhaps because they were never recorded in

standardized digital form in the first place, not collected under the

same funding mechanism or time frame as the primary data, or

not requested by the repository at the time of deposition. Data

regularization efforts at the repository itself may also introduce

discrepancies, for example when annotations describing non-

standard use of diagnostic codes by a specific study are not

prominently featured in data summaries. As a result, data found in

repositories tend to differ from data as published by the primary

investigators. Indeed, it is frequently not possible to completely

reconcile simple quantities of data (number of cases or families)

between HGI files and published reports describing the same data

sets.

We report here results from the Combined Analysis of

Psychiatric Studies (CAPS), a collaborative project with the
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HGI, a primary aim of which is to review and regularize HGI data

across multiple studies, returning to the community sets of data

specifically configured for cross-study analysis. In this paper, we

describe the methods used to regularize the data in application to

all available HGI multiplex family data for schizophrenia, and

show the impact both on the data themselves and on linkage

analysis results. One advantage of working with these older data is

that we can handle them now with the benefits of hindsight. We

expect lessons learned from this exercise to apply to future uses of

very different types of data and multiple data repositories. All

protocols and data files used here are available to the research

community at https://www.nimhgenetics.org/projects/CAPS.

Methods

In this section we (i) give an overview of available Studies and

Subjects and (ii) describe Preliminary Data Handling, used to prepare

files for subsequent processing steps. We distinguish two separate

versions each of the genotypic and phenotypic data. The first

version (HGI-Geno and HGI-Pheno) contains the data as

downloaded from the HGI with minimal manipulations (as

described below); this is the version that most end-users of the

repository would presumably rely on for their own analyses. The

second version (CAPS-Geno and CAPS-Pheno) represents the

data after processing under our regularization protocols. Details

regarding the four corresponding data sets are given in subsections

(iii)–(vi) respectively. Finally, we (vii) describe Statistical Methods used

in assessing the impact of data regularization on linkage results.

(i) Studies and Subjects
We started with all available data as of April 2011, at which

point the HGI had data on seven schizophrenia studies with

multiplex families and sufficient genotypic data to perform

genome-wide linkage analysis. For brevity, we refer to the 7

studies as Study 1-Study 7. Table 1 provides summary information

on each study, including HGI sample sizes and corresponding

sample sizes from the original publications reporting on these data.

In aggregate the HGI files data contain 1,552 pedigrees, with

phenotypes available for 6124 individuals (average 3.9 per

pedigree), and genotypes available for 6,512 individuals (average

4.2 per pedigree). Note that this excludes 100 pedigree IDs found

in either the HGI ‘‘distribution’’ (phenotype) or genotype file that

were dropped prior to data processing (including effective trios,

families duplicated between Study 5 and Study 6, families not

found in the distribution file, and a small number of unresolvable

IDs across the two sets of HGI files).

Because studies differ in both genotyping and phenotyping

procedures, we process the HGI data separately by study. We

further subset by major population groups, based on study-

reported group affiliation by family: African American, European

American, Han Chinese, or Hispanic. Because many studies

included only a single group by design, in all this left 9 distinct

subsets for data processing purposes, as indicated in Table 1. [Note

that the original studies either focused ascertainment on a single

group, or published their results stratified by group. Following

their subgrouping therefore maintains comparability with the

original analyses. Note too that the issue of ancestry per se is not

critical in linkage analysis, by contrast with association analysis.

Here it comes into play primarily with respect to construction of

genetic maps (see below).]

(ii) Preliminary Data Handling
Prior to beginning data processing, we harmonized the multiple

sources of pedigree information as well as the marker sets across

studies. We coordinated closely with HGI staff, as well as with the

original investigators in some cases, in order to resolve discrep-

ancies between the HGI distribution file (which contains

phenotypes) and the files containing genotypes, which the HGI

maintains separately. For the purposes of combining results across

studies, some preprocessing of marker names was required to

generate a common reference map, e.g., consolidating alternate

aliases and dropping custom suffixes. The reference map was

obtained by locating hg19 (Build 37) physical positions for all

possible markers using the UCSC genome browser, CIDR or

NCBI databases. We discarded markers that could not be found in

any of these databases based on hg19. Genetic positions were then

obtained from the Rutgers Combined Linkage-Physical Map [1].

