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Abstract

Epigenetic processes–including DNA methylation–are increasingly seen as having a fundamental role in chronic diseases
like cancer. DNA methylation patterns offer a route to develop prognostic measures based directly on DNA measurements,
rather than less-stable RNA measurements. A novel DNA methylation-based measure of the co-ordinated interactive
behaviour of genes is developed, in a network context. It is shown that this measure reflects well the co-regulatory
behaviour linked to gene expression (at the mRNA level) over the same network interactions. This measure, defined for pairs
of genes in a single patient/sample, associates with overall survival outcome independent of known prognostic clinical
features, in several independent data sets relating to different cancer types. In total, more than half a billion CpGs in over
1600 samples, taken from nine different cancer entities, are analysed. It is found that groups of gene-pair interactions which
associate significantly with survival identify statistically significant subnetwork modules. Many of these subnetwork modules
are shown to be biologically relevant by strong correlation with pre-defined gene sets, such as immune function, wound
healing, mitochondrial function and MAP-kinase signalling. In particular, the wound healing module corresponds to an
increase in co-ordinated interactive behaviour between genes for worse prognosis, and the immune module corresponds to
a decrease in co-ordinated interactive behaviour between genes for worse prognosis. This measure has great potential for
defining DNA-based cancer biomarkers. Such biomarkers could naturally be developed further, by drawing on the rapidly
expanding knowledge base of network science.
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Introduction

Epigenetic information is stored in the genome in the form of

heritable modifications to the chemical structure of DNA, such as

methylation of CpG di-nucleotides. Epigenetic information can be

modulated during the lifetime of an organism by environmental

cues [1–3] and these changes persist in subsequent mitoses, leading

to an acquired change of phenotype. As such, epigenetics can be

considered to be an interface between the genome and the

environment, and consequently also a conduit for environmental

risk factors.

Alterations in DNA methylation (DNAm) levels are among the

earliest changes in human carcinogenesis [1], and hence offer

novel strategies to identify individuals who might be at risk of

developing such illnesses or individuals with early stage cancers.

However, to proceed with developing such tests, measures relating

to DNA methylation are needed, which can be consistently linked

to clinically relevant differences, such as patient outcome. Per-gene

measures of DNA methylation have been shown to be relevant to

the study of cancer genomics [4], and network models and

measures naturally reflect the collective behaviour of groups of

similar items, such as genes, and their interactions with one

another. As such, they may help with the development of DNAm-

based biomarkers which take account of such collective and

interactive behaviour of genes.

As a cancer progresses, its signalling and control networks are

re-arranged (‘re-wired’), and this drives adaptive alterations in

phenotype, which are advantageous for the cancer [5]. Previous

research by other authors [6] found that patient survival outcome

in breast cancer (BRCA) could be predicted well by network

models of this re-wiring, based on gene expression data. DNAm

patterns are more stable than gene expression patterns, because

DNAm measurements are taken directly from DNA, whereas gene

expression measurements must come via RNA. Hence, DNAm

patterns might be expected to lead to more reliable disease

biomarkers than gene expression patterns would be able to. Here,

we develop a measure of network interaction ‘co-ordinatedness’,

between pairs of genes, based on DNA methylation data. We show

that this measure, calculated for pairs of genes, is highly associated

with co-regulatory behaviour linked to gene expression (at the

mRNA level) over the same network interactions/pairs of genes.

We show that this measure associates significantly with overall

survival outcome independent of known prognostic markers in

several data sets and cancer types, and that groups of these

significant gene-gene network interactions identify subnetwork

modules, with a well-controlled false discovery rate. Of these

significant subnetwork modules, one module corresponds very
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strongly to wound healing, with its gene-gene interactions

displaying an increase in co-ordinated behaviour with worse

disease prognosis. Another of these significant subnetwork modules

corresponds very strongly to immune function, with its gene-gene

interactions predominantly showing a decrease in co-ordinated

behaviour with worse disease prognosis. Our findings provide the

basis for further development of independent DNA methylation

oncomarkers in the context of network science.

Results

The DNA Methylation Network Correlation Measure
The DNA methylation (DNAm) network correlation measure

quantifies the extent to which the DNA methylation profiles of a

pair of genes ‘explain’ each other. It is based only on

measurements of the DNA methylation profiles of this pair of

genes, and it acts as a surrogate for a measure of the extent to

which this pair of genes behave interactively. Such interactive

behaviour may include transcriptional regulation or other types of

biochemical interaction, and a pair of genes will affect each other’s

transcriptional behaviour or other biochemical functioning most

directly as a result of their own expression levels. An increase in

methylation level around the gene promoter is certainly correlated

with a decrease in the expression level of the gene, although which

of these occurs first is not clear [7]. An increase in methylation

level in the gene body is related less certainly to effects on gene

transcriptional and translational behaviour, which may include

increased expression level and alternatively spliced gene products

[7]. Hence, there may be a number of components of the variation

of the methylation profile of a gene which are significant in terms

of their correlation with different transcriptional effects of that

gene. The methylation profile of a gene is taken as a surrogate for

these various interactive effects in the DNAm network cross

correlation measure, which quantifies the extent to which these

interactive effects or patterns in a pair of genes explain each other,

as reflected in the DNA methylation profiles.

The DNAm network cross correlation measure is defined by

analogy to Canonical Correlation Analysis (CCA) [8] (see

‘methods and models’ for formal definitions). CCA aims to

discover linear combinations of variables of one type, and linear

combinations of variables of another type, so that these

combinations best ‘explain’ each other. In this context, a particular

way of combining (by scaling and adding) the deviations from the

mean methylation profile at a number of locations within one gene

might be particularly effective at explaining a particular combi-

nation (again, by scaling and adding) of the deviations from the

mean methylation profile at a number of locations in another

gene, and vice-versa. There will probably be fewer ways in which

the methylation levels of these genes vary across the samples, than

there are locations at which methylation is measured, along each

gene; this is because the methylation level at many locations along

a gene is highly correlated. CCA finds the most important

components of this variation across samples (in terms of these

linear combinations of variables of each type, i.e., methylation

measurements in each gene) which both these types of variables

(i.e., DNA methylation in the two genes considered) have in

common.

CCA finds linear combinations of the two types of variables that

covary. Because linear combinations are evaluated, the two types

of variables can be of a different number. The DNAm network

cross correlation measure therefore evaluates the extent to which,

in an individual sample, these combinations in this pair of types of

variables explain each other. The covariation is assessed against

typical variability in such variables. Such variation is assessed in

terms of the evaluated statistics. Variation is understood in terms

of the population covariance matrix, inherent to healthy samples,

the methylation profile for one gene makes up the variables of one

type, and the variables of that type are the methylation points, i.e.,

CpGs, along that gene. There are many sources of variation.

