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Abstract

We propose a new approach for solving a class of discrete decision making problems under uncertainty with positive cost.
This issue concerns multiple and diverse fields such as engineering, economics, artificial intelligence, cognitive science and
many others. Basically, an agent has to choose a single or series of actions from a set of options, without knowing for sure
their consequences. Schematically, two main approaches have been followed: either the agent learns which option is the
correct one to choose in a given situation by trial and error, or the agent already has some knowledge on the possible
consequences of his decisions; this knowledge being generally expressed as a conditional probability distribution. In the
latter case, several optimal or suboptimal methods have been proposed to exploit this uncertain knowledge in various
contexts. In this work, we propose following a different approach, based on the geometric intuition of distance. More
precisely, we define a goal independent quasimetric structure on the state space, taking into account both cost function
and transition probability. We then compare precision and computation time with classical approaches.
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Introduction

It’s Friday evening, and you are in a hurry to get home after a

hard day’s work. Several options are available. You can hail a taxi,

but it’s costly and you’re worried about traffic jams, common at

this time of day. Or you might go on foot, but it’s slow and tiring.

Moreover, the weather forecast predicted rain, and of course you

forgot your umbrella. In the end you decide to take the subway,

but unfortunately, you have to wait half an hour for the train at the

connecting station due to a technical incident.

Situations like this one are typical in everyday life. It is also

undoubtedly a problem encountered in logistics and control. The

initial state and the goal are known (precisely or according to a

probability distribution). The agent has to make a series of

decisions about the best transport means, taking into account both

uncertainty and cost. This is what we call optimal control under

uncertainty.

Note that he might also have an intuitive notion of some

abstract distance: how far am I from home? To what extent will it

be difficult or time consuming to take a given path? The problem

might become even more difficult if you do not know precisely

what state you are in. For instance, you might be caught in a traffic

jam in a completely unknown neighborhood.

This problem that we propose to deal with in this paper can be

viewed as sequential decision making, usually expressed as a

Markovian Decision Process (MDP) [1–4] and its extension to

Partially Observable cases (POMDP) [5,6]. Knowing the transi-

tion probability of switching from one state to another by

performing a particular action as well as the associated instanta-

neous cost, the aim is to define an optimal policy, either

deterministic or probabilistic, which maps the state space to the

action state in order to minimize the mean cumulative cost from

the initial state to a goal (goal-oriented MDPs).

This class of problems is usually solved by Dynamic Program-

ming method, using Value Iteration (VI) or Policy Iteration (PI)

algorithms and their numerous refinements. Contrasting with this

model-based approach, various learning algorithms have also been

proposed to progressively build either a value function, a policy, or

both, from trial to trial. Reinforcement learning is the most widely

used, especially when transition probabilities and cost function are

unknown (model-free case), but it suffers from the same tractability

problem [7]. Moreover one significant drawback to these

approaches is that they do not take advantage of the preliminary

knowledge of cost function and transition probability.

MDPs have generated a substantial amount of work in

engineering, economics, artificial intelligence and neuroscience,

among others. Indeed, in recent years, Optimal Feedback Control

theory has become quite popular in explaining certain aspects of

human motor behavior [8,9]. This kind of method results in

feedback laws, which allow for closed loop control.

However, aside from certain classes of problems with a

convenient formulation, such as the Linear Quadratic case and

its extensions [10], or through linearization of the problem,

achieved by adapting the immediate cost function [11], the exact

total optimal solution in the discrete case is intractable due to the

curse of dimensionality [1].

Thus, a lot of work in this field is devoted to find approximate

solutions and efficient methods for computing them.

Heuristic search methods try to speed up optimal probabilistic

planning by considering only a subset of the state space (e.g.

knowing the starting point and considering only reachable states).
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These algorithms can provide offline optimal solutions for the

considered subspace [12–14].

Monte-Carlo planning methods that doesn’t manipulate prob-

abilities explicitly have also proven very successful for dealing with

problems with large state space [15,16].

Some methods try to reduce the dimensionality of the problem

in order to avoid memory explosion by mapping the state space to

a smaller parameter space [17,18] or decomposing it hierarchically

[19–21].

Another family of approximation methods which has recently

proven very successful [22] is the ‘‘determinization’’. Indeed,

transforming the probabilistic problem to a deterministic one

optimizing another criterion allows the use of very efficient

deterministic planner [23–25].

What we propose here is to do something rather different, by

considering goal-independent distances between states. To com-

pute the distance we propose a kind of determinization of the

problem using a one step transition ‘‘mean cost per successful

attempt’’ criterion, which can then be propagated by triangle

inequality. The obtained distance function thus confers to the state

space a quasi-metric structure that can be viewed as a Value

function between all states. Theses distances can then be used to

compute an offline policy using a gradient descent like method.