(iii) Preparation of HGI-Geno
Studies 1–6 used microsatellite markers (978 unique markers

across studies) with median inter-marker distance 9.0030 cM,

median of 10 alleles per marker, and average heterozygosity 76%.

Study 7 used a set of 5,713 SNPs spaced every 0.65 cM on

average. (Study 4 also included 93 SNPs that we did not use.) The

HGI data included genetic positions for all studies and marker

allele frequencies for 4 studies; frequencies were not included for

Studies 1, 3 and 4. MENDEL [2] was run to remove Mendel

errors, by setting to missing the genotypes of all individuals in a

family for a marker giving an error. We also used MENDEL to

estimate allele frequencies using maximum likelihood for those

studies lacking allele frequencies in the data download.

(iv) Preparation of HGI-Pheno
The HGI clinical data (Schizophrenia Release 8.0) included

potentially multiple DSM-IIIR and DSM-IV codes per individual

for lifetime diagnoses, plus a single algorithmically assigned overall

diagnosis: schizophrenia (designated in the HGI files as ‘‘SZ’’),

schizoaffective (‘‘SA’’), schizoaffective depressive type (‘‘SADD’’),

narrow spectrum (‘‘NSPECT’’), broad spectrum (‘‘BSPECT’’),

never mentally ill (‘‘NMI’’), or other (‘‘OTHER’’). Working with

HGI staff, a new classification of ‘‘no psychiatric illness’’ (‘‘NPI’’)

was implemented, replacing NMI and distinguishing varieties of

OTHER, with uniform rules established to overcome what had

been some inconsistencies in application of these categories across

the collection. We assumed that most end-users of the HGI data

would rely on the overall diagnoses, rather than DSM codes, and

for processing purposes we utilized HGI’s Model III: the broadest

definition in which schizophrenia, schizoaffective, schizoaffective

depressive type, narrow spectrum and broad spectrum are coded

as ‘‘affected.’’ Individuals coded as NPI (no psychiatric illness)

were classified as ‘‘unaffected,’’ and the remaining individuals

were classified as ‘‘unknown.’’ Note that the depositing investiga-

tors’ best estimate final diagnosis (BEFD) was not required by the

HGI and was therefore generally not available.

(v) Preparation of CAPS-Geno
A number of data processing steps were taken to regularize the

HGI-Geno data separately for each subset, imposing reference

map marker order throughout. PEDSTATS [3] was run to

identify and drop markers with Hardy-Weinberg equilibrium

(HWE) p-value ,0.0001. In-house scripts were used to remove

markers missing .10% and zero individuals missing .20% of

genotypes. Study 7 was only partially genotyped on the X

chromosome, and therefore chromosome X markers were retained

in this sample with up to 14% missingness. RELCHECK [4] was

then run to verify and adjust pedigree structures. Mendel errors

were assessed, including total number of errors per family and per

marker, using MENDEL and zeroed-out as described under

Meta-Analysis of Repository Data
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HGI-Geno above. Checks for Mendel errors, missingness, and

HWE were repeated (in this order) in case any new markers or

individuals crossed our criteria for removal during the previous

steps. At each step, histograms were visually inspected to check

that cutoffs were appropriate given the observed distributions

(e.g., that they successfully captured outliers). Inspection of the

histograms led us to raise the missingness thresholds to 25% for

individuals and 15% for markers during the final iteration.

(A complete set of histograms can be found in Appendix S1.)

Additional checks at this stage included looking for duplicated

individuals across pedigrees using RELCHECK and verifying

concordance between recorded sex and X-chromosome geno-

types. When an individual’s sex could not be resolved by

genotyped mate and offspring (without RELCHECK problems),

the X-Genotypes were zeroed and the phenotype of the individual

was set to unknown to protect against undetectable sample swaps.