When the DNAm network cross correlation measure is large (i.e.,

close to 1), the corresponding pair of genes explain each others

transcriptional or translational behaviour (as reflected in their

methylation profiles) well, or have otherwise well-correlated

interactive behaviour, for the corresponding sample (patient); see

figure 1.

Application of the DNA Methylation Network Correlation
Measure to Data

The DNAm network correlation measure was developed and

evaluated in the context of DNAm data obtained via the Illumina

Infinium Human Methylation 450 K platform, from samples from

cancer patients made publicly available via The Cancer Genome

Atlas (TCGA) project [9–11], relating to nine different cancer

types. Details of the number of samples (patients) for which DNA

methylation and survival analysis were carried out, for each data

set, appear in table 1.

For each data set, considering all possible pairs of the 14800

genes available would require more than 108 comparisons, each

based on the data for a pair of genes across all the samples in that

data set. Further, it is possible that spurious correlations could arise

if all possible pairs of genes were considered in this way. For

example, the expression and regulatory patterns of a pair of genes

may be highly correlated if they are both part of the same

signalling pathway, even if they do not directly interact. To avoid

problems due to the high number of tests inherent to considering

all pairwise gene interactions, we restricted the number of pairs of

genes for which the DNAm network correlation measure was

considered. The DNAm network correlation measure was only

calculated for a pair of genes, and subsequent analyses were only

carried out, if that pair of genes was listed as taking part in a

known biochemical interaction. We note that [6] proposed such a

restriction for pairwise gene interactions, and applied it success-

fully. A list of such interactions was downloaded from http://

www.pathwaycommons.org, and was used as a canonical human

interactome map.

Comparing the DNA Methylation Network Correlation
Measure with Gene Expression Network Correlation

In order to test whether a major component of the interactive/

co-regulatory behaviour quantified by the DNA methylation

network correlation measure corresponds to that which can be

measured by mRNA levels, the following procedure was carried

out. For the five data sets included in the subsequent DNA

methylation analysis for which sufficient gene expression data (in

the form of mRNA levels) were available, for each pair of genes for

which the DNAm network correlation measure was calculated, the

Spearman correlation coefficient of the mRNA expression levels

for that pair of genes was calculated, across all the cancer samples

with gene expression data available for that tumour type. For each

of these pairs of genes, the mean of the DNA methylation network

correlation measure was also calculated across all available

(cancer) samples. The significance of association of the mean

DNAm network correlation measure with the mRNA expression

(gene expression) network correlation coefficient across all pairs of

genes is shown in table 2, for each data set. Note that table 2 shows

different numbers of samples for each cancer type to table 1,

because the DNA methylation and gene expression analyses were

A DNA Methylation Network Interaction Measure
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based mostly on different samples from the same cancer type.

Absolute values of these correlation measures are compared,

because negative values mean different things in relation to the

DNAm network correlation measure, and to the correlation

coefficient of the gene expression data. For each data set, a

Spearman correlation test comparing these network correlation

measures across all pairs of genes is very significant, with

pƒ2:3|10{17 for all five data sets considered. Hence, it is

concluded that a major component of the interactive behaviour

quantified by the DNAm network correlation measure is the

interactive (co-regulatory) behaviour corresponding to gene

expression, at the mRNA level.

In many (approximately one third) of gene-pair comparisons

made by the DNAm network correlation measure, it was

calculated that there are two or more significant components of

covariation between these pairs of genes, as determined by

examining the corresponding cross-covariance matrices. Each

such calculation was carried out by performing a singular value

decomposition to estimate the variances corresponding to the

main components of variation, and comparing these to empirical

null model variances calculated similarly after randomising the

original data, as in previous genomics studies by other authors

[12]. The most likely candidates for these additional components

of covariation which are measured by the DNAm network

Figure 1. The DNA methylation network interaction measure. A combination of the variation of the healthy methylation profiles in regions (a)
and (b) of gene X explains well/is well-explained by a combination of the variation of the healthy methylation profiles in regions (c) and (d) of gene Y.
The green cancer sample varies by a large amount about the mean methylation profile and in a typical way in these regions in both genes. Hence, the
green sample corresponds to a high level of network interaction co-ordinatedness, as measured by the DNA methylation network interaction
measure, rXY ~1. The variation in the other regions of these genes do not well-explain each other, and so the red sample, which varies by a large
amount in these other regions and varies less and in an atypical way in regions (a)–(d), corresponds to a low level of network interaction co-
ordinatedness, rXY ~0:07. Genes X and Y are likely to have different numbers of methylation measurement locations (i.e., variables X and Y are of
different dimension). The ordering of the measurement locations has no influence on the calculation of r, as long as the ordering is consistent across
samples.
doi:10.1371/journal.pone.0084573.g001
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correlation measure, beyond gene expression, include other

components of biochemical interactive behaviour such as those

associated with alternatively spliced forms of the gene product

(such alternatively spliced forms are thought to be linked to DNA

methylation, [7]). However, it is not possible to test these

hypotheses further using the publicly available data analysed here.

A further study, involving collection of additional data such as

RNA-seq or other transcriptome-level data collected with DNA

methylation data, would have the potential for investigating such

additional possibilities.

Association of the DNAm Network Correlation Measure
with Patient Survival Outcome

The DNA methylation network correlation measure was tested

against patient survival outcome, and further methodology was

developed in this context, in order to develop the DNAm network

correlation measure as a basis for prognostic biomarkers. For each

data set, for each pair of genes, the association of the DNAm

network correlation measure with patient overall survival outcome

was tested by Cox regression, adjusted for clinical covariates. This

adjustment for clinical covariates was carried out in order to

develop a novel prognostic measure which is independent of

known prognostic clinical features, such as age, disease stage and

grade, and to take account of possible confounding (see ‘methods

and models’ for further details). Heatmaps showing p-values of

association of the DNAm network correlation measure with

patient survival outcome, for the BRCA data set, for all

interactions and for just those which appear in the canonical

human interactome map, appear in figure S1, together with

equivalent heatmaps produced from randomly generated p-values,

to show the structure in this network model provided by the

canonical human interactome map.

The canonical human interactome map defines 276136

interactions for the 8614 genes which are also present in each of

the data sets considered here. For each of the 9 data sets, the

276136 p-values resulting from the tests of association with patient

overall survival outcome (adjusted for clinical covariates) for each

of these interactions are plotted in histograms, which appear in

figure 2. For the COAD and LIHC data sets there is no

association with survival. However for the other seven data sets

(cancer types), and in particular BRCA, KIRC, LUAD, LUSC

and UCEC, the concentration of p-values close to p~0 shows that

there are many pairs of genes for which the DNAm network

correlation measure associates significantly with survival. It is

important to note that the poor correlation for certain data sets is

strongly linked, as would be expected, to the size of the data sets,

and in particular to the number of events in the data sets (table 1).

Applying these methods to larger data sets will be necessary for the

development and validation of robust biomarkers.