We show that in spite of being formally suboptimal (except for

the deterministic and a described particular case), this method

exhibits several good properties. We demonstrate the convergence

of the method and the possibility to compute distances using

standard deterministic shortest path algorithms. Comparison with

the optimal solution is described for different classes of problems

with a particular look at problems with prisons. Prisons or

absorbing set of states have been recently shown to be difficult

cases for state of the art methods [26] and we show how our

method naturally deals with these cases.

Materials and Methods

Quasimetric
Let us consider a dynamic system described by its state x[X and

u[U(x), the action applied at state x leading to an associated

instantaneous cost g(x,u). The dynamics can then be described by

the Markov model:

P(X tz1jX t,Ut)

where the state of the system is a random variable X defined by a

probability distribution. Assuming stationary dynamics, a function

p : X 2U?½0,1� exists, satisfying

P(½X tz1~y�j½X t~x�,½Ut~u�)~p(yjx,u)

This model enables us to capture uncertainties in the knowledge

of the system’s dynamics, and can be used in the Markov Decision

Process (MDP) formalism. The aim is to find the optimal policy

U(x) allowing a goal state to be reached with minimum

cumulative cost. The classic method of solving this is to use

dynamic programming to build an optimal Value function

v : X?R, minimizing the total expected cumulative cost using

Bellman equation:

v(x)~ min
u

g(x,u)z
X

y

v(y)p(yjx,u)

( )
ð1Þ

which can be used to specify an optimal control policy

p : X?U(X )

p(x)[ arg min
u

g(x,u)z
X

y

v(y)p(yjx,u)

( )
ð2Þ

In general this method is related to a goal state or a discount

factor.

Here we propose a different approach by defining a goal

independent quasimetric structure in the state space, defining for

each state couple a distance function d(x,y) reflecting a minimum

cumulative cost.

This distance has to verify the following properties:

Vx,y : d(x,y) § 0

Vx : d(x,x) ~ 0

Vx,y : d(x,y) ~ 0[x~y

Vx,y : d(x,y) ~ min
z

d(x,z)zd(z,y)f g

8>>>>>><
>>>>>>:

leading to the triangle inequality

Vx,y,z : d(x,y)ƒd(x,z)zd(z,y)

Therefore, the resulting quasi-distance function

d : X|X?Rz confers the property of a quasimetric space to X .

Notice that this metric need not be symmetric (in general

d(x,y)=d(y,x)). It is in fact a somewhat natural property, e.g.

climbing stairs is (usually) harder than going down.

By then choosing the cost function g(x,u)w0 this distance can

be computed iteratively (such as the Value function).

For a deterministic problem, we initialize with:

d0(x,x) ~ 0

d0(x,y=x) ~ z?

d1(x,y) ~ min d0(x,y), min
ujy~next(x,u)

fg(x,u)g
� �

8>>><
>>>:

with next(x,u) the discrete dynamic model giving the next state y

by applying action u in state x. Then we apply the recurrence:

diz1(x,y)~ min
z

di(x,z)zdi(z,y)
� �

Viw0 ð3Þ

We can show that this recurrence is guaranteed to converge in

finite time for a finite state-space problem.

Proof.

1. by recurrence V(x,y),Vi : di(x,y)§0 as:

N V(x,y) :

2. V(x,y),Vi : diz1(x,y)ƒdi(x,y) as:

d1(x,y)~ min d0(x,y), min
ujy~next(x,u)

fg(x,u)g
� �

§0 as

Quasimetric Approach to Decision Making
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V(x,y) : d0(x,y)§0 and g(x,u)w0 by definition.

N and if di(x,y)§0 then

diz1(x,y)~ minz di(x,z)zdi(z,y)
� �

§0

diz1(x,y)~ minz di(x,z)zdi(z,y)f g then diz1(x,y)ƒdi(x,z)z

di(z,y) in particular if we take z~x we have diz1(x,y)ƒdi(x,y).

3. V(x,y) : di(x,y) is a decreasing monotone sequence bounded by

0.

However, finding a way to initialize d(x,y) (more precisely

d1(x,y)) while taking uncertainty into account, presents a difficulty

in probabilistic cases as we cannot use the cumulative expected

cost like in Bellman equation.

For example we can choose:

d1(x,y)~ min d0(x,y), min
u

g(x,u)

p(yjx,u)

� �� �

for the first iteration with
g(x,u)

p(yjx,u)
as the one-step distance.

The quotient of cost over transition probability is chosen as it

provides an estimate of the mean cost per successful attempt. If we

attempt N times the action u in state x the cost will be N:g(x,u)
and the objective y will be reached on average N:p(yjx,u) times.

The mean cost per successful attempt is:

N:g(x,u)

N:p(yjx,u)
~

g(x,u)

p(yjx,u)

This choice of metric is therefore simple and fairly convenient.