Finally, we constructed subset-specific maps based on the data

as processed to this point, to allow for differing inter-marker

genetic distances and marker allele frequencies across studies and,

in particular, across population groups. For the microsatellite data,

marker-to-marker genetic distances were estimated using

KELVIN [5], and marker allele frequencies were estimated by

maximum likelihood estimation using MENDEL for all data sets,

including those for which frequencies had been included in the

HGI files. For the SNP data, marker allele frequencies were

similarly estimated, but physical locations were interpolated

directly onto the reference map.

(vi) Preparation of CAPS-Pheno
The primary aim of phenotypic data regularization was to

ensure consistency in the handling of clinical complexities across

studies, in preparation for multi-study linkage analysis. We

therefore worked from the original investigator-supplied DSM

codes, rather than the algorithmic HGI diagnoses. Note, however,

that these codes represent lifetime diagnoses, without temporal

data (although such information may have been available to the

original investigators). Therefore, it was not possible for us to

distinguish comorbid conditions from conditions that occurred

over the course of illness or due to disease progression. Given the

data available to us, or to any end-user of the HGI, we opted to

take a conservative approach to diagnostic classification, in order

to focus on a core phenotype that could be consistently assigned

across studies. Additionally, we would expect our conservative

approach to increase power to detect linkage. Linkage analysis is

particularly sensitive to the miss-classification of unaffected

individuals as affected, a type of error that can mimic both inter-

and intra-familial heterogeneity, and as a result can severely

reduce power. Of course classifying affected individuals as

unaffected or unknown can also reduce power through loss of

information, but the two types of errors are not equivalent in their

impact, depending on the type of analysis employed.

We first applied exclusionary criteria, recoding diagnosed

individuals as phenotype ‘‘unknown’’ in the presence of: all

dementias, amnestic and cognitive disorders; unknown/unspeci-

fied or deferred diagnoses on Axis I; and substance-related

disorders that have been linked to schizophrenia or that cause

ancillary psychiatric symptoms. Also set to ‘‘unknown’’ were

individuals with Major Depressive or Bipolar Disorder coded as

either ‘‘severe, with psychotic features’’ or ‘‘severity unknown.’’

(A complete list of corresponding DSM-IIIR and DSM-IV codes is

found in Appendix S2, along with our final diagnostic algorithm.)

Remaining schizophrenia cases, coded as ‘‘affected,’’ were divided

into two levels: (i) Schizophrenia (Disorganized, Catatonic,

Paranoid, and Residual types of Schizophrenia Disorder); and

(ii) Schizophrenia/Affective (Schizoaffective Disorder or any

Schizophrenia Disorder and a significant Affective Disorder).

Schizophrenia individuals with comorbid diagnoses of Recurrent

Major Depressive or Bipolar Disorder were recoded as Schizo-

phrenia/Affective in order to account for the affective presentation

while taking into consideration diagnostic uncertainty due to lack

of temporal data. We also classified as Broad Spectrum anyone

meeting criteria for a Delusional Disorder, Brief Psychotic

Disorder, Psychotic Disorder NOS, Schizophreniform Disorder,

or Cluster A Personality Disorder. Because we would expect more

variability in the diagnosis of individuals with broad spectrum

rather than clear-cut core schizophrenia, Broad Spectrum subjects

were recoded to ‘‘unknown;’’ only 187 individuals (,7% of

affected individuals) fell in this category. Individuals assigned a

Table 1. Overview of Included Studies and Sample Sizes.

