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Abstract

Computed tomography (CT) is a non-invasive imaging modality used to monitor human lung cancers. Typically, tumor
volumes are calculated using manual or semi-automated methods that require substantial user input, and an exponential
growth model is used to predict tumor growth. However, these measurement methodologies are time-consuming and can
lack consistency. In addition, the availability of datasets with sequential images of the same tumor that are needed to
characterize in vivo growth patterns for human lung cancers is limited due to treatment interventions and radiation
exposure associated with multiple scans. In this paper, we performed micro-CT imaging of mouse lung cancers induced by
overexpression of ribonucleotide reductase, a key enzyme in nucleotide biosynthesis, and developed an advanced semi-
automated algorithm for efficient and accurate tumor volume measurement. Tumor volumes determined by the algorithm
were first validated by comparison with results from manual methods for volume determination as well as direct physical
measurements. A longitudinal study was then performed to investigate in vivo murine lung tumor growth patterns.
Individual mice were imaged at least three times, with at least three weeks between scans. The tumors analyzed exhibited
an exponential growth pattern, with an average doubling time of 57.08 days. The accuracy of the algorithm in the
longitudinal study was also confirmed by comparing its output with manual measurements. These results suggest an
exponential growth model for lung neoplasms and establish a new advanced semi-automated algorithm to measure lung
tumor volume in mice that can aid efforts to improve lung cancer diagnosis and the evaluation of therapeutic responses.
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Introduction

Lung cancer is the leading cause of cancer death among both

men and women worldwide. The five-year survival rate for lung

cancer is only 16%, as compared to 89% and 100% for breast and

prostate cancers, respectively. If lung cancers are detected and

treated in their earliest stages, the survival rate can be improved to

92% [1]. Not only is the detection of lung tumors critical, but

measuring disease progression and treatment response also are

important for improving patient care. Such clinical data can be

collected using non-invasive imaging techniques, such as X-ray

computed tomography (CT). CT images are generated based on

X-ray attenuation by tissues, with the degree of attenuation

proportional to the tissue density. CT instruments generate a series

of 2D X-ray images, which can be reconstructed to produce a 3D

image. Based on these images, clinicians can identify and measure

potential lung neoplasms.

Tumor size and growth rate are key criteria for cancer staging

and can be used to evaluate the effectiveness of therapies.

Measurement of these parameters must be efficient and accurate

in order for CT scans to be useful for clinical purposes. Manual

measurements by clinicians have been used widely to assess tumor

volumes in human patients. However, these methods are often

time-consuming and labor intensive. Manual measurements are

also subject to high inter- and intra-observer variability. Several

studies have suggested that manual measurements of tumor size by

radiologists are inconsistent [2,3,4] and should not be relied upon

to provide ground truth. In response to these issues, semi-

automated measurement methods have been developed to

improve tumor measurement efficiency and reduce inconsistency

among radiologists. However, the existing semi-automated meth-

ods typically require extensive manual intervention. For example,

an algorithm described by Haines et al. [5] required the selection

of the total chest space volume, excluding the heart, through a

combination of manual segmentation and semi-automated con-

touring. In this case, tumor and vasculature tissue were not

separated, and the combined volume of both was used as a relative

measure of tumor burden. The measurement method developed
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by Fushiki et al. [6] also required manual segmentation of the

chest volume. Cody et al. [7] used a method that did not require

manual segmentation of the chest volume, but often required

manual editing of the automatically determined contours. Namati

et al. [8] described a semi-automated method that required only a

single stroke across the cross-section of the tumor to initialize the

algorithm, but also required manual editing of the automated

segmentation. A recent study by Rodt et al. quantified tumor

growth on longitudinal micro-CT scans. However, their measure-

ment method required 20-40 manually specified seed points [9].

As a result, there has been an emerging need to develop a more

advanced semi-automated method with minimal manual manip-

ulation and no direct modification of the nodule segmentation

boundaries.

The optimization of methods for tumor growth quantification

requires not only time-efficient measurement tools but also their

validation using extensive data sets from growing tumors.

However, these data are not readily available for human patients

because of the large number of repeated CT scans required and

concerns over the associated X-ray dosage. Furthermore, human

patients are subjected to clinical interventions that include surgical

resection or therapies that impair growth. As a result, much of the

research on evaluating the accuracy of measurement methods has

relied on the use of repeat ‘‘coffee break’’ scans, in which patients

are scanned twice over a short period of time [10,11,12,13], or the

use of repeat scans obtained during image-guided biopsy of

pulmonary nodules [14]. These studies have reported measure-

ment variability across repeat scans to be around 25%. It is

unclear whether these data can be accurately extrapolated to

define tumor growth properties.

One common approach to quantify tumor growth is to combine

an empirical tumor volume measurement with a mathematical

model for tumor growth rate. The two most commonly used

growth models are the exponential growth model, in which the

growth rate is proportional to the current value and continues

indefinitely, and the Gompertzian growth model, which resembles

the exponential growth model initially but reduces the growth rate

as time progresses [15,16,17]. However, due to the reasons noted

above, the in vivo growth of human lung cancers has not been

extensively studied. In order to investigate the in vivo lung tumor

growth rate, and to circumvent the limitations of human CT scans

and current manual and semi-automated tumor volume measure-

ment tools, we developed an advanced semi-automated method

for the accurate determination of tumor volume for murine lung

tumors imaged by micro-CT scanning. We hypothesized that the

new semi-automated algorithm would efficiently and accurately

measure lung tumor volume and produce measurement values

that closely correlate with those from careful manual segmenta-

tion. In addition, because we examined early lung tumor growth

when nutrients and space are not expected to be constraining for

tumor growth, we hypothesized that an exponential growth

pattern would be observed.