All the possible consequences of actions are clearly not taken into

account here, thus inducing a huge computational gain but at the

price of losing the optimality. In fact, we are looking at the

minimum over actions of the mean cost per successful attempt, which

can be viewed as using the best mean cost, disregarding

unsuccessful attempts, i.e. neglecting the probability to move to

an unwanted state.

In a one-step decision, this choice is a reasonable approximation

of the optimal that takes both cost and probability into account.

This cost-probability quotient was used before to determinize

probabilistic dynamics and extract plans [21,27,28]. Here we

generalize this method to construct an entire metric in the state

space using triangle inequality.

We also notice that contrary to the dynamic programming

approach, the quasimetric is not linked to a specific goal but

instead provides a distance between any state pair. Moreover,

using this formalism, the instantaneous cost function g(x,u) is also

totally goal independent and can represent with greater ease any

objective physical quantity, such as consumed energy. This

interesting property allows for much more adaptive control since

the goal can be changed without the need to recompute at all. As

shown in the following, it is even possible to replace the goal state

by a probability distribution over states. Another interesting

property of the quasi-distance d : X|X?Rz is that it doesn’t

have local minimum from the action point of view.

In fact, for any couple (x,y), d0(x,y),d1(x,y), . . . dn(x,y)
� �

is a

decreasing finite series of non-negative numbers (finite number of

states), which therefore converges to a non-negative number

d(x,y)~ lim
n??

dn(x,y)f g

Note that if we multiply the cost function by any positive

constant, the quasimetric is also multiplied by the same constant.

This multiplication has no consequence on the structure of the

state space and leaves the optimal policy unchanged, therefore we

can choose a constant such that:

min
x,u

g(x,u)f g~1

Let Dn
k(y) be the subset of X associated with a goal y such that:

x[Dn
k(y)udn(x,y)vk

and let Dk(y)~D?
k (y) the subset of X associated with the goal y

such that:

x[Dk(y)ud(x,y)vk

The subset D?(y) is the set of states from which the goal y can

be reached in a finite time with a finite cost. Starting from

x[=D?(y) the goal y will never be reached either because some

step between x and y requires an action with an infinite cost, or

because there is a transition probability equal to 0.

Then the defined quasimetric admits no local minimum to a

given goal in the sense that for a given k, if x[Dk(y) is such that:

Vz[Dk(y),Vu[U : P(zjx,u)wk{1and d(z,y)wd(x,y)

then x~y

Proof.

1. if x=y and x[D1
k(y), then Au : P(yjx,u)w

g(x,u)

k
§k{1 and

1. d(x,y)wd(y,y)~0. As y[Dk(y) it is a counterexample of the

definition.

2. if x=y and x[D1
k(y), then An,z : d(x,y)~dn(x,z)zdn(z,y). As

dn(x,z)§0, d(z,y)ƒdn(z,y)ƒd(x,y)vk, therefore z[Dk(y).

N If n~1, Au : P(zjx,u)w
g(x,u)

k
§k{1 it is a counterexample of

the definition.

N If nw1, Az0 : dn(x,z)~dn{1(x,z0)zdn{1(z0,z). As dn{1(x,z0)

§0 w e h a v e s t i l l d(z0,y)ƒdn{1(x,z0)zdn(z,y)ƒ
d(x,y)vk and therefore z0[Dk(y).

– if n{1~1 it is a counterexample.

– else we repeat the search for intermediary state. Thus by

recurrence, there exists some state z1[Dk(y) such that

x[D1
k(z1) which gives a counterexample to the definition.

Consequently, if x[D?(y), one can set k~d(x,y) (a finite

distance) and apply the above property to show that there exists at

least one action u transforming the state x to some state z with a

transition probability P(zjx,u)wk{1 such that d(z,y)vd(x,y).

Quasimetric Approach to Decision Making
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HMM case
In the real world, the state of the system is never really known.

The only available knowledge we have consists of a series of

observations reflecting hidden states. Probabilistic inference based

on transition probability and observation likelihood allows to

compute the probability distribution over the hidden states. This

class of systems is usually modeled as Hidden Markov Models

(HMM) and the problem of controlling such a system becomes a

Partially Observable Markov Decision Process (POMDP).

Extending the quasimetric method to the POMDP case does

not however, come without cost. Ideally, as with the theoretical

POMDP, we should define a quasi-distance not just on the state

space but on the belief space (estimated distribution over states),

which is continuous and consequently difficult to deal with [29].

A possible approximation is to compute the policy not on the

belief space, but on the observations-actions space, obtaining

P(½Ut~u�jo0:t,u0:t{1).

Let us assume that we have a state observer maintaining a

distribution over states, knowing all previous observations and

actions P(½X t~x�jo0:t,u0:t{1).