Identification of Significant and Biologically Relevant
Subnetworks

The data sets for which the DNAm network correlation

measure did not show a correlation with survival outcome,

COAD and LIHC, were excluded from the subsequent analyses,

which proceeded with the seven remaining data sets, BLCA,

BRCA, HNSC, KIRC, LUAD, LUSC and UCEC. If genes

represent network nodes, significant subnetworks, modules, or

motifs can be derived from the canonical human interactome map,

by retaining the network edges (i.e., pairwise interactions between

genes) which correspond to the DNAm network correlation

measures which associate significantly with patient overall survival

outcome. A significant subnetwork, module, or motif is then made

up of genes which are connected by edges which are significantly

associated with survival outcome. Some genes are connected to a

large number of other genes in the canonical interactome map

(i.e., they have high degree). If edges are defined as significant

when they correspond to pv0:05 of association with patient

survival outcome, then a node (gene) of high degree would be

expected to be connected to some other genes by significant edges

which are in fact false positives. If several nodes of high degree are

connected together by false positives in this way, it would result in

a subnetwork being falsely declared significant; this could happen

anywhere in the canonical interactome map where several high-

degree nodes are connected together. To mitigate this effect, for

each node (gene), the p-values of association with survival outcome

for each of its connected edges (interactions) were converted to

FDR (false discovery rate) adjusted q-values [13] with respect to

that node (gene). Each edge (interaction) was then only marked as

significant if it associated significantly with patient survival

Table 1. Number of samples in each data set.

Samples Events

BLCA 108 31

BRCA 173 23

COAD 237 36

HNSC 266 89

KIRC 265 91

LIHC 50 20

LUAD 143 45

LUSC 141 48

UCEC 276 28

Number of samples (patients) in each data set, together with number of events
(i.e., number of patients who died before the end of the respective study).
Abbreviations as follows: Bladder Urothelial Carcinoma (BLCA), Breast Invasive
Carcinoma (BRCA), Colon Adenocarcinoma (COAD), Head and Neck Squamous
Cell Carcinoma (HNSC), Kidney Renal Clear Cell Carcinoma (KIRC), Kidney Renal
Papillary Cell Carcinoma (KIRP), Liver (LIHC), Lung Adenocarcinoma (LUAD),
Lung Squamous Cell Carcinoma (LUSC), and Uterine Corpus Endometrioid
Carcinoma (UCEC).
doi:10.1371/journal.pone.0084573.t001

Table 2. Significance of association of the DNAm network
correlation measure with gene expression network
correlation.

Data set Samples p-value

BRCA 590 4.4610219

COAD 174 5610221

KIRK 72 3.2610217

LUSC 155 6610238

UCEC 54 2.3610217

For each gene-pair for which the DNAm network correlation measure is
calculated, for which there are also mRNA expression (gene expression) data
available, the Spearman correlation coefficient comparing the expression levels
of that pair of genes is calculated across the available samples in a given data
set (tumour samples only). For each pair of genes, the mean of the DNAm
network correlation measure across the available samples in that data set is also
calculated. These mean DNAm network correlation and expression network
correlation measures are compared across all pairs of genes for each data set,
with the corresponding p-values (Spearman correlation test) shown in the table.
doi:10.1371/journal.pone.0084573.t002
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Figure 2. p-value histograms, showing the association of the DNA methylation network correlation measure with patient overall
survival outcome, for all data sets. For each network edge, which connects a pair of genes (nodes), Cox regression is used to calculate a p-value
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outcome with qv0:05 according to both the nodes (genes)

connected by that edge.

Significant subnetworks, modules, and motifs found in this way

were tested for biological relevance, by checking the genes

comprising each subnetwork using gene set enrichment analysis

(GSEA) [14]. For each significant subnetwork, module or motif,

6811 gene set definitions, downloaded from the Broad Institute

Molecular Signatures Database (http://www.broadinstitute.org),

were tested one by one for enrichment by the genes which

comprise the respective subnetwork, module, or motif; further

details about these gene sets can be found at that website. These

enrichment tests were carried out using a one-sided Fisher’s exact

test, and if any of the 6811 gene sets showed significant enrichment

(qv0:05) by the genes comprising a subnetwork, module, or motif,

it was marked as having biological relevance, according to the

findings of previous work. The numbers of significant subnetworks,

modules and motifs, arranged according to number of genes/

nodes, and the numbers of these found to be biologically relevant,

appear in table 3.

To check how well this methodology guards against falsely

declaring subnetworks as significant, exactly the same process of

significant subnetwork identification was applied to p-values

randomly generated by sampling from a uniform(0,1) distribution

and assigned to the 276136 interactions, and this process was

repeated 104 times. Table 4 shows the number of null subnetworks

produced, of each size, in total over the 104 iterations. If there

were no association of the DNAm network correlation measure

with survival outcome (which would correspond to uniformly

distributed p-values across these features), the expected number of

3-node subnetworks falsely declared as significant in a particular

data set would be 4.0, the expected number of falsely identified 4-

node subnetworks would be 0.34, and for 5 nodes the expected

number would be 0.037. Comparison of these numbers with

table 3 and the definition of the false discovery rate implies (taking

into account these seven data sets) FDRƒ1 for 3 node

subnetworks, FDRƒ0:34 for 4 node subnetworks, and

FDRƒ0:037 for 5 node subnetworks. Further, no individual gene

appeared in these null subnetworks with at least 5 nodes more than

twice out of the 104 iterations. As these small motifs of 3 and 4

nodes are of less interest in general, and because by excluding

them the subnetwork false discovery rate is well-controlled, in the

subsequent analysis, only subnetworks, modules and motifs with at

least 5 nodes were considered as significant.

A network edge which is significant due to a correlation between

a higher value of the DNAm network correlation measure and

worse patient survival time (i.e., hazard ratio, HRw1), corre-

sponds to an increasing tendency of the genes (nodes) at either end

of this network edge to explain each other’s regulatory behaviour,

the worse the prognosis of the cancer. This can be thought of as an

increase in network interaction ‘co-ordinatedness’ between these

genes corresponding to worse disease prognosis, or a ‘positive

network re-wiring’ that is adaptively advantageous for the cancer.

The opposite effect, where a network edge is significant due to a

correlation between a lower value of the DNAm network

correlation measure and worse patient survival time (i.e., hazard

ratio, HRv1), is equivalent to a decrease in network interaction

co-ordinatedness for worse disease prognosis, or ‘negative network

re-wiring’. The proportion of significant network edges with

HRw1 (increase in network interaction co-ordinatedness for

worse disease prognosis) is shown for each data set in table 5.