Micro-CT has previously been used to study lung disease in

mouse models, including chronic inflammation, emphysema, and

cancer [18,19,20,21,22,23]. In this study, we utilized a mouse lung

tumor model based on overexpression of the small subunit of the

enzyme ribonucleotide reductase (RNR). RNR catalyzes the rate-

limiting step in deoxyribonucleotide biosynthesis and plays an

essential role in the maintenance of genome integrity. RNR-

overexpressing mice develop lung adenomas and adenocarcino-

mas at approximately one year of age. These neoplasms

histopathologically resemble human papillary adenocarcinomas,

the most common form of human non-small cell lung cancer [24].

RNR-induced lung tumors frequently contain K-ras mutations,

which also occur in approximately 30% of human lung

adenocarcinomas [25,26]. Unlikely currently used chemical-

induced and activated K-ras-induced mouse lung tumor models

[5,6,8,27], RNR-induced lung tumors arise stochastically via a

mutagenic mechanism caused by genome instability, providing a

unique experimental system to investigate lung tumor growth rate

in vivo.

In this study, initial imaging and volume measurements of

mouse lung tumors were performed to develop and refine an

advanced semi-automated algorithm adapted from tools for the

measurement of pulmonary nodules in human chest CT scans

[28]. This new semi-automated method had minimal requirement

for manual manipulation and did not require any direct

modification of the segmentation boundaries. The algorithm was

first validated by comparing its output with post mortem physical

measurements and manual image analyses. Lung tumor-bearing

mice were then sequentially imaged by micro-CT for tumor

volume measurement and growth rate determination. Tumor

volumes measured by the advanced semi-automated method in

sequential scans were compared with careful manual measure-

ments, and close correlation between methods was observed,

indicating the accuracy of the semi-automated algorithm. In

addition, curve fitting of tumor volumes over time suggested

exponential growth patterns for the analyzed lung neoplasms.

Together, the results described here establish efficient and

accurate tools for tumor volume measurement and provide

insights into in vivo cancer growth properties that will be useful

for future studies of animal models of lung cancer, including pre-

clinical evaluation of candidate therapies.

Materials and Methods

Ethics statement
Mice used in this study were handled in strict accordance with

federal and institutional guidelines. All procedures were approved

by the Cornell University Institutional Animal Care and Use

Committee (protocol number: 2008-0175). Every effort was made

to minimize pain and distress to the animals during the studies. All

mice were euthanized by carbon dioxide asphyxiation in

accordance with American Veterinary Medical Association

guidelines.

Animals, necropsy and histology analyses
Rrm2 and p53R2 transgenic mice (Rrm2Tg and p53R2Tg) were

described previously [24]. All mice were maintained under

identical housing conditions. After the final micro-CT scan, mice

were euthanized by asphyxiation using carbon dioxide and

necropsied. Lungs were photographed using a Canon digital

camera, inflated and fixed with 10% neutral-buffered formalin,

embedded in paraffin, sectioned, and stained with hematoxylin

and eosin (H&E). H&E-stained sections were scanned using an

Aperio ScanScope and physical measurements of lung neoplasms

were made using Aperio ImageScope software. Lung neoplasms

were classified based on guidelines endorsed by the Mouse Models

of Human Cancers Consortium [29].

Micro-CT imaging
Post-mortem imaging. Preliminary scans of mice following

euthanasia were used for initial development and verification of

the algorithm. All scans were acquired using a GE eXplore CT

120 micro-CT scanner, which has been evaluated previously [30].

Three-tumor bearing mice were scanned immediately after they

were euthanized by carbon dioxide asphyxiation.

Mouse Lung Tumor Growth Pattern Analysis
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Live imaging. For live imaging, mice were first put in the

induction chamber and anesthetized with a continuous flow of 4%

isoflurane/oxygen mixture. When the animals stopped moving

and their breathing slowed, they were moved to a Styrofoam

platform in the cradle of the micro-CT scanner with their ventral

side down. Mice were kept under anesthesia using a nose cone

with a continuous flow of 1-3% isoflurane/oxygen mixture that

was maintained during the duration of the micro-CT scan [31].

Respiratory gating of the mice was achieved using a BioVet

physiological monitoring and triggering system (m2m Imaging

Corporation), with a respiratory sensor positioned under the

abdomen of the mouse. A small external force was applied by

taping a piece of paper towel to the back of the mouse in order to

facilitate activation of the pressure sensor used for respiratory

gating. The trigger was set up at the quiescent/refractory period

after each breath in order to minimize motion artifacts.

All scans of the thoracic region were acquired using a GE

eXplore CT 120 micro-CT scanner with a current of 50 mA,

voltage of 100 kVp, exposure time of 20 ms, and acquisition

resolution of 50 mm. Each scan consisted of 720 projections in a

single full rotation of the gantry. Two frames were acquired at

each position of the gantry and averaged prior to being transferred

to the workstation for reconstruction (Table S1). Micro-CT images

were reconstructed at 50650650 mm3 voxel dimensions. The final

image volume varied according to the selected region of interest

but typically ranged from 20620625 mm3 to 40627.5650 mm3.