At time t we know all the observations o0:t and all the previous

actions uo:t{1, thus the distribution for the state can be recursively

updated by the forward HMM equations:

P(½X t~x�jo0:t,uo:t{1)!P(½Ot~o�j½X t~x�)

|
X

y

½P(½X t~x�j½X t{1~y�,ut{1)

|P(½X t{1~y�jo0:t{1,u0:t{2)�

with P(OtjX t) the observation model.

Then the distribution over action space can be computed by

marginalizing over state space:

P(½Ut~u�jo0:t,u0:t{1)~
X

x

½P(½X t~x�jo0:t,u0:t{1)

|P(½Ut~u�j½X t~x�)� ð4Þ

assuming we have already computed the state dependent action

policy P(½Ut~u�j½X t~x�) (see below).

Following this, a decision must be made based on this

distribution. The chosen action can be random

urandom
t *P(½Ut~u�jo0:t,u0:t{1)

the most probable

umax
t ~ argmax

u
P(½Ut~u�jo0:t,u0:t{1)

or the mean

umean
t ~

X
u

u:P(½Ut~u�jo0:t,u0:t{1)

Here we assume a separation between state estimation and

control, considerably reducing the computational cost compared

to the optimal POMDP solution, which is intractable for most

real-life problems.

One drawback however, is that the resulting policy could be less

optimal and lacking in information-gathering behavior, for

example.

Probabilistic policy
As we have seen, in the classic MDP formalism, the policy p(x)

is a deterministic mapping of the state space X toward the action

space U (using argmin
u

). Pure MDP formalism only considers the

optimal action (greedy policy), so a choice is made during the

computation of the policy to only consider the one action that

minimizes the cost.

However, this method could be viewed as arbitrary to a certain

extent, especially for multimodal cases where the choice of a

unique optimal action may lead to loss of information or blocking

behavior.

In the field of reinforcement learning, the greedy policy is

usually avoided in order to maintain exploratory behavior. To do

so, methods such as e-greedy, soft e-greedy and soft-max action

selection were employed [7].

Here we propose building P(UtjX t,Y t) with Y the goal, using a

Gibbs distribution (soft-max like form):

P(½Ut~u�j½X t~x�,½Y t~y�)~ e{bDud(x,y)P
ui

e{bDui d(x,y)
ð5Þ

with b a parameter modulating the sharpness of the distribution

(and consequently the exploration rate), and Dud(x,y) a probabilistic

gradient of the quasi-distance:

Dud(x,y)~g(x,u)z
X

z

d(z,y)p(zjx,u){d(x,y) ð6Þ

This gradient takes the immediate cost of the action into

account, as well as the difference between the expected and

current quasi-distances.

The resulting distribution depends on a goal y, which can be

fixed or even an evolving distribution P(Y t). The latter

distribution can represent multiple objectives or just uncertainty

with respect to the goal. We can then obtain a the state dependent

action policy by marginalizing:

P(UtjX t)~
X

y

P(UtjX t,Y t):P(Y t) ð7Þ

This way to build a policy can certainly be applied to any

potential, such as the Bellman Value function. Similarly to

reinforcement learning methods, actions are weighted according

to their ‘‘value estimate’’ which, in our case, is the gradient of the

expected quasi-distance. In MDP, the current state is known, so

that the probability distribution over action space is directly given

by the state dependent action policy (eq. 5 or eq. 7). In POMDP,

the current state is not known, but by marginalization over the

state space, one can also compute the distribution over the action

space (eq. 4).

Quasimetric Approach to Decision Making
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We can see that if b??, the policy tends toward a Dirac delta

distribution (if a unique action minimizing the value exists). This

extreme case reduces to the MDP optimal policy where a unique

optimal action is mapped to each state, similarly to the Value

Iteration or Policy Iteration methods.

The knowledge of a distribution on U allows a random draw

decision to be made from the distribution which can be useful to

avoid blocking behavior or even learning. According to the b
value, the soft-max policy associated with the random draw

decision generates either a more optimal behavior (large b) or a

more exploratory behavior (small b).

Results and Discussion

Comparison with dynamic programming
Convergence and complexity. First as we have shown,

computation of the quasi-distance is ensured to converge even for

infinite horizon (in finite time for a finite state space) while the

standard Value Iteration algorithm is not. In fact, it is usually

necessary to introduce a discount factor c in Bellman’s equation to

assure convergence, but at the price of sub-optimality whereas

such a thing is not needed with the quasimetric.

Constructing the initial one-step distance d1(x,y) for all state

couples is in O(jU j:jX j2). Then, directly applying the recurrence

in equation 3 leads to a complexity of O(jX j3:logjX j) for the

whole state space (all-to-all states). However, the quasimetric

construction uses probabilities only at the first iteration (i.e. the one-

step distance) and then propagates these distances with triangle

inequality. This propagation of one-step distances is completely

deterministic and no more probabilities appear afterward. Thus,

computing the quasi-distance can be reformulated in a graph

theory framework as a deterministic shortest path problem.