Smaller Significant and Biologically Relevant Network
Modules of Interest

Detailed consideration of the smaller network modules identi-

fied as significant, and biologically relevant, confirms their

relevance to cancer biology. Amongst the gene sets significantly

enriched by the significant network modules, as well as numerous

specific cancer gene sets, gene sets appear multiple times relating

to JAK-STAT signalling, WNT signalling, GPCR signalling,

EGFR signalling, VEGF signalling, interleukin activity, neutrophil

activity/response to wounding, immune activity, metabolic

activity/TCA cycle/mitochondria, chromosome maintenance,

developmental processes/stem cells, programmed cell death,

response to UV/DNA damage repair/Fanconi anemia, cell cycle,

transcriptional regulation, transcriptional activity, and transport/

trafficking.

Six examples of smaller network modules identified as

significant and biologically relevant are shown in figure 3; these

include modules related to wound healing (associated with cancer

invasion and progression to new sites), immune function (associ-

ated with stifling the body’s ability to fight the cancer,

mitochondrial function (associated with increased energy produc-

(adjusted for clinical covariates), which represents the association of the DNAm network correlation measure for that edge with patient survival
outcome. For COAD and LIHC, there is no association of the DNAm network correlation measure with patient outcome. For the other data sets
(cancer types), and in particular BRCA, KIRC, LUAD, LUSC and UCEC, the collection of p-values close to 0 shows that, for those data sets, the DNAm
network correlation measure for many network edges is associated with patient outcome.
doi:10.1371/journal.pone.0084573.g002

Table 3. Number of significant subnetworks, modules and
motifs.

Nodes BLCA BRCA HNSC KIRC LUAD LUSC UCEC

3 4 (1) 19 (8) 9 (5) 19 (6) 38 (10) 11 (2) 8 (1)

4 1 (0) 9 (3) 2 (0) 9 (3) 12 (6) 5 (1) 5 (1)

5 2 (2) 1 (1) 1 (0) 1 (0) 5 (1) 0 (0) 4 (1)

6 1 (0) 1 (0) 1 (0) 1 (0) 2 (0) 1 (0) 2 (2)

7 0 (0) 1 (0) 1 (0) 1 (1) 2 (0) 0 (0) 0 (0)

8 0 (0) 0 (0) 0 (0) 1 (1) 2 (0) 0 (0) 1 (1)

9 1 (1) 1 (0) 0 (0) 2 (0) 1 (1) 1 (0) 0 (0)

10 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 0 (0)

11 0 (0) 0 (0) 1 (0) 0 (0) 1 (1) 0 (0) 2 (1)

13 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 0 (0)

14 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 0 (0)

16 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (0) 0 (0)

17 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

18 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)

24 1 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

27 0 (0) 0 (0) 1 (0) 0 (0) 0 (0) 0 (0) 0 (0)

373 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 0 (0)

770 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 0 (0) 0 (0)

The number of significant subnetworks, modules and motifs found with each
number of nodes (genes) is shown for each data set. Of these, the numbers
found to have biological relevance (as determined by gene set enrichment
analysis) are shown in brackets. Modules and larger subnetworks subsequently
plotted in figures 3 and 4 are shown in bold.
doi:10.1371/journal.pone.0084573.t003
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tion required for cancer proliferation) and MAP-kinase signalling

(associated with regulation of cell proliferation). Summaries of the

genes/nodes which appear in these network modules, and of the

respective significantly enriched gene sets, appear in tables 6 and 7

(wound healing), tables 8 and 9 (immune), table S1 (mitochondri-

al), table S2 (MAP-kinase), and tables S3 and S4 (largest

biologically significant subnetworks found in the BLCA and

BRCA datasets, respectively).

Importantly, the network interactions in the wound healing

module predominantly show an increase in network interaction

co-ordinatedness with worse disease prognosis, indicating a

tendency towards co-ordinated behaviour of these genes in

support of metastatic processes. Conversely, the network interac-

tions in the immune subnetwork module predominantly show a

decrease in network interaction co-ordinatedness with worsening

disease prognosis, suggesting a degradation of the body’s own

defences against the tumour. Hence, the DNA methylation

network correlation measure, as a surrogate measure of more

general interactive behaviour of genes, reflects increases and

decreases in interactive behaviour in subnetwork modules which

would be expected according to their biological function and role

in disease.

The genes which comprise the wound healing module, and an

outline of their biological roles, are as follows. ELANE is

neutrophil elastase; it is secreted by neutrophils and macrophages

during inflammation, and destroys bacteria and host tissue [15].

KNG1 is kininogen 1, which uses alternative splicing to generate

two different proteins, including HMWK which is important for

coagulation of blood [16]. SERPINE1 encodes the serpin

peptidase inhibitor, which plays a key role in the inhibition of

fibrinolysis (the physiological breakdown of blood clots) [17]. F2R

is proteinase-activated receptor 1, which is involved in the

regulation of thrombotic response (clotting in blood vessels) [18].

F5 is factor five, a protein of the coagulation system; its deficiency

leads to predisposition for haemorrhage [19]. CSF3 is granulocyte

colony-stimulating factor, which promotes the differentiation and

proliferation of blood cells [20]. ITGAM is integrin alpha M,

which mediates inflammation by regulating leukocyte adhesion

and migration [21]. THY1 is cluster of differentiation 90, which

amongst other functions has a role in cell adhesion and migration

[22].

The genes which comprise the immune module, and an outline

of their biological roles, are as follows. HLA-A is a human

leukocyte antigen (HLA); HLA constitute a large subset of the

major histocompatibility complex (MHC, which mediates the

interaction of immune system white blood cells) [23]. ITGAV is

the vitronectin receptor integrin (integrins mediate attachment

between a cell and its surroundings); vitronectin is found in serum

and the extracellular matrix (ECM) and has been implicated in

tumour malignancy [24]. SDC4 is syndecan 4, which interacts

with ECM, anticoagulants, and growth-factors, and regulates the

actin cytoskeleton, cell adhesion, and cell migration [25]. SDCBP

is syndecan binding protein, which is thought to function as an

adaptor protein, coupling the important developmental/pluripo-

tency transcription factor SOX4 to the interleukin-5 receptor

(which stimulates immune B-cell growth) [26]. CD247 encodes a

component of the zeta-chain, which is part of the immune T-cell

surface antigen receptor (TCR), which serves antigen recognition

and signalling functions [27]. TMOD2 is a tropomodulin specific

to neurons; tropomodulins cap the ends of actin filaments [28].

TAP1 is ‘transporter associated with antigen processing, involved

with transporting molecules across extra and intra cellular

membranes, associated with the MHC [29]. HLA-F is another

human leukocyte antigen (component of the MHC). ZAP-70 is

zeta-chain-associated protein kinase 70, another component of the

TCR [30]. EOMES is eomesodermin, which encodes a transcrip-

tion factor which is thought to be necessary for the differentiation

of effector CD8+ T cells [31]. AP1G1 is AP-1 complex subunit

gamma-1, which has a role in promoting the formation of clathrin-

Table 4. Null subnetwork analysis.