Half of the total live scans included calibration phantoms with

materials of known densities simulating air, water, and bone. The

densities of the voxels within the phantom were sampled and the

mean and standard deviation of the distribution were computed.

Scans were converted from the manufacturer’s proprietary format

to DICOM and then imported into research software. Scan data

are available for downloading at: http://www.via.cornell.edu/

microdb.html.

The four lung tumor-bearing mice in the study were scanned a

minimum of three times each, with at least three weeks between

scans. The resulting images were examined to identify potential

nodules. For each mouse, at least one tumor was visible in every

scan over the course of the study and was tracked sequentially for

growth rate analysis. Only tumors that were visible on three or

more sequential scans were considered for inclusion in the

longitudinal study to allow for fitting of a growth curve. The

volume of each nodule was computed manually and by the semi-

automated algorithm described in the following sections at each

time point and recorded for growth analysis. Two observers

independently verified the segmentation of the tumors by the

algorithm to make sure the measurements from the semi-

automated algorithm were reliable. Mice were euthanized

following the last live scan, and necropsy and histological analyses

were performed for further characterization of the tumors

identified in micro-CT scans.

Semi-automated volumetric analysis
Algorithm overview. The volume of the murine lung tumors

was computed from the segmentation result produced by a semi-

automated algorithm. The algorithm was adapted from previous

work on semi-automated segmentation of lung tumors in whole

lung CT scans of humans [28]. An overview of the algorithm,

which consists of several steps, is presented in Figure 1. The user

initiates the algorithm by drawing a line across the nodule

indicating the nodule’s extent. The algorithm uses the provided

information to extract a region of interest to analyze. After pre-

processing the image, an adaptive threshold is applied, followed by

filtering to remove attached pulmonary vessels. The lung regions

and their volumes are computed to aid in determining if the

nodule is juxtapleural; if so, an additional step is performed to

separate the nodule from the chest wall. The final result is a binary

image containing only those voxels belonging to the nodule.

Algorithm modifications to enable micro-CT data

analysis. The algorithm used to analyze murine micro-CT

scans was adapted from tools for the measurement of pulmonary

nodules in human chest CT scans [28]. To adapt the algorithm to

analyze murine micro-CT scans, several changes were required.

First, in micro-CT scans, the size of the extracted region of interest

of the scan was clipped to a 56565 mm3 cubic region of interest

(ROI) around the location of the tumor that was manually

provided to the algorithm.

Second, the method for determining the threshold used to

segment the soft tissue from the lung parenchyma was modified to

account for the variation in calibration in the micro-CT scans.

After the micro-CT scan is clipped, a threshold is applied to the

ROI to separate the soft tissue from the lung parenchyma. While

the use of an adaptive threshold does not provide much benefit for

segmenting nodules from human CT scans compared to a fixed

threshold [32], the murine micro-CT scans exhibited significant

variation in the density of the lung parenchyma from one scan to

another. To compensate for this variation, an adaptive threshold

was selected for each scan. A histogram of the ROI, prior to

resampling, was generated. A threshold was established based on

the assumption that the histogram would be bi-modal, with one

peak corresponding to the lung parenchyma and another to the

soft tissue. The threshold was automatically selected to be the

midpoint of the two peaks, as shown by the plot in Figure 2. After

the adaptive threshold was determined, the threshold was applied

to the resampled ROI image to generate a binary image, with all

soft tissue structures labeled.

The remaining steps of the segmentation algorithm were the

same as the one used for human chest CT scans [28]. After the

Figure 1. Flowchart showing the major steps of the semi-automated segmentation algorithm.
doi:10.1371/journal.pone.0083806.g001
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completion of the algorithm, the completed segmentations were

manually reviewed. If the segmentation is not acceptable, several

parameters can be adjusted from the automatically determined

values: the size of the processing filter used to remove vessels; the

size of the region of interest, if there is an excessive or insufficient

amount of the chest wall; and whether or not the tumor is

juxtapleural. These parameters are only adjusted relative to the

algorithm-derived values and typically only require a small

adjustment. The size of the vessel processing filter controls the

extent of vessel-like structures that are included in the segmenta-

tion of the tumor. The size of the ROI is set to be large enough to

totally encompass most nodules and provide a sufficient portion of

the chest wall to allow for the correct function of the surface fitting

algorithm, but not any larger than necessary to limit the

computation time and avoid including other non-tumor structures.

In some cases, the ROI had to be increased by 1.0 mm for nodules

that were larger than the ROI.

Manual tumor measurements
The tumor volumes measured by the semi-automated algorithm

were compared to those generated by manual measurement

procedures. The approximate volume of all tumors in the study

was measured manually using the following method. In every fifth

slice through the tumor, an observer performed a bi-dimensional

measurement consisting of a line drawn along the greatest extent

of the tumor and a perpendicular line that spanned the greatest

extent of the tumor in the other dimension. The average of these

two measurements was used to establish the diameter of a cylinder

with a height of 5 slices (0.25 mm). In this manner, manual

measurements were made across the full thickness of the tumor,

and the resulting volumes were summed to obtain an approxima-

tion of the nodule volume. In order to validate this manual

approximation of nodule volumes, we also measured the volumes

of a subset of tumors by complete manual 3D segmentation in

which the tumor boundaries were outlined manually in all slices.

Growth analysis
In this study, each mouse was scanned several times. Tumors

were identified and their volumes were measured for each scan.