Let us consider the weighted directed graph (or network)

G~(V ,A) with vertices V~X and arcs A the set of ordered pairs

of vertices. We can assign to each oriented arc e~(x,y) the weight

wx,y~d1(x,y) (the one-step distance). Remark that for the sake of

efficiency it is preferable to consider an arc only if the associated

weight wx,y=z?, i.e. if an action u exists with a finite cost and

for which the transition probability p(yjx,u)=0. Constructing this

graph is of the same complexity than the d1(x,y) iteration and is

only computed once nonetheless.

Then, the problem of computing the quasi-distance from x?y

becomes the problem of finding the length of the shortest path

between vertices x and y.

One can compute the whole quasimetric (all-to-all states) by

computing the all-pairs shortest paths using for example the Floyd-

Warshall algorithm [30–32]. However, considering the usual

MDP problem with a fixed goal, one would prefer to compute the

quasi-distance for only one goal, which can be viewed as the

multiple-source shortest path. An efficient way to solve this is to

consider the transposed graph GT in which arcs are inverted and

to solve the single-source shortest path (from goal vertex) using for

example Dijkstra’s algorithm [33] or A� depending on the

problem [34].

From a computational point of view, using Dijkstra’s algorithm

to solve the one-goal problem can be done with the

O(jAjzjV j:logjV j) worst case complexity using the appropriate

data structure [35]. Knowing that jV j~jX j and jAjƒjX j2 it’s

O(jX j2zjX j:logjX j)~O(jX j2), considering a fully connected

graph.

This is to be compared to classical discounted Value Iteration

method which complexity is O(jU j:jX j2) for one iteration (or

sweep) with the worst case number of iterations to converge

proportional to
1

1{c
log(

1

1{c
), c being the discount factor [36].

Notice that, transition probabilities are usually sparse allowing

the graph to be equally sparse. Hence, considering the mean

vertex out-degree D̂Dz, complexity using Dijkstra’s method

becomes O(D̂Dz:jX jzjX j:logjX j), D̂Dz depending on the disper-

sion of transition probabilities.

Therefore, quasi-distance can then be easily solved in a

computationally efficient way using the standard deterministic

graph theory methods.

Equivalence. The question is, how much does the quasi-

metric method diverge from the dynamic programming? In other

words, how can we compare the quasi-distance with the value

function in order to discuss the optimality approximation? In order

to be able to compare, we first have to consider only a subset of the

quasimetric by looking at the quasi-distances from all states to one

unique state (a goal). If the quasi-distance and the value function

are equal for a specific goal (strong equivalence) then clearly

policies obtained with both methods will lead to the same

behavior. But it is also possible that the quasi-distance differs

from the value function and still yield the same policy (weak

equivalence).

In the deterministic case, the quasi-distance and the value

function are trivially equal. But there is at least one other class of

problems where these two approaches are strictly equivalent that

we call the probabilistic maze.

Let us consider a probabilistic system where the uncertainties

concern the success of actions. If an action u succeeds, it drives the

system from one state x to another state next(x,u); if it fails, the

system remains in state x. We can then call psuc(u,x) the

probability that action u is successful from state x. This function

determines all the transition probabilities that are null except for:

P(next(x,u)jx,u) ~ psuc(u,x)

P(xjx,u) ~ 1{psuc(u,x)

�
ð8Þ

This kind of systems was also described as ‘‘self-loop MDPs’’

and used for MDPs determinization [27]. For this class of systems

– which includes those that are deterministic – the value function

and the quasi-distance are strictly equivalent and lead to the same

optimal policy.

Indeed, we can inject these probabilities in the Bellman’s

equation:

V (x)~ min
u
fg(x,u)zV (x)(1{psuc(u,x))

zV (next(x,u))psuc(u,x)g ð9Þ

So

min
u
fg(x,u){psuc(u,x)(V (x){V (next(x,u))g~0 ð10Þ

In each state x there exists at least one optimal action u�(x) such

that:

Quasimetric Approach to Decision Making
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u�(x)[ argmin
u
fg(x,u)zV (x)(1{psuc(u,x))

zV (next(x,u))psuc(u,x)g ð11Þ

In a probabilistic maze, an action can only succeed – thus

driving the system from x to next(x,u) – or fail and leaving the

system unchanged. So starting from any initial state x0, the

optimal policy u� describes a unique optimal trajectory

fx0?x1? . . .?xn~goalg. If the optimal action fails in some

state xi, the system remains in xi and the optimal action to apply is

still the same. So u�(xi) is repeatedly chosen until it succeeds to

move the system to xiz1~next(u�(xi),xi) and the probability to

succeed in exactly k tries is psuc(u,x):(1{psuc(u,x))k{1. Therefore,

the mean cost for the transition xi?xiz1 is:

g(xi?xiz1)~psuc(u,x):g(u�(xi),xi)

|
X?
k~1

k:(1{psuc(u,x))k{1 ð12Þ

and as
P?