No. nodes No. null subnetworks
Expected false positive
subnets per dataset

Min no. subnets
per dataset Max FDR

3 40124 4.0 4 1

4 3392 0.34 1 0.34

5 365 0.037 1 0.037

6 48 0.0048 1 0.0048

7 4 461024 1 461024

8 1 161024 1 161024

104 iterations of null subnetworks were generated, by the same subnetwork identification method as used for the real data sets, but based on p-values randomly
sampled from a uniform distribution. The table shows the number of subnetworks of each size which were declared as significant by the subnetwork identification
method based on these null p-values, out of the 104 iterations. The table also shows the minimum number of subnetworks of each size detected in any of the real data
sets (see table 3), and corresponding conservative estimates of the FDR, defined as the number of false positives divided by the number of discoveries, for each size of
subnetwork.
doi:10.1371/journal.pone.0084573.t004

Table 5. Directionality of significant network edges.

Data set Prop. HR.1

BLCA 0.32

BRCA 0.46

HNSC 0.47

KIRC 0.82

LUAD 0.66

LUSC 0.66

UCEC 0.37

The numbers in the second column indicate the proportion of network edges
(i.e., pairs of genes) which increase (rather than decrease) their ‘network
interaction co-ordinatedness’ for worse disease prognosis (i.e., the DNAm
network correlation measure increases for shorter typical patient survival time,
HRw1).
doi:10.1371/journal.pone.0084573.t005
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Figure 3. Smaller significant network modules: network diagrams. Network edges displayed in green and red indicate positive and negative
hazard ratios, respectively, for the DNAm network correlation measure corresponding to that interaction; these correspond, respectively, to an
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coated pits and vesicles, which are used to transport molecules

within and between cells [32].

Larger Significant Subnetworks
In each of two data sets, KIRC and LUAD, a larger significant

subnetwork was also found (with 770 and 373 nodes respectively),

and these are shown in figure 4; the higher density of nodes in the

case of the KIRC large subnetwork is clearly seen in this figure.

Both these large subnetworks were found to be biologically

relevant, with 474 and 156 gene sets respectively found as

significant by GSEA (qv0:05). Degree distributions on a linear,

and on a log-log scale, are shown in figure 5; there is power-law

type behaviour in both cases for degree in the range 2 to 8 (linear

model lines estimating the logarithm of the degree distribution,

with corresponding slope estimates, are shown in the figure).

Considering the p-value histograms in figure 2, there are many

more significant p-values for KIRC and LUAD than the other

data sets, as can be seen by the height of the histogram bars closest

to p~0, and correspondingly more significant network edges for

these data sets. This may be why these data sets are the only ones

for which such large subnetworks are found. Most of the data sets

considered in this study have small sample sizes, particularly with

respect to the number of events, and hence relatively low statistical

power. If these methods were applied to larger data sets, larger

subnetworks such as these might be able to be found for other

cancer types. The degree density also decreases less as degree

increases in the case of KIRC (figure 5 (b), slope = 21.8) than in

the case of LUAD (figure 5 (b), slope = 22.6). This is as might be

expected given that there are more significant network edges in the

case of KIRC than LUAD (figure 2). This has the implication that

LUAD shows fewer nodes of very high numbers of connections, so

called ‘‘hubs’’ (see also tables S5 and S6). The presence of ‘‘hubs’’

is related to the probability of network failure. If a few nodes

control the connectivity of the whole network, then their

elimination will make the network fail. If the degree distribution

is more even, and thus the slope less steep, then the network may

be more resilient to failure. The slope is therefore an important

characteristic of the network.

One feature of interest in relation to these two larger significant

subnetworks is that they contain a high proportion of pairs of

genes (i.e., network edges) which increase their ‘network interac-

tion co-ordinatedness’, the worse the prognosis of the cancer. In

fact, this is a characteristic of the KIRC and LUAD data sets

particularly, although not of all the data sets (table 5). This could

be another reason why such large subnetworks are found for these

data sets. Whereas interactions which correspond to a decrease in

interactive behaviour with disease progression might logically

correspond to fragmented, smaller motifs and modules, interac-

tions which correspond to an increase in interactive behaviour

with disease progression might be expected to coalesce to form

larger subnetworks, with a tendency to act more autonomously.

Details about the genes/nodes in the top 5% of the degree

distribution (as a summary of the most significant nodes) and the

25 most significantly enriched gene sets are shown in table S5

(KIRC) and table S6 (LUAD). It is particularly noticeable that

there is enrichment by the genes in the significant large

subnetworks of many genes sets associated with transcriptional

and translational processes, and perhaps the most interesting of

these in the context of DNAm relate to splicing. For example, the

splicing factor gene SF3B4 is the node with the second highest

degree in the KIRC large subnetwork (table S5 (a)), and the

KEGG spliceosome gene set is very significantly enriched by the

nodes of the KIRC large subnetwork, OR~5:7 (95% C.I. 3.5–

9.2), FDR-adjusted p~8:7|10{9 (Fishers exact test), table S5 (b).

DNA methylation has been suggested to have an important

association with alternative splicing [33], although how this might

work is poorly understood. It is very interesting that the largest

significant subnetworks identified by this method appear to be

involved in these processes, amongst other forms of gene

regulatory behaviour, and more generally cancer-related process-

es.

Discussion

A DNA methylation (DNAm) measure of network correlation

has been developed, as a measure of ‘network interaction co-

ordinatedness’, between pairs of genes, in terms of their DNAm

profiles. This measure has been shown to be highly associated with

the correlation of gene expression measurements (at the mRNA

level) from the same pairs of genes in five independent data sets

increase and decrease in ‘network interaction co-ordinatedness’ for worse disease prognosis. (a) Wound healing module (KIRC). (b) Immune module
(UCEC). (c) Mitochondial module (LUAD). (d) MAP-kinase module (LUSC). (e) Largest biologically significant subnetwork in the BLCA data set. (f)
Largest biologically significant subnetwork in the BRCA data set. Further details about the corresponding network nodes (genes) and significantly
enriched gene sets appear in tables 6–9 and S1–4.
doi:10.1371/journal.pone.0084573.g003

Table 6. Wound-healing module: gene/node details.

Gene/node Degree Chr Gene info

ELANE 6 19 elastase, neutrophil expressed

ITGAM 2 16 integrin, alpha M (complement component 3 receptor 3 subunit)

CSF3 1 17 colony stimulating factor 3 (granulocyte)

F2R 1 5 coagulation factor II (thrombin) receptor

F5 1 1 coagulation factor V (proaccelerin, labile factor)

KNG1 1 3 kininogen 1

SERPINE1 1 7 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type
1), member 1

THY1 1 11 Thy-1 cell surface antigen

Gene/node details for the wound healing module found as significant in the KIRC data set.
doi:10.1371/journal.pone.0084573.t006
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from different cancer types; i.e., the DNAm network correlation

measure reflects well co-regulatory behaviour relating to gene

expression. This measure has been tested for association with

patient overall survival outcome independent of known clinical

prognostic features in nine independent data sets corresponding to

different cancer types; independent association with survival

outcome was found for this measure in seven out of nine of these

data sets, with strong association in five of these, which are Breast

Invasive Carcinoma (BRCA), Kidney Renal Clear Cell Carcino-

ma (KIRC), Lung Adenocarcinoma (LUAD), Lung Squamous

Cell Carcinoma (LUSC), and Uterine Corpus Endometrioid

Carcinoma (UCEC). For each of these data sets (cancer types),

Table 7. Wound-healing module: significantly enriched gene sets.