Tumor growth can be determined from the tumor volume and

time interval between scans. Exponential growth can be modeled

by the following equation:

V2~V1er(t2{t1)

where V1 is the volume at time t1, V2 is the volume at time t2, and

r is the growth rate.

A nonlinear regression curve fitting was performed using

GraphPad Prism. The exponential growth equation analysis gave

the tumor growth rate r for all the tumors studied.

The tumor volume doubling time (VDT, defined as ln2/r), as

well as the growth index (GI), was calculated for tumors observed

in the scans. GI, the percent tumor growth per month, was defined

as follows:

GI~100 (V2=V1)(30:44=(t2{t1)){1
h i

The value 30.44 is the average number of days per months.

Rearranging this equation gives a GI value that can be calculated

using the slope r of the best-fit exponential curve:

GI~100 e30:44r{1
� �

ð3Þ

In contrast to VDT where a lower value indicates faster growth,

a higher GI represents faster growth. VDT can be converted to GI

by the following equation:

GI~100 230:44=VDT{1
h i

The manual and semi-automated methods for calculating tumor

volumes were compared by plotting ln (volume) versus time and

obtaining the best-fit lines. The slopes of these lines were

compared by Student’s t test. The R-squared values were used

to evaluate the goodness of fit with a 95% confidence interval.

Results

In this study, we used micro-CT to monitor the progression of

murine lung tumors in vivo. Prior to imaging live mice, post-

mortem imaging of three lung tumor-bearing mice was performed

in order to optimize and validate the measurement algorithm.

Figure 3A shows a micro-CT image of the lungs from a euthanized

mouse scanned with 360 projections, reconstructed at

50650650 mm3 resolution. The neoplasm apparent in the

micro-CT scan was also identified on the histological slide of the

corresponding lung lobe (Figure 3B). The neoplasm is an

adenoma, with a clear border between the solid tumor mass and

surrounding lung parenchyma. Higher magnification images of

the histological section clearly showed that the tumor region is

much denser than the surrounding lung parenchyma, hence the

different densities of these tissues observed in micro-CT. We then

Figure 2. Histogram showing voxel densities of the lung
parenchyma and soft tissue in a region of interest. Voxel
densities of a region of lung from an RNR transgenic mouse including a
nodule were sampled and used to create the histogram. Bins were set
at 10 HU. The peak on the left represents the lung parenchyma and the
peak on the right represents the soft tissue. The line in the middle
indicates the calculated adaptive threshold by the semi-automated
algorithm. The data shown were from a scan taken at 50 mm with 720
projections.
doi:10.1371/journal.pone.0083806.g002
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compared tumor size as determined by physical, image-based

manual, and semi-automated computational approaches, using

maximum tumor diameter as the readout that could be most

readily assessed using all three measurement methods (Table S2).

The diameter of this tumor was determined to be 1.94 mm by

physical measurement of a histological section. Manual measure-

ment of micro-CT scans was used to determine the volume of the

same tumor, and the diameter was calculated to be 2.06 mm.

Next, the semi-automated algorithm was used to measure the size

of the same tumor. The ROI including the tumor is illustrated in

Figure 3C, with every fourth image from the tumor segmentation

shown. A 3D visualization of this segmented tumor was then

generated with axial, sagittal and dorsal views shown in Figure 3D.

Consistent with the histological and manual measurements of the

tumor, the diameter computed by the algorithm was 2.03 mm.

Physical, manual and computed measurements for three addi-

tional tumors from two tumor-bearing mice were compared and

also found to be highly similar, with the difference in tumor

diameter between the manual and semi-automated measurement

methods ranging from 1.47% to 4.49% (Table S2). Together,

these results provided an initial validation of our computational

methods for semi-automated measurement of mouse lung tumors

from micro-CT images.

Live micro-CT scanning was then performed on four lung

tumor-bearing mice. All live scans were acquired using the

following parameters: 100 kVp, 50 mA, 20 ms, 720 projections, 2

frame averaging and acquisition and reconstruction at 50650650

mm3 resolution, with the exception of two scans (Table S1). 12

tumors in total were detected in the four mice, and ten tumors

were successfully segmented by the semi-automated algorithm

(Table S3). Each mouse was euthanized following the final scan,

and necropsy and histological analyses were performed to confirm

tumors that were detected by micro-CT scans. Of the ten

successfully segmented tumors, six were detectable at three or

more time points, permitting their use for growth analysis. To

validate the accuracy of the algorithm in live studies, we first

compared the volumes of the four nodules not used for growth

analysis as measured by the algorithm with the volumes measured

for the same tumors manually (Table S4). Consistent with the

findings from post-mortem scans indicating that the semi-

automated algorithm was accurate, no significant difference was

observed between volume measurements made by the algorithm

or manually for the tumors from these live imaging studies (Table

S4, paired Student’s t-test, P = 0.57).