k~1 k:(1{psuc(u,x))k{1~ 1
psuc(u,x)2 we have:

g(xi?xiz1)~
g(u�(xi),xi)

psuc(u,x)
ð13Þ

So the optimal policy is the one which minimizes this mean cost

per successful attempt

u�(xi)[ argmin
u
fg(u�(xi),xi)

psuc(u,x)
g ð14Þ

Finally we have:

V (x0)~
Xn{1

i~0

min
u
f g(u(xi),xi)

psuc(u(xi),xi)
g~d(x0,xn) ð15Þ

Figure 1 shows an example of such a maze, with the

corresponding quasi-distance and policy.

This type of problem may appear somewhat artificial but it can

for example, refer to a compressed modeling of a deterministic

system, exploiting the structure of the state space.

Let us imagine a mobile agent in a corridor. In a discretized

space, the corridor can have length n, each action moving the

mobile one cell forward with the probability p^1.

In order to exit the corridor, the action has to be applied n
times. Alternatively, this discrete space can be compressed by

representing the corridor with a single cell and the probability to

succeed (i.e. to exit the corridor) p~
1

n
. The resulting model is the

probabilistic maze described above.

Non-equivalence. In the general case, the quasimetric

approach will differ from the dynamic programming method.

These differences arise when the transition probabilities are spread

out along several arrival states. This dispersion of arrival states can

produce differences between the quasi-distance and the value

function with – or without – differences in the optimal policy

obtained.

Systems yielding a quasi-distance different to the value

function. Here is a simple case illustrating the difference

between the two methods. Let us consider a system with fives

states fA,B,C,D,Eg where A is the starting state and E the goal

(cf. Fig. 2A). This system is almost deterministic since the only

uncertainty relates to one action in state A. For A there are two

possible actions, one driving the transition A?B with a probability

of 1 and a cost of 3 (action u1) and one driving either A?C or

A?D with a probability of 0:5 and a cost of 2 (u2). Then from B,

C and D the transition are deterministic, with associated costs of

respectively 2, 2:5 and 2:5.

The corresponding computed quasi-distances can be found in

table 1. The shortest path according to the quasi-distance is

A?B?E. The optimal policy in A however, is to choose the

action u2 leading to either C or D with a probability of 0.5 and a

cost of 2. Indeed, for the action u1 leading to B we have

g(A,u1)zV (B)~5 whereas g(A,u2)z0:5:V (C)z0:5:V (D)~4:5.

The value function of state A is slightly lower than d(A,E) but

both methods lead to the same optimal choice of u2 while in A.

In this example, the quasi-distance yields an inaccurate estimate

of the mean cost when starting from state A. In fact, the quasi-

distance computation tends to favor actions with low dispersion in

transition probabilities (low uncertainty). So here, the quasi-

distance obtained differs from the Value function for state A, but

generates the same optimal policy.

The policy can also differ in the general case. In fact, replacing

all the costs in the same example with 1 leads to

V (B)~V (C)~V (D)~d(B,E)~d(C,E)~d(D,E)~1. However,

due to the uncertainty of action u2 we have

d(A,B)~d(A,C)~
1

0:5
~2 and d(A,D)~1, thus clearly biasing

the policy obtained with the quasi-distance in favor of u1. On the

contrary, as the Value function takes all of the consequences of

actions into account, u2 leads to 1z0:5V (B)z0:5V (C)~2 and

u1 to 1zV (D)~2, so the two actions are equivalent. Roughly

speaking, the quasi-distance yields an uncertainty aversive policy,

resulting from the
g

p
form of the one-step distance.

Systems with prison-like states. Control under uncertainty

can be viewed as a continuous decision making where both cost

and uncertainty must be dealt with. The trade-off between cost

and uncertainty can be illustrated by the spider problem [37]

where an agent can reach a goal quickly by crossing a narrow

bridge or by slowly walking around a lake. In a deterministic case,

crossing the bridge is the obvious optimal action, but when there is

uncertainty as to whether the spider is able to cross the narrow

bridge, the optimal action could be to walk safely around the lake

(as falling into the water may be fatal).

As regards the spider problem, falling into the water may bear a

sufficiently large cumulative cost to justify choosing to walk around

the lake hazard-free. But then, what happens when confronted

with a choice between a very costly but certain action and a low-

cost action where there is a small probability of death? Clearly this

problem may be much more difficult as death may not be

associated with a high cost per se. The action of ‘‘walking’’ when

in state ‘‘bridge’’ has no objective reason to be higher than

‘‘walking’’ when in state ‘‘lakeside’’ if we consider energy

consumption. Instead, the problem with death does not lie in

the cost but in the fact that it is an irreversible state.