Gene set OR (95% C.I.) q-val

BLOOD_COAGULATION 290 (52–1600) 5.3e-05

COAGULATION 290 (52–1600) 5.3e-05

HEMOSTASIS 250 (46–1500) 5.7e-05

WOUND_HEALING 230 (42–1300) 5.9e-05

REGULATION_OF_BODY_FLUID_LEVELS 210 (37–1100) 7e-05

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 200 (36–1100) 7e-05

BIOCARTA_INTRINSIC_PATHWAY 450 (63–2600) 0.00023

NEGATIVE_REGULATION_OF_MULTICELLULAR_ORGANISMAL_PROCESS 320 (45–1800) 0.00054

WANG_ESOPHAGUS_CANCER_VS_NORMAL_UP 100 (19–580) 0.00057

PID_INTEGRIN2_PATHWAY 230 (34–1300) 0.001

REGULATION_OF_BIOLOGICAL_QUALITY 50 (9.7–320) 0.0014

RESPONSE_TO_WOUNDING 69 (13–380) 0.0019

PID_UPA_UPAR_PATHWAY 170 (25–940) 0.0019

REACTOME_HEMOSTASIS 41 (7.9–260) 0.003

REACTOME_PLATELET_ACTIVATION_SIGNALING_AND_AGGREGATION 54 (9.9–290) 0.0044

BIOCARTA_FIBRINOLYSIS_PATHWAY 680 (53–8200) 0.006

RESPONSE_TO_EXTERNAL_STIMULUS 42 (7.8–230) 0.0092

REACTOME_RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC_CA2_ 86 (13–450) 0.0092

BIOCARTA_GRANULOCYTES_PATHWAY 460 (38–4100) 0.0094

RECEPTOR_BINDING 35 (6.6–190) 0.016

BIOCARTA_EXTRINSIC_PATHWAY 310 (27–2200) 0.017

REGULATION_OF_MULTICELLULAR_ORGANISMAL_PROCESS 52 (7.9–270) 0.032

RPS14_DN.V1_UP 47 (7.2–250) 0.041

Significantly enriched gene sets, for the wound healing module found as significant in the KIRC data set. Q-values indicate significance of enrichment in the
corresponding gene set by the genes in this module, calculated according to a one-sided Fisher’s exact test. Further details about these gene sets can be found from
the website of the Broad Institute Molecular Signatures Database (http://www.broadinstitute.org).
doi:10.1371/journal.pone.0084573.t007

Table 8. Immune module: gene/node details.

Gene/node Degree Chr Gene info

HLA-A 8 6 major histocompatibility complex, class I, A

ITGAV 2 2 integrin, alpha V

TAP1 2 6 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)

AP1G1 1 16 adaptor-related protein complex 1, gamma 1 subunit

CD247 1 1 CD247 molecule

EOMES 1 3 eomesodermin

SDCBP 1 8 syndecan binding protein (syntenin)

TMOD2 1 15 tropomodulin 2 (neuronal)

ZAP70 1 2 zeta-chain (TCR) associated protein kinase 70 kDa

HLA-F 1 6 major histocompatibility complex, class I, F

SDC4 1 20 syndecan 4

Gene/node details for the immune module found as significant in the UCEC data set.
doi:10.1371/journal.pone.0084573.t008
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significant subnetworks, modules, and motifs have been found,

with the associated false discovery rate shown to be well-controlled

for those with at least 5 nodes (genes). In many cases, these

significant subnetwork modules are shown to have strong

correlation with groups of genes previously found to be biologically

relevant, in the context of cancer biology.

The smaller significant subnetwork modules identified in

relation to previous knowledge of cancer biology include ones

identified with wound healing (associated with cancer invasion and

progression to new sites), mitochondrial function (associated with

increased energy production required for cancer proliferation),

immune function (associated with stifling the body’s ability to fight

the cancer), and MAP-kinase signalling (associated with regulation

of cell proliferation). The wound healing module interactions show

an increase in network co-ordinatedness with worsening disease

prognosis, indicating a tendency towards a re-wiring of this

module in support of metastatic processes. The immune module

interactions show a decrease in network co-ordinatedness with

worsening disease prognosis, suggesting a degradation of the

body’s own defences against the tumour. Larger significant

subnetworks found are associated, amongst other things, with

functions related to DNA transcription, translation and regulation.

These functions notably include those related to splicing, which is

of particular interest in relation to current DNAm research.

Wound healing is an example of a biological function which

behaves aberrantly in the context of cancer biology, highlighted in

a recent paper [34] which fundamentally shifts the paradigm of

oncogenesis. Those authors suggest that tumourigenic processes

are actually a regression to archaic metazoan phenotypic

characteristics normally suppressed in healthy tissue, which

Table 9. Immune module: significantly enriched gene sets.

Gene set OR (95% C.I.) q-val

REACTOME_ADAPTIVE_IMMUNE_SYSTEM 37 (9.3–170) 0.001

REACTOME_ANTIGEN_PROCESSING_CROSS_PRESENTATION 97 (20–390) 0.0019

REACTOME_ANTIGEN_PRESENTATION_FOLDING_ASSEMBLY_AND_PEPTIDE_LOADING_OF_CLASS_I_MHC 210 (33–980) 0.0036

REACTOME_THE_ROLE_OF_NEF_IN_HIV1_REPLICATION_AND_DISEASE_PATHOGENESIS 140 (23–670) 0.006

REACTOME_IMMUNE_SYSTEM 22 (5.5–100) 0.006

KEGG_CELL_ADHESION_MOLECULES_CAMS 52 (11–210) 0.0069

GNF2_HLA-C 110 (17–480) 0.0094

GNF2_INPP5D 100 (17–460) 0.0094

GNF2_ITGAL 100 (16–440) 0.0094

REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_LYMPHOID_CELL 89 (15–390) 0.012