Next, the volumes of the six nodules used in growth analysis

were computed at each time point and recorded for growth

pattern analysis (Figure 4A to C, Figure S1, and Table S5). The

fold change in tumor volume over time for each nodule is

illustrated in Figure 4D and 4E. The initial volume for the tumors

in Figure 4D was approximately 0.050 mm3 while the initial

volume for the tumors in Figure 4E ranged from 0.190 mm3 to

0.898 mm3 (mean 0.3665 mm3, median 0.257 mm3). The growth

index (GI) and volume doubling time (VDT) for each tumor is

provided in Table 1. The growth curves of the tumors in Figure 4

were suggestive of an exponential growth pattern, with deviation

from a perfect exponential model. Variation from the micro-CT

scanner due to alterations in calibration from scan to scan could

contribute to such a deviation. This possibility was assessed using

data for phantoms of known density that were scanned together

with the mice. Histograms for the distribution of densities for air,

water, and bone phantoms were plotted for two scans of the same

mouse (Figure 5A, B), with mean and standard deviation values

reported in Table S6. While the mean density of the air phantom

between the two scans only varied by 4.2 Hounsfield Units (HU),

the means for the water and bone phantoms differed by 25.7 HU

and 20.6 HU, respectively. The noise of the scans, which was

quantified by the standard deviation of the distribution of pixel

values in the phantoms, also differed from scan to scan. The

greatest difference in standard deviation between the two scans

occurred with the air phantom, where there was a 30.9 HU

difference. The difference in standard deviation between the two

scans decreased as the mean density increased, with the difference

for water and bone being 24.7 HU and 3.4 HU respectively. In

addition to phantoms, we also measured the voxel densities of the

lung parenchyma and soft tissue from different scans to see

whether they were consistent. Figure 5 shows the distribution of

voxel densities for the lung parenchyma and soft tissue from two

different scans of the same mouse (mouse 4; Figure 5C and 5D).

The value that best separated the lung parenchyma from soft tissue

varied by 35 HU from one scan to the other. These data identify

scan-to-scan variability in calibration and tissue density measures.

Next, we investigated whether differences in mouse positioning

or disease progression could contribute to measurement variation

between scans, possibly by affecting nodule morphology. This

possibility was assessed by comparing total lung volume across all

scans for each mouse. The difference between the minimum and

maximum lung volume measurement was 43.7% (mean volume

524.0 mm3, standard deviation 82.3 mm3) for mouse 2, 60.8%

(mean volume 484.3 mm3, standard deviation 79.9 mm3) for

mouse 3, and 28.2% (mean volume 576.6 mm3, standard

deviation 57.7 mm3) for mouse 4. These findings indicate that

there were substantial changes in total lung volume for individual

mice between imaging sessions.

In addition, inaccuracy of tumor volumes measured by the

semi-automated algorithm could also contribute to deviations in

the exponential model. To test whether the algorithm accurately

measured tumor volume changes over time, we compared the

change in tumor volume over time as measured manually and as

computed by the algorithm, for each of the six nodules used in the

tumor growth analyses. Two different manual measurements were

used, based on either complete manual segmentation of each

tumor or a simplified approximation method for manual

measurement as described in the Materials and Methods section.

No significant differences were observed for values from any of

these three measurement methods (Table S5, one-way ANOVA,

P = 0.06). In addition, because the tumors showed exponential

growth, the tumor volumes from both measurements were

converted to a log scale and the resulting best-fit lines were

compared (Figure 6 and Figure S2). Statistical comparison of the

slopes of the best-fit lines revealed no significant differences

between the values from semi-automated and manual measure-

ments (see legend of Figure S2 for P-values), confirming that the

semi-automated algorithm accurately measures tumor volumes in

vivo.

Discussion

The development of micro-CT has provided an opportunity to

monitor disease progression and therapeutic responses over time in

mouse models of human diseases. To further explore this

opportunity and improve the measurement tools, we developed

a semi-automated method to measure tumor volume in micro-CT

scans from a mouse lung cancer model. Several studies have

examined in vivo tumor growth in mouse models imaged with

micro-CT using semi-automated measurement methods. These

typically required manual editing of the segmentation boundary

[7,8] or a large number of manually specified seed points [9]. In

contrast to existing semi-automated methods, the semi-automated
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method in this study only requires a single stroke across the nodule

on the central slice, and optionally allows for manual adjustment

of three parameters: the size of the processing filter used to remove

vessels; the size of the region of interest, if there is an excessive or

insufficient amount of the chest wall; and whether or not the

tumor is juxtapleural. This advanced semi-automated method

required minimal manual intervention, and manual boundary

modification is not allowed, making it more efficient and less labor

intensive. Another recent report described an automated method

for lung nodule segmentation from micro-CT images that, like the

approach reported here, also enables accurate tumor volume

measurement in longitudinal studies [33].

Micro-CT scans present an additional challenge for segmenta-

tion algorithms compared to clinical human CT scans. Although

Figure 3. Micro-CT and histological analyses of an RNR transgenic mouse lung tumor. (A) Micro-CT image of lung (sagittal view) from an
RNR transgenic mouse with a tumor (red circle generated manually). Image was derived from a scan taken at 50 mm with 220 projections. The scale
bar represents 5.0 mm. (B) H&E stained lung tissue from the same mouse. The scale bar represents 1000 mm. Normal and tumor tissues are also
shown at a higher magnification. The scale bar represents 40 mm. The tumor diameter was measured to be 1.94 mm by histological analysis. (C) Black
and white panels: Several slices (every 4th slice shown) through a small region of interest including the tumor in (A). The scale bar represents 2.5 mm.
Color panels: The same tumor separated by the semi-automated segmentation algorithm from other soft tissue structures such as blood vessels and
the chest wall. The result is shown with the tumor in red and other soft tissue structures in green. The color bar range is 2725 to 625 HU. (D) A 3D
visualization of the segmented tumor in (C) showing axial, sagittal, and dorsal views. The volume equivalent diameter of the tumor was calculated by
the semi-automated algorithm to be 2.03 mm.
doi:10.1371/journal.pone.0083806.g003
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we used a set of scan parameters that provided the least amount of