Study
NIMH
study NIMH data Ancestry1

Reference
families

Download
families2

Processed
families3

Analysis
families4 Reference

Study 1 0 1 African American 30 28 28 19 [12]

Study 1 0 1 European American 43 46 45 21 [13]

Study 2 6 11 African American 146 146 146 86 [14]

Study 2 6 11 European American 263 266 266 166 [14]

Study 3 3a 12 Han Chinese 606 574 571 497 [15]

Study 4 15 21 European American 43 40 40 17 [9]

Study 5 13 22 Hispanic 99 95 94 69 [16]

Study 6 13 23 Hispanic 175 185 175 101 [17]

Study 7 22 24 African American 2175 172 169 44 [18]

Total 1622 1552 1534 1020

1Total sample sizes by Population Group are N = 346 African American, N = 352 European American, N = 574 Han Chinese and N = 280 Hispanic.
2This count omits 100 pedigree IDs dropped prior to processing, primarily due to uninformativeness for linkage or duplication across Studies 6, 7.
315 families were dropped (and 3 subsumed by joining) prior to this stage, see Appendix S1 & Table S1 for details.
4Families used in this paper to compare results across the four data configurations are those remaining after genotype processing with at least two schizophrenia cases
according to either the HGI or CAPS clinical criteria, omitting 16 such families with bitsize larger than 24 for computational reasons.
5Study 7 included trios in the published total.
doi:10.1371/journal.pone.0084696.t001
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diagnosis of Bipolar I or II Disorder NOS, Mood Disorder NOS,

Depressive Disorder NOS, Personality Disorder NOS, or Diag-

nosis Deferred on Axis II, were coded as ‘‘unknown.’’ Finally,

individuals with a clinical assessment who did not meet criteria for

Schizophrenia, Schizophrenia/Affective, or Broad Spectrum and

who also did not have any of the exclusionary diagnoses were

coded as ‘‘unaffected.’’

(vii) Statistical Methods
In order to assess the impact of the CAPS data processing

protocols on linkage analysis results, we computed multipoint

nonparametric linkage (NPL) scores based on S-pairs [6] using

MERLIN [7]. All but one of the original publications used either

the NPL or the closely related z-score of Whittemore and Halpern

[8]; the one exception was Study 4 [9], which utilized MCMC and

Variance Components. Analyses were conducted separately for

each data subset, and in order to distinguish the impact of changes

in genotypic or phenotypic data separately, we compared results

over the following four configurations: HGI-Pheno+HGI-Geno,

HGI-Pheno+CAPS-Geno, CAPS-Pheno+HGI-Geno, and CAPS-

Pheno+CAPS-Geno.

To assess the aggregate impact of data processing across the 9

data subsets, we conducted Genome Scan Meta-analysis (GSMA)

[10] based on the NPL results. Following recommendations in

[10] and [11], empirical p-values (one million replicates) were

based on the observed square root weighted summed ranks of bin-

maximum NPLs, using bin sizes of 25 cM. In order to align

genetic positions across studies, we first projected the subset-

specific NPL results onto the common reference map described

above.

In order to conduct ‘‘apples to apples’’ comparisons, we

included families that were retained through all processing steps

in CAPS-Geno, but dropped 16 families too large for MERLIN to

handle without trimming either before or after processing. We also

included only families with at least two affected cases under both

HGI-Pheno and CAPS-Pheno. This ensured identical sample sizes

across all four data configurations, allowing us to assess data

processing effects independently of confounding by changes in

which families were included at various processing stages. (The

one exception occurred in Study 3: 6 families listed with separate

family IDs in HGI-Geno were joined pairwise in CAPS-Geno, for

a net reduction of 3 families). Thus any impact of data

regularization on results, as reported below, is due solely to

changes made in this set of pedigrees, and not due to differences in

sample sizes that would result if we were to base inclusion criteria

on CAPS-Pheno rather than HGI-Pheno. Note that as a result, of

the 1,534 original families (Table 1), only 1,020 are actually used

for purposes of these comparisons. Table S1 (available online)

gives HGI ID’s for families used at each stage and annotates

reasons for dropping families where applicable.

Results

In what follows, we (i) detail the effects of data processing on the

data themselves; (ii) illustrate the separate and combined effects of

phenotype and genotype processing on linkage results in individual

data subsets; and (iii) examine the overall effect of processing on

meta-analyses of the entire HGI data set.