RECEPTOR_COMPLEX 76 (13–330) 0.013

GNF2_CD53 80 (13–350) 0.013

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 76 (13–330) 0.013

PID_CD8TCRDOWNSTREAMPATHWAY 80 (13–350) 0.013

PID_CD8TCRPATHWAY 71 (12–310) 0.014

REACTOME_ER_PHAGOSOME_PATHWAY 71 (12–310) 0.014

REACTOME_ENDOSOMAL_VACUOLAR_PATHWAY 370 (32–2500) 0.015

DER_IFN_ALPHA_RESPONSE_UP 66 (11–290) 0.015

PID_IL12_2PATHWAY 65 (11–280) 0.015

BIOCARTA_TCRA_PATHWAY 310 (27–2200) 0.015

REACTOME_NEF_MEDIATED_DOWNREGULATION_OF_MHC_CLASS_I_COMPLEX_CELL_SURFACE_EXPRESSION 310 (27–2200) 0.015

REACTOME_TRANSLOCATION_OF_ZAP_70_TO_IMMUNOLOGICAL_SYNAPSE 310 (27–2200) 0.015

DER_IFN_GAMMA_RESPONSE_UP 61 (10–270) 0.015

BIOCARTA_CTL_PATHWAY 270 (24–1600) 0.018

MODULE_293 270 (24–1600) 0.018

REACTOME_CLASS_I_MHC_MEDIATED_ANTIGEN_PROCESSING_PRESENTATION 27 (5.8–110) 0.018

IMMUNOLOGICAL_SYNAPSE 230 (21–1400) 0.021

MODULE_143 210 (19–1200) 0.025

GNF2_MATK 140 (14–820) 0.043

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 38 (6.4–160) 0.043

SENGUPTA_EBNA1_ANTICORRELATED 38 (6.4–160) 0.043

GNF2_ZAP70 130 (13–740) 0.045

BIOCARTA_CSK_PATHWAY 130 (13–740) 0.045

Significantly enriched gene sets, for the immune module found as significant in the UCEC data set. Q-values indicate significance of enrichment in the corresponding
gene set by the genes in this module, calculated according to a one-sided Fisher’s exact test. Further details about these gene sets can be found from the website of the
Broad Institute Molecular Signatures Database (http://www.broadinstitute.org).
doi:10.1371/journal.pone.0084573.t009
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correspond to groups of cells behaving more autonomously. The

key point in this metazoan model is that, whereas the conventional

model of tumourigenesis holds that proliferative characteristics

acquired by cancers occur as a result of random genetic and

epigenetic mutation, these archaic metazoan characteristics are

present in humans all along, but lie dormant until they are released

in cancer. The data considered in this study does not allow this

point to be addressed directly, but intuitively it seems that our

findings fit well into this new metazoan oncogenic paradigm.

The quality of the presented study depends on the availability of

clinical data. However, information is missing for many samples

for several clinical covariates. Also, for a number of clinical

covariates, the large majority of the samples are in the same

category for that covariate. It should therefore be expected that

this analysis will not have fully taken account of some clinical

covariates. Further, the clinical information considered does not

include descriptions of applied therapies. For these reasons, more

detailed analyses relating to specific cancers should be expected to

be necessary for the further development of clinical biomarkers

based on the methods developed here.

While the data sets considered in this study do not contain

enough events to train a predictive model, bigger data sets would

allow such predictive prognostic models to be defined using these

methods, leading to novel independent DNAm-based disease

prognostic biomarkers. Such biomarkers would be based on DNA

rather than RNA, and would be ideal for further investigation and

development using current state-the-art and future research

findings from the rapidly advancing field of network science.

Methods and Models

Data Download and Preprocessing
DNA methylation (DNAm) data, collected via the Illumina

Infinium HumanMethylation450 platform, were downloaded

from The Cancer Genome Atlas (TCGA) project [9–11] at level

3. These data were obtained for nine different tumour types, as

follows: Bladder Urothelial Carcinoma (BLCA), Breast Invasive

Carcinoma (BRCA), Colon Adenocarcinoma (COAD), Head and

Neck Squamous Cell Carcinoma (HNSC), Kidney Renal Clear

Cell Carcinoma (KIRC), Liver (LIHC), Lung Adenocarcinoma

(LUAD), Lung Squamous Cell Carcinoma (LUSC), and Uterine

Corpus Endometrioid Carcinoma (UCEC).

These data were pre-processed by first removing probes with

non-unique mappings and which map to SNPs (as identified in the

TCGA level 3 data); probes mapping to sex chromosomes were

also removed; in total 98384 probes were removed in this way

from all data sets. After removal of these probes, 270985 probes

with known gene annotations remained. Individually for each data

set, probes were then removed if they had less than 95% coverage

across samples; probe values were also replaced if they had

corresponding detection p-value greater than 5%, by KNN (k
nearest neighbour) imputation (k~5). The loci of analysed CpGs

were mapped to genes based on annotation information for the

Illumina Infinium platform obtained from the R [35]/Bioconduc-

tor [36] package ‘IlluminaHumanMethylation450 k’. The data

were also checked for batch effects by hierarchical clustering and

correlation of the significant principle components with phenotype

and batch: no significant batch effects (which would warrant

further correction) were found.

A list of pairs of genes, each pair corresponding to a known

biochemical interaction in humans, was downloaded from http://

www.pathwaycommons.org, and was used as a canonical human

interactome map in the subsequent analysis. In this network

model, each pair of genes defines a network edge (422481 edges in

total), with individual genes represented by network nodes (12726

nodes in total).

For each data set/cancer type, clinical information was also

downloaded, for the variables overall survival status (alive or not),

overall survival time (i.e., time to last follow up or time to death), as

well as several clinical covariates for each data set, such as age,

disease stage (I–IV), disease grade (1–3), and residual disease status

(present or not). All survival analyses were carried out using the R

[35] package ‘survival’.

For five of the cancer types (BRCA, COAD, KIRK, LUSC and

UCEC), gene expression data were also downloaded from TCGA

at level 3. These data were quantile-normalised.

Figure 4. Larger significant subnetworks: network diagrams. Network edges displayed in green and red indicate positive and negative
hazard ratios, respectively, for the DNAm network correlation measure corresponding to that interaction; these correspond, respectively, to an
increase and decrease in ‘network interaction co-ordinatedness’ for worse disease prognosis. (a) the KIRC large subnetwork. (b) the LUAD large
subnetwork. Further details about the corresponding network nodes (genes) for the top 5% of the degree distribution and top 25 significantly
enriched gene sets appear in tables S5–6.
doi:10.1371/journal.pone.0084573.g004
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DNA Methylation Network Correlation Measure
Definitions

Canonical correlation analysis (CCA) [8] seeks to find the

vectors a and b, in the p and q dimensional spaces of variables

X~(x1,x2,:::,xp)’ and Y~(y1,y2,:::,yq)’ respectively, which max-

imise the correlation r~cor a’X,b’Yð Þ, defined according to

equation 1,

r~
a’SXYbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a’SXXa
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b’SYYb
p ð1Þ

where SXX~E (X{mX)(X{mX)’½ � and

SYY~E (Y{mY)(Y{mY)’½ � are the covariance matrices of X and

Y respectively, and SXY~E (X{mX)(Y{mY)’½ � is the cross-

covariance matrix of X and Y.