noise given our radiation dosage limitations, the noise level in

these micro-CT scans was still higher than what is typically

obtained using low-dose whole lung human CT scans for which

the algorithm was originally designed. This is due in part to the

scale at which micro-CT operates – the image noise is inversely

Figure 4. Sequential micro-CT scans over time to measure lung tumor growth rate in four RNR transgenic mice. (A) Images of
sequential micro-CT scans of an RNR transgenic mouse (mouse #3 tumor A; red circle generated manually). Images were acquired at 50 mm with 720
projections. The scale bars represent 5.0 mm. The color bar range is 2700 to 400 HU. (B) Gross image of the lungs at necropsy showing the tumor
(black arrow) after the last scan. (C) H&E stained section from lungs shown in (B). The scale bar represents 1000 mm. Normal and tumor tissues are also
shown at a higher magnification. The scale bar represents 40 mm. (D, E) Growth curves of lung tumors from four RNR transgenic mice. Fold change in
lung tumor volume was plotted against time from the first micro-CT scan. A best-fit exponential curve was used to model the growth of each tumor.
Note that Mouse 1 showed very slow growth, which could be due to inconsistency in tumor volume measurement because different scan parameters
were used for mouse 1 time point 3 and this was the first live mouse scanned, when the micro-CT instrument was not calibrated for each scan.
doi:10.1371/journal.pone.0083806.g004

Figure 5. Phantoms and tissues show variation in densities across different scans. (A) Distribution of densities of three phantoms, air,
water, and bone (left to right peaks), with mean densities 2927.6 HU, 92.2 HU, and 2612.6 HU, respectively, in one scan. (B) Distribution of densities
of the same phantoms as in (A) in a repeated scan six weeks later with mean densities 2931.8 HU, 66.5 HU, and 2592.0 HU, respectively. (C)
Distribution of densities in the lung parenchyma (white) and soft tissue (gray) from one mouse in one scan with an adaptive threshold at 2155 HU.
(D) Distribution of densities of the same tissues as in (C) of the same mouse in a repeated scan six weeks later with an adaptive threshold at 2190 HU.
All scans were acquired at 50 mm with 720 projections. Variations in the density distribution of the phantoms and tissues were observed in repeated
scans.
doi:10.1371/journal.pone.0083806.g005
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proportional to the spacing between the voxels, if X-ray exposure

is held constant [34]. The micro-CT scans in this study were

acquired with a voxel size of 0.0560.0560.05 mm3 compared to

typical human CT scans of 0.660.661.0 mm3. Figure 7 shows a

single snapshot of a typical low-dose human CT scan obtained

from the Public Lung Database to Address Drug Response as well

as a micro-CT scan obtained in this study. Visually, the micro-CT

scan has a noisier appearance, as evidenced by the texture pattern

of the lung parenchyma compared to that of the human CT scan

(Figure 7C and 7D). The increase in noise is reflected in the

histogram shown in Figure 7A, in which the micro-CT scan has a

much wider distribution of densities than the human CT scan

shown in Figure 7B. The mean and standard deviation of the

distributions are given in Table S7. Nevertheless, the semi-

automated algorithm developed in this study is able to cope with

the noise level found in micro-CT scans, as illustrated by the

successful segmentation of tumors in Figure 3D.

The semi-automated algorithm used in this paper successfully

segmented 10 out of 12 tumors detected in live scans of four mice.

One limitation the semi-automated algorithm has is that it cannot

properly segment tumors that have complicated morphology. One

assumption made during the development of the algorithm was

that the tumor would only touch the outer chest wall. As a result,

two tumors that were located in the lower lung near the

diaphragm and touched both the chest wall and the diaphragm

could not be successfully segmented (Figure S3).

The growth curves of the tumors followed an exponential

pattern, which is consistent with modeling of tumor growth

patterns for human lung cancers [35,36]. It is also consistent with a

recent CT study showing exponential growth in early stage

pancreatic cancers [37]. Therefore, our in vivo murine lung tumor

growth study is consistent with the exponential growth model of

early lung tumors, for which nutrients, gases and physical space

are not limiting, and supports its use in tumor measurement

algorithms to monitor disease progression and therapeutic

responses. At larger tumor sizes, cell division no longer proceeds

in an unconstrained fashion and non-exponential growth patterns

have been reported [16,17,38]. It also should be noted that the

growth curves obtained in this study showed deviations from an

ideal exponential model, although it remains unknown whether

this accurately reflects the actual growth behavior of the tumors.

We found that alterations in scanner calibration and changes in

mouse lung volume are factors that could contribute to

measurement variability.

One characteristic of CT is that the scale is calibrated. Air has a

density of 21000 HU and water has a density of 0 HU. Thus,

materials of the same density should have a consistent density in

CT scans, both across time and instruments. This allows for the

use of a fixed threshold to separate different tissue types, in this

case for the lung parenchyma and soft tissue. However, in this

study, we observed inconsistencies in calibration and noise

characteristics from scan to scan that could contribute to

measurement variation and deviation from a perfect exponential

growth curve. The semi-automated algorithm in this study used an

adaptive threshold estimated from the local ROI instead of a fixed

threshold to address this variation in calibration. These findings

additionally suggest that the micro-CT scanner should be

Table 1. Tumor volume doubling time and growth index of tumors detected in RNR transgenic mice by micro-CT.