(i) Results of CAPS Data Regularization
During preliminary data handling, we resolved 1,052 discrep-

ancies in family membership between the distribution files and the

genotype files (individuals found only in one file or the other), 121

discrepancies in assigned parentage across the two sets of files, and

8 discrepancies in recorded sex. Duplicative marker aliases were

resolved for 69 markers. We dropped 5 markers not found in any

map database as well as a single custom marker that was

redundant with a standard one. There were 14 changes in marker

order going from HGI-Geno to CAPS-Geno.

Processing of the genotype data for the initial 1,552 pedigrees

resulted in the following actions. Seven markers were dropped due

to HWE violations; 241 microsatellite markers were removed in all

(with a range of 3 to 81 markers per data set; this left a range of

373 to 395 markers per data set), and genotypes for 46 individuals

were zeroed out due to excess missingness. As a result of

relationship checking, 5 families were removed and 36 corrections

were made to the pedigree structures, including removal of 14

monozygotic twins and 13 other family members. In addition, 10

families were dropped due to excess Mendel errors, and 3

extended pedigrees were reconstituted from 6 separate family IDs

(as noted above). There were 52 discrepancies between recorded

sex and X-chromosome genotypes, of which only 4 cases were

verifiable by genotyped mate and offspring. Estimation of the

marker positions and allele frequencies resulted in numerous

adjustments from HGI-Geno. Following these steps, there were a

total of 1,534 pedigrees.

Processing of the clinical data resulted in a considerable number

of additional changes. While only 3 out of 5,596 (,0.1%)

individuals became affected, 858 out of 3,632 (24%) cases as

classified by the HGI became unknown in CAPS-Pheno. Our

protocol improved the resolution of the HGI diagnosis OTHER,

converting 376 out of 1,036 (36%) to a known phenotype. 1,413

families qualified as multiplex according to a minimal requirement

of two broad HGI-Pheno cases, while 1,046 qualified as multiplex

in CAPS-Pheno. The impact of data processing on numbers of

affected individuals and multiplex families can be seen in Figure 1.

Within the restricted set of pedigrees used to assess the impact of

data processing on results (below), 224 out of 2,515 (9%)

individuals coded as HGI-affected were recoded as CAPS-

unknown; 135 out of 1,548 (9%) coded as HGI-unknown were

recoded as CAPS-unaffected; and 1 out of 1,565 (,0.1%) coded as

HGI-unaffected was coded as CAPS affected.

Figure 1. Effects of data processing on (a) number of affected
individuals1 and (b) number of multiplex families2. S1 through
S7 indicate study numbers. The bars represent Human Genetics
Initiative (HGI) and Combined Analysis of Psychiatric Studies (CAPS)
data. 1HGI diagnosis includes SZ, SA, SADD, NSPECT and BSPECT; CAPS
diagnosis includes Schizophrenia and Schizophrenia/Affective as
defined in the text. 2HGI includes all 1,413 families with at least two
affected individuals by HGI criteria; CAPS includes all 1,046 families with
at least two affected individuals by CAPS criteria. Note that analyses
presented in the main text utilized the subset of pedigrees satisfying
both criteria.
doi:10.1371/journal.pone.0084696.g001
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(ii) Linkage Results by Data Configuration within Subsets
Various effect types can be found across the 9 data subsets and

across the genome, including linkage signals that diminish,

increase or shift in position following data processing. In general,

these changes were small when viewed one data set at a time (but

see below). Illustrative examples are shown in Figure 2; complete

results are given in Appendix S3. In most cases, phenotype

processing had the greater effect. Note, however, that in the

majority of cases, the result was an increase in the linkage peak

going from HGI-Pheno to CAPS-Pheno, consistent with the

CAPS diagnostic criteria reducing heterogeneity within pedigrees.

There are also locations at which genotype processing alone affects

results, and others where genotype and phenotype processing

interact to produce distinct profiles in all four configurations.