Two genes X and Y , which are joined by a network edge in the

interactome map (i.e., these genes or their products participate in

some canonical biochemical interaction), have corresponding

methylation profiles which are measured for sample/patient j at

p and q CpGs (loci) respectively along these genes. Denoting these

measurements by the variables x1,:::xp and y1,:::,yq for genes X

and Y respectively, the DNA methylation profiles for these genes,

for patient j, can be represented by the vectors x(j) and y(j), which

have p and q entries respectively. A measure of DNAm network

correlation rxy(j), of the methylation profiles of genes X and Y for

sample j, can then be defined by analogy with equation 1,

according to equation 2,

r̂rxy(j)~
x(j)T ŜS(h)

XY y(j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x(j)T ŜS(h)

XX x(j)

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y(j)T ŜS(h)

YY y(j)

q ð2Þ

where ŜS(h)
XX , ŜS(h)

YY and ŜS(h)
XY are estimated from healthy rather than

cancer samples in the methylation data set, according to equations

3–5,

ŜS
(h)
XX ~

1

nh

X
j[healthy

x(j){m̂m
(h)
X

� �
x(j){m̂m

(h)
X

� �T

ð3Þ

Figure 5. Larger significant subnetworks: degree distributions. Degree distributions (kernel-smoothed) on linear and log scales, for (a), (b)
KIRC large subnetwork, and (c), (d) LUAD large subnetwork. Dashed red lines on the log-log plots display the power-law linear model line of best fit,
estimated from the nodes with degree in the range 2 to 8, with the corresponding slope value (i.e., power law exponential coefficient) displayed
above.
doi:10.1371/journal.pone.0084573.g005

A DNA Methylation Network Interaction Measure

PLOS ONE | www.plosone.org 13 January 2014 | Volume 9 | Issue 1 | e84573



ŜS
(h)
YY ~

1

nh

X
j[healthy

y(j){m̂m
(h)
Y

� �
y(j){m̂m

(h)
Y

� �T

(4)

ŜS(h)
XY ~

1

nh

X
j[healthy

x(j){m̂m(h)
X

� �
y(j){m̂m(h)

Y

� �T

ð5Þ

where

m̂m
(h)
X ~

1

nh

X
j [ healthy

x(j)

and

m̂m
(h)
Y ~

1

nh

X
j [ healthy

y(j)

and nh is the number of healthy samples in the data set.

Selection of Significant Clinical Covariates
If a clinical covariate (e.g., age, disease stage and grade, or

presence of residual disease) associates significantly with the

patient outcome of interest (here, overall survival time) and also

with the predictors of interest (here, the DNAm network

correlation measure), then any association between the predictors

and outcome of interest might be due only to the variation of the

clinical covariate(s). In order to develop novel DNA methylation

biomarkers which are independent of known prognostic clinical

features, the statistical tests of association with patient survival

outcome are adjusted here for the clinical covariates which also

associate significantly with patient survival outcome.

For each data set (corresponding to a particular cancer type),

the available clinical covariates were tested one by one for

association with overall survival outcome, by fitting a Cox model.

For each data set, the covariates for which this association

corresponded to pv0:1 were then considered further, in a

multivariate Cox model. Because clinical covariates may be

measuring correlated physiological quantities (e.g., height and

weight, or in some cases disease stage and grade), it is only

necessary to adjust for a clinical covariate in the subsequent

DNAm survival analysis if that clinical covariate associates

significantly with survival after adjustment for the other clinical

covariates. Therefore, the clinical covariates found to be significant

in the first stage (by testing their association one by one with with

overall survival outcome) were tested against each other in a

multivariate Cox regression, and those which remained significant

(pv0:1) after adjustment for the other clinical covariates were

then adjusted for in the subsequent DNAm survival analysis.

For each data set, the clinical covariates which were considered

are as follows, with those ultimately found to associate with overall

survival (pv0:1), and thus adjusted for in the DNAm survival

analysis, shown in bold.

N BLCA: stage, age, grade, diagnosis subtype, anatomic organ

subdivision, height, prior diagnosis, gender, tobacco history,

weight.

N BRCA: age, residual disease, stage, gender, ER status, PR

status.

N COAD: age, stage, prior diagnosis, residual disease, anatomic

site, histology, polyps, lymphatic invasion, perineural invasion,

gender, height, weight.

N HNSC: residual disease, tobacco history, age, stage,

grade, prior diagnosis, pack years, lymph node presentation,

gender.

N KIRC: age, stage, prior diagnosis, residual disease,

grade, haemoglobin, platelet, lymph node, calcium, gender.

N LIHC: creatinine, prothrombin, age, stage, grade, prior

diagnosis, residual disease, prospective tissue collection,

platelet, albumin, alpha fetoprotein, fibrosis, gender, height,

weight.

N LUAD: residual disease, age, stage, tobacco history, prior

diagnosis, gender.

N LUSC: residual disease, age, stage, tobacco history,

gender.

N UCEC: stage, residual disease, age, grade, prior diagno-

sis, height, weight.

Supporting Information

Figure S1 p-value heatmaps, showing the association of
the DNAm network correlation measure with patient
overall survival outcome, for the BRCA data set. For the

BRCA data set, for each network edge (DNAm network

interaction correlation measure), the Cox regression p-value

(adjusted for clinical covariates) of association with patient survival

outcome is displayed according to the colour scale shown on the

right. (a) p-values are calculated for every possible pair of genes of

the 14800 available in this data set, with genes clustered along the

margins of the plot using these p-values as a distance measure. (b)

Null p-values are generated by sampling from a uniform

distribution bounded on [0,1] for every possible pair of

genes, with genes similarly clustered along the margins. (c) and

(e) p-values are calculated for the 8614 genes which appear in

this data set and also in the pathway commons interactome

map, for the 276136 interactions between pairs of these genes

defined by this interactome map. Genes are similarly clustered

along the margins of the plot according to p-value. (e) Shows a

zoomed-in view of the top-left of (c). (d) and (f) are as (c) and (e),

but based on null p-values randomly sampled from a uniform (0,1)

distribution, to demonstrate the structure present from the

pathway commons interactome map, without the influence of

the DNA methylation network interaction measure. Pearson

correlation coefficients comparing values in these adjacency

matrices as plotted, are as follows: (a) vs. (b), 0.0011; (c) vs. (d),

0.26; (e) vs. (f), 0.38.

(JPG)

Table S1 Mitochondrial module.

(PDF)

Table S2 MAP-kinase module.

(PDF)

Table S3 Largest biologically significant module,
BLCA.

(PDF)

Table S4 Largest biologically significant module,
BRCA.

(PDF)

Table S5 KIRC large subnetwork.

(PDF)
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Table S6 LUAD large subnetwork.
(PDF)
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