Quasimetric Approach to Decision Making
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In our modeling, death can be represented as a prison state from

which one cannot escape. So this singularity is slightly different

from a state-action with a high cost. In general these prisons can

be a subset of the state space rather than a unique state. These

particular states, sometimes referred as ‘‘dead-ends’’, are known to

be problematic for MDPs and are implicitly excluded from the

standard definition as their existence may prevent solution to

converge [38]. Moreover, recent works in the domain of planning

have identified these problems as interesting and difficult,

recognizing the need to find specific methods to deal with it

[22]. It is to be noted that a prison is an absorbing set of states that

are not necessarily absorbing as it may be possible to ‘‘move’’

inside the prison. In fact a prison is as a set of states that does not

contain the goal and from which we cannot reach the goal.

To illustrate this class of problems, let us imagine that the spider

is unable to swim. Falling into the water now leads to a prison state

(death of the spider).

Figure 2B models this problem considering four states

fA,B,C,Dg where A is the initial state and D the goal. There is

a choice of actions in state A. The first action u1 drives the

transition A?B with a probability p~1 and a cost of 1. Then

from B, the unique action can lead to D with p~1{e or C with a

probability p~e and a cost of 1. The second action u2 allows for a

transition A?D with a probability p~1 but a cost V.

Figure 1. Example of a simple probabilistic maze of size 10|10 where dynamic programming and quasimetric methods are
equivalent. (A) S is the starting state and G the goal. The red wall cannot be traversed (transition probability p~0) while gray ones can be
considered as probabilistic doors with transition probability 0vpv1. 5 actions are considered: not moving, going east, west, south and north. (B)
Quasi-distance obtained for the probabilistic maze example with a constant cost function (Vx,u : g(x,u)~1) and corresponding policy. White arrows
represent the optimal policy from position S to G. Black arrows represent the optimal policy to reach G from other positions.
doi:10.1371/journal.pone.0083411.g001

Figure 2. Simple systems where the quasimetric and the dynamic programming methods are not equivalent. (A) Example of non
deterministic systems where the quasi-distance differs from the value function.Arrows indicate possible actions with their associated transition
probabilities p and costs. Dotted arrow represents action u1 and dashed arrows action u2 , both allowed in state A. (B) Example with a prison state C.
Starting from A to the goal D we can choose between two actions. Action u1 in dotted leads to B with a low cost but then with the risk to fall from B
to C with a probability p~e. B is a risky state. Action u2 in dashed leads to the goal with a probability p~1 but with a high cost V.
doi:10.1371/journal.pone.0083411.g002
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In this case what should the spider do? The computed value

function and the quasi-distance can be found in table 2. According

to Bellman’s equations, the action u1 should never be attempted.

Indeed, for state A and action u1 we have

g(A,u1)zp(BjA,u1)V (B)~z? and for u2 we have

g(A,u2)zp(DjA,u2)V (D)~V. So clearly the optimal choice here

according to the value function is u2, independently of cost V
which can be seen as rather radical.

In contrast, the action policy obtained with the quasi-distance

depends on the relative values of V and e (cost vs. uncertainty) that

are parameters of the problem. Indeed, d(A,D)~ minf1z
1

1{e
,Vg involves:

Du1(A) ~ 1z
1

1{e
{ minf1z

1

1{e
,Vg

Du2(A) ~ V{ minf1z
1

1{e
,Vg

8><
>:

So if 1z
1

1{e
vV we have Du1(A)~0 and Du2(A)~V{1{

1

1{e
w0 then u1 is chosen.

But if 1z
1

1{e
wV, Du1(A)~1z

1

1{e
{Vw0 and Du2(A)~

0, then u2 is chosen.

We see that different policies can be chosen depending on the

problem whereas dynamic programming will always avoid u1. It is

then also possible to modify the cost function in order to move the

cursor of the risky behavior by changing the cost of u2.

We can formalize these prison-like states further in order to better

control these effects.

Let us define state x as belonging to the prison J(y) of state y if

there is no policy allowing the transition from x to y with a non

zero probability.

We notice that if we compute the reaching set

Q(y)~fx[X : A path(x?y)g, we can obtain J(y)~X{Q(y).
Then, by definition Vx[J(y), d(x,y)~?.