Mouse (Tumor)
Age at first scan
(month)

Initial tumor volume
(mm3)

Growth
curve slope

Tumor volume doubling
time ( = ln2/slope) (days)

Growth index [ = 100(e30.44*slope-1)]
(% increase per month)

1 11 0.685 0.0057 121.6 18.95

2 12 0.898 0.0182 38.08 74

3(A) 12 0.324 0.0096 72.2 33.94

(B) 0.052 0.0297 23.34 147.0

4(A) 11 0.190 0.0134 51.73 50.36

(B) 0.050 0.0195 35.55 81.04

NOTE: mice were first scanned at the indicated age and then subjected to a series of sequential scans to monitor tumor growth. The slope of the growth curve was
converted to tumor doubling time and growth index to indicate the rate of tumor growth.
doi:10.1371/journal.pone.0083806.t001

Figure 6. Comparison of lung tumor growth measured manually by an observer and by the semi-automated algorithm. Best linear fit
growth curves were plotted for tumors from mouse 2 (left) and mouse 4 tumor A (right) based on measurements by a manual approximation method
and by the semi-automated algorithm. The slopes of the best-fit lines for the manual and semi-automated measurements were compared by
Student’s t-test, and no significant differences were observed between the two slopes (P = 0.62 for mouse 2 and P = 0.57 for mouse 4 tumor A).
doi:10.1371/journal.pone.0083806.g006
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calibrated prior to each scan using density phantoms that span the

entire range of densities to be observed in the scan.

We also observed changes in lung volume between live scans for

individual mice. The lung volume of the same mouse varied up to

60% from one scan to another as measured by the algorithm. It is

currently not possible to determine how changes in total lung

volume might affect tumor volume measurements; we cannot rule

out the possibility that differences in lung volume could affect

tumor volume measurements because of the associated variation in

distending forces from the surrounding parenchyma. Slight

differences in mouse positioning between scans could affect the

shape and inflation of the lung, which in turn could contribute to

observed differences in lung volume. In addition, as lung disease

progressed, the increased tumor burden resulted in reduced

respiratory capacity, which might be another factor contributing

to changes in observed lung volume. Furthermore, in order for the

mouse to activate the pressure sensor used for respiratory gating

during live scans, a small external force was applied on the back of

the mouse, which could lead to slight compression of the lungs. An

alternative method for respiratory gating is to use a ventilator to

control the respiratory cycle of the mouse [39]. This would

eliminate the need for a pressure sensor and provide better control

of the degree and rate of inspiration.

Manual tumor volume measurements were made to provide

validation of the semi-automated method. Although uni- and bi-

dimensional measurements on a single slice are typically

performed in clinical practice [40], such as the method specified

by Response Evaluation Criteria In Solid Tumors (RECIST) [41],

Figure 7. Comparison of soft tissue and lung parenchyma densities in a micro-CT scan and a human whole lung CT scan. Distribution
of densities in the lung parenchyma (white) and soft tissue (gray) in (A) a mouse micro-CT scan with adaptive threshold of 2190 HU and (B) a human
whole lung CT scan with no need for adaptive threshold. The mouse micro-CT scan was obtained at 50 mm with 720 projections. The human whole
lung CT scan was from the Weill Cornell Medical College Lung CT database. It was obtained using a GE LightSpeed Ultra scanner at 120 kVp and
80 mA, with 0.760.761.25 mm3 resolution. The peaks in (A) were not as sharp as those in (B), indicating that the mouse micro-CT scans were noisier
than human CT scans. Magnified regions of the lung from (C) a micro-CT scan (yellow circle indicates tumor) and (D) a whole-lung CT scan (red arrow
points to tumor) are shown to visualize the difference in scan quality. No scaling was done to the images and each image was windowed for viewing.
The scale bars represent 5.0 mm (mouse micro-CT image) or 70.3 mm (human CT image). The color bar range is 2750 to 849 HU (mouse micro-CT
image) or 21400 to 100 HU (human CT image).
doi:10.1371/journal.pone.0083806.g007
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we performed bi-dimensional measurements on every 5th slice

throughout the tumor to improve the accuracy of the manual

measurements and used a cylindrical approximation to estimate

the tumor volume without requiring a full manual segmentation of

the tumor. Since this method is not typically used, we validated

this manual measurement against a full manual segmentation of a

subset of the tumors. As shown in Figure S2, there was good

agreement between complete manual segmentation and the bi-

dimensional manual approximation.

The neoplasms analyzed in this study were all adenomas. The

GI values for these tumors ranged from 18.94 to 146.9% per

month (mean 67.55%, median 62.18%), which is much greater

than the GI of 5.4% per month reported for human lung tumors

[42], indicating that the murine tumors grow faster. This likely is

due at least in part to the fact that, relative to larger human

tumors, the tumors in mice were detected at an early stage when

they experience preferential growth conditions, including greater

nutrient access, oxygenation and less spatial constraint. Similarly,

tumors with smaller initial volumes in this study tended to grow

faster, although the limited sample number in our study of lung

neoplasms precludes definitive conclusions on this point. Haeno et

al. [37] previously reported that primary pancreatic tumors that

were larger at diagnosis grew slower. Tumor VDT for the tumors

analyzed in this study ranged from 23.34 to 121.6 days (Table 1),

with an average of 57.08 days. These values are similar to

published VDT values for mouse lung adenocarcinoma. Oliver et

al. [43] reported an average mouse lung tumor VDT of 35 days

(with high variation). Haines et al. [5] and Fushiki et al. [6] showed

an average VDT for murine lung tumors of around 42 days. These

published studies all used the K-rasLSL-G12D mouse model, in

which expression of the activated K-ras oncogene is induced

following Adeno-Cre viral infection [44]. In comparison, lung

tumors arise in the mouse model used in the present study through

a stochastic process that also is associated with mutations in the K-

ras oncogene [24]; differences between the mouse models used

may contribute to the modest variation in average tumor VDT

observed. A recent study in human lung cancer patients revealed

an average tumor VDT of 136 days for 111 lung cancer cases [45].