(iii) Effect of Data Processing on Linkage Results in
Aggregate

Figure 3 shows GSMA results for all 9 subsets in aggregate,

comparing HGI-Geno+HGI-Pheno (HGI-data) with CAPS-

Geno+CAPS-Pheno (CAPS-data). As can be seen, there are

substantial differences in the overall landscape between the two

versions of the data. Of the 5 peaks .1.5 based on HGI-data, two

remain close in magnitude (on chromosomes 2, 6), one is

substantially reduced (chromosome 11), while two are substantially

increased in the CAPS-data (chromosomes 10, 15). Additionally,

the CAPS-data yield three new peaks .1.5 (chromosomes 2, 5, 7).

It is noteworthy that the accumulation of what appear to be quite

small changes in individual data sets results in more substantial

aggregate effects on the meta-analytic results, both in terms of the

p-values themselves and also the rank ordering of peaks by p-value

across the genome.

Discussion

We have undertaken a thorough and rigorous review of a

substantial quantity of data accessible to the research community

through the HGI. While the potential utility of such large-scale

repositories is obvious, our results clearly demonstrate issues that

should be addressed when handling the data. There are numerous

opportunities for errors to occur throughout the process of data

accumulation and transfer to a repository, and few mechanisms in

place for systematic data correction over time, as individual

investigators and their collaborators continue to work with the

data. Additionally, some clinical information available to the

original investigators may never be submitted. Indeed, it is seldom

possible to align the publicly available data with published results

from the contributing investigators with any specificity. This

typically reflects historical and logistical issues with data deposition

into repositories, rather than any particular fault on the part of

researchers who undertake to make their data available to others.

Individual studies may lack funding to implement sophisticated

databases, and final data correction steps frequently happen after

the end of a grant when personnel may no longer be available to

coordinate changes subsequent to initial submission. Despite the

invaluable and diligent efforts of original investigators, data from

public repositories need to be handled with care.

In this paper we have not attempted to draw any genetic

conclusions from the analyses. Rather, our purpose here was to

highlight issues of importance when working with repository data,

to present the protocols we have used to address these issues, and

to illustrate potential impact of data regularization on linkage

results. It is noteworthy, however, that an investigator accessing

and analyzing the (corresponding subset of) HGI pedigrees for a

meta-analysis of schizophrenia linkage results would draw different

conclusions than those found in the same families after CAPS

processing, with four ‘‘suggestive’’ peaks (2log10[p-value] .2)

based on CAPS-data compared to only one in HGI-data. Insofar

as we have succeeded in reducing data errors and increasing

clinical homogeneity within pedigrees, this illustrates the possibility

of increasing power even while reducing the number of affected

individuals.

A substantial portion of the effect of our data regularization

protocols on linkage results does indeed relate to the strict clinical

criteria we chose, based on conservative definitions of Schizo-

phrenia and Schizophrenia/Affective, to maximize uniformity

across studies. This does not imply that all of the remaining

families that are multiplex according to HGI-Pheno but not

CAPS-Pheno (not included in these comparisons) are necessarily

problematic or inappropriate for analysis. The full set of post-

processing files for all CAPS-Geno pedigrees (including these

CAPS non-multiplex families) are available through https://www.

nimhgenetics.org/projects/CAPS, so that investigators can use

their own clinical judgment in constituting data sets for future

analyses. (Note too that many of the corrections made in the

course of our work have been incorporated into subsequent

releases of the standard HGI Schizophrenia data for Releases 8.01

and beyond.) However, insofar as clinical heterogeneity is in itself

a problem for many complex disorders, this is an issue with far

reaching implications, because the larger the desired sample size,

the more prohibitive the cost of careful phenotyping becomes. It

seems likely, therefore, that any deleterious effects of clinical

heterogeneity also rise with sample size.

Of course, even the largest of the GSMA signals is still moderate

in magnitude, and different patterns of comparative (HGI-data vs.