110 of the 111 cases had lung tumors diagnosed at screening

rather than by symptoms, suggesting that the average VDT of 136

days reflects tumor growth at an early stage and provides a basis

for comparison with the average VDT of 57.08 days in our mouse

model. Aside from cancer cell-intrinsic factors, previous research

has identified the tumor microenvironment provided by the host,

including capillary density and metabolic activity in surrounding

tissues, as a key, species-specific determinant of tumor growth rate,

with mouse tissue typically supporting more rapid tumor

proliferation [38,46].

The semi-automated pulmonary nodule segmentation algo-

rithm for measuring murine tumors imaged by micro-CT reported

here was capable of accurate measurements of tumor volumes and

was used to monitor disease progression over time. Tumor volume

measurements from micro-CT have the potential to be used as an

imaging biomarker in preclinical studies. With future improve-

ments to handle nodules with more difficult morphology, this

automated algorithm holds promise for use in monitoring disease

progression following treatment with candidate drugs and

evaluation of therapeutic responses.

Supporting Information

Figure S1 Analysis of lung tumor growth in RNR
transgenic mice by sequential micro-CT scanning.
Micro-CT imaging was performed on RNR transgenic mice,

and representative micro-CT images from each imaging session are

shown for (A) mouse #1; (B) mouse #2; (C) mouse #3 tumor B; (D)

mouse #4 tumor A; (E) mouse #4 tumor B. All images were acquired

at 50 mm with 720 projections. The time point of the scan and the

calculated tumor volume are indicated. Manually generated red

outlines highlight the tumor analyzed in each image. Also shown are

H&E stained sections that were generated for each sample following

the final imaging session. Scale bars represent 5.0 mm (CT images) or

1000 mm (H&E image). The color bar range is -800 to 500 HU.

(TIF)

Figure S2 Comparison of lung tumor volume values
determined manually by an observer and by the semi-
automated algorithm. Four tumor-bearing mice were subject-

ed to sequential micro-CT imaging, and tumor volume measure-

ments of six tumors were determined manually by an observer and

by the semi-automated algorithm. (A) mouse #1, (B) mouse #2,

(C) mouse #3 tumor A, (D) mouse #3 tumor B, (E) mouse #4

tumor A, and (F) mouse #4 tumor B. The volumes of all six

tumors were measured over time by a manual approximation

method as described in Materials and Methods. The slopes of the

plotted lines for the manual approximation and semi-automated

measurements were compared by Student’s t-test, and no

significant differences between the two slopes were observed

(mouse 1: P = 0.40; mouse 2: P = 0.62; mouse 3 tumor A: P = 0.99;

mouse 3 tumor B: P = 0.69; mouse 4 tumor A: P = 0.57; mouse 4

tumor B: P = 0.55). In addition, the volumes of three tumors over

time were further measured by manual complete 3D segmentation

(mouse 2, mouse 3 tumor A and mouse 4 tumor B). The slopes of

the plotted lines for the manual complete segmentation, manual

approximation and semi-automated measurements were com-

pared by one-way ANOVA and no significant differences among

the three slopes were observed (mouse 2: P = 0.30; mouse 3 tumor

A: P = 0.63; mouse 4 tumor B: P = 0.80).

(TIF)

Figure S3 Representative micro-CT images showing a
nodule that is attached to both the chest wall and
diaphragm. Micro-CT images of a nodule from mouse #3 that

abuts the chest wall and diaphragm are shown. This nodule could

not be successfully segmented by the semi-automated algorithm

because it violates the assumption of the algorithm that the nodule

can only have one major attachment. These images were

windowed to enhance the contrast for viewing and representative

segmentations that are seven slices apart are shown. This scan was

acquired at 50 mm with 720 projections. The scale bars represent

5.0 mm. The color bar range is 2625 to 1225 HU.

(TIF)

Table S1 Scanner acquisition parameters used for live
scans.

(DOCX)

Table S2 Comparison of tumor sizes determined by
physical measurement from histological slides or by
analysis of post-mortem micro-CT scans.

(DOCX)

Table S3 Summary of tumors detected, segmented and
used from growth analysis for each mouse in live micro-
CT scans.

(DOCX)

Table S4 Comparison of manual and semi-automated
tumor volume measurements for tumors that were
successfully segmented but not used in growth analysis.

(DOCX)
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Table S5 Comparison of raw tumor volume measure-
ments of tumors used in growth analysis by manual and
semi-automated methods.
(DOCX)

Table S6 Descriptive statistics for the densities of the
histogram plots in Figure 5A.
(DOCX)

Table S7 Descriptive statistics for the densities of the
histogram plots in Figure 7.
(DOCX)
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