CAPS-data) results might emerge for data showing much stronger

linkage signals. Additionally, other data analytic approaches might

yield different comparative results. We chose to rely here on

GSMA for three primary reasons: (i) it allowed us to utilize

separately estimated genetic maps for different population groups

for CAPS-data; (ii) it is a commonly used method for analyzing

multi-site genetic data; and (iii), our primary interest was in effects

of data processing on meta-analysis per se. Another approach to

analyzing multisite data is so-called ‘‘mega-analysis,’’ in which all

data are simply pooled into a single data file for analysis, with all

markers other than those used for a given study coded as missing

all genotypes for families in that study. (This requires a common

genetic map across studies.) For completeness, we include mega-

analysis in Appendix S4. Results from mega-analysis are probably

confounded by the particular configuration of missing marker data

across studies, especially given the sparse marker maps used in the

studies considered here. However, they corroborate the impact of

data regularization both on peak size and rank ordering of loci.

It is of course not possible to extrapolate from the specific

impacts of data regularization reported here to effects that might

be seen in different data sets, perhaps analyzed using different

statistical methods. Despite this caveat, we believe that the salient

lessons learned from this exercise apply to other types of data that

are processed through centralized repositories, including genome

wide association and whole genome sequencing data. Errors and

irregularities do accumulate in repositories, and differences across

studies in clinical classification methods matter. It remains an open

question whether in any particular application we can safely rely

on increased sample size alone to overcome the impact on overall

results of data irregularities and between-site differences, partic-

ularly with respect to phenotype definition, which are inevitable in

the context of very large data collection and deposition projects.
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Supporting Information

Appendix S1 Complete set of genotypic data processing
histograms. The histograms included for each study are Hardy-

Weinberg p-values, initial and repeat missingness proportions for

markers and individuals, and Mendel error counts by family and

by marker. The number of observations, the range in values, and

the number of observations over threshold are annotated within

each histogram. Note that the range of the x-axis is data

dependent and that the vertical dashed line indicates the threshold

(shown when data range exceeds it).

(PDF)

Appendix S2 Phenotypic data processing alogorithm
including DSM codes. The diagnostic algorithm converts sets

of DSM codes into three working variables (SZ, SA, BS), which

are in turn translated into affectedness status in the table provided.

For both versions of the codes, DSM-IIIR and DSM-IV, the code

Figure 2 Examples of the effects of data processing on linkage results within individual data subsets. The labels for each line indicate
state of phenotype (Pheno) and genotype (Geno) data, which can be Human Genetics Initiative (HGI) or Combined Analysis of Psychiatric Studies
(CAPS).
doi:10.1371/journal.pone.0084696.g002
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sets used in the algorithm are then itemized; they are:

SZ_CODES, SA_CODES, BS_CODES, GLOBAL_EXCLUDE,

UNAFF_EXCLUDE, SZ_DEMOTE1, SZ_DEMOTE2, SA_EX

CLUDE, SA_DEMOTE, BS_EXCLUDE.

(PDF)

Appendix S3 Complete linkage results by subset over all
processing states. The labels for each line indicate state of

phenotype (Pheno) and genotype (Geno) data, which can be

Human Genetics Initiative (HGI) or Combined Analysis of

Psychiatric Studies (CAPS).

(PDF)

Appendix S4 Meta-analysis versus pooled mega-
analysis.
(PDF)

Table S1 Complete list of family IDs and processing
status indicators. Column header descriptions are as follows:

dataset ID and family ID refer to NIMH Human Genetics

Initiative (HGI) identifiers; merged indicates whether pedigree was

joined during genotype processing by Combined Analysis of

Psychiatric Studies (CAPS); CAPS-Geno indicates whether

pedigree passed genotype regularization, and the excess Mendel

or relationship error columns show reasons for failure; multiplex

refers to families meeting both CAPS and HGI multiplex criteria;

high bitsize indicates 16 pedigrees with bitsize of 25 or more;

analysis indicates the 1,020 pedigrees used in this study, i.e., those

passing CAPS-Geno, multiplex and not high bitsize.

(PDF)
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