With our method, these prison states are states for which the

quasi-distance to a specific (goal) state is infinite. Moreover,

contrary to dynamic programming methods, for a finite cost

function (and in a finite state space) the prison states are the only

states with infinite quasi-distance to the goal, making them easy to

identify. In fact, as described, we initialize all distances with:

d1(x,y)~ min d0(x,y), min
u

g(x,u)

p(yjx,u)

� �� �

So any ‘‘one-step’’ distance between two states x and y will be

finite if at least one action u with a non zero probability p(yjx,u)
exists. Then, these ‘‘one-step’’ distances are propagated by triangle

inequality ensuring that diz1(x,y)~ minz di(x,z)zdi(z,y)f g is

infinite iff the probability of reaching y from x is zero, i.e. there is

no path between x and y. Thus with our method, considering a

finite cost function and a finite state space, every prison state has

an infinite distance and every state with infinite distance is a prison

state.

As described, the proposed general quasi-metric iterative

algorithm can detect all the possible prison states and for a goal

directed MDP, the proposed deterministic shortest path algorithm

for computing the quasi-distance will also naturally detect these

prisons without propagating to other states.

Furthermore, there are also risky states that do not belong to

J(y) but are still associated with an infinite Value function.

Obviously, all states in J(y) have an infinite Value but contrary to

the quasimetric the reciprocal is not true. Therefore, all states with

a non zero probability of leading to a prison state also have an

infinite Value (propagated by the conditional expectation in

Bellman’s equation):

z[J(y)[V (z)~?

so we have

Vu Az[J(y) : p(zjx,u)w0[Vu
X

z

V (z):p(zjx,u)~?[V (x)~?

Thus the infinite value can propagate to the whole state space

depending on the distributions. This property of the dynamic

programming method makes prison states indistinguishable from

other risky states if there is no ‘‘complete proper policy’’ (a policy

leading to the goal with a probability of 1). This may also prevent

any policy to be computed. Indeed, all the possible policy can

Table 1. Quasi-distances and Value function for example 2A.

A B C D E V (:)

A 0 3 4 4 5 4.5

B z? 0 z? z? 2 2

C z? z? 0 z? 2.5 2.5

D z? z? z? 0 2.5 2.5

E z? z? z? z? 0 0

doi:10.1371/journal.pone.0083411.t001

Table 2. Quasi-distances and Value function for example 2B.

A B C D V (:)

A 0 1 1z 1
e minf1z

1

1{e
,Vg V

B z? 0 1
e

1

1{e

z?

C z? z? 0 z? z?

D z? z? z? 0 0

doi:10.1371/journal.pone.0083411.t002
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appear to be equivalent when all states have an infinite Value.

This case appears if we remove the action u2 in this example, then

the prison becomes ‘‘unavoidable’’. In recent years, a number of

work have been devoted to formalizing, detecting and dealing with

these prisons in the planning domain, in particular for ‘‘unavoid-

able’’ ones [22,26,39,40]. The straightforward method we propose

here allows for a finer grained management of this risk.

The set K(y) of these risky states can be constructed iteratively

or by looking at N{(J(y)), the set of predecessors of J(y). We can

observe that N{(J(y)) is the set of states for which at least one

action leads to a prison state with pw0. We call this set the weakly

risky states K 0(y):

K 0(y)~fx[J(y) j Au Az[J(y) : p(zjx,u)w0g~N{(J(y)):

The risky set is:

K(y)~fx[N{(J(y)) j Vu Az[J(y) : p(zjx,u)w0g:

We can even decide a minimal acceptable risk e (e-risky set),

such as:

Ke(y)~fx[N{(J(y)) j Vu Az[J(y) : p(zjx,u)weg

As seen in the previous example, from a quasi-distance point of

view we can consider a risky state to be very close to the objective.

If in a particular state x all actions carry the probability pwe of

entering a prison state, but at least one (let’s say u) also has pw0 of

going directly to the objective y, we have d(x,y)ƒ g(x,u)
p

. In order

to avoid these risky states it can be decided that

Vx[K(y) : d(x,y)~V with V an arbitrary large value (possibly

infinite).

This ability to deal with risk contrasts with the classic dynamic

programming method, according to which one should never cross

the road or use a car, considering that there is always a non zero

probability of an unavoidable and irremediable accident (prison

state). However, by crossing the road or using a car we put

ourselves in a risky state, but not in a prison state!

Consequently, a distinction between J(y) and K(y) along with

the ability to parametrize the risk/cost trade-off enabled by the

quasimetric approach is essential and may be interesting for

modeling human behavior.

Applications
Under-actuated pendulum. Let us consider an under-

actuated pendulum driven by the following equation:

mr2€hh~Czmgr:sin(h) ð16Þ

with m the mass, r the radius, C the torque, h the angular position

and g~9:81 m:s{2.

The problem is to reach and maintain the unstable equilibrium

h~0 (upward vertical) from the starting stable one h~p
(downward vertical) with a minimum cumulative cost, knowing

that we can only apply a torque Cvmgr. If we use as the time unit

t~

ffiffiffi
r

g

r
, the time constant of the pendulum, we can reduce

equation 16 to the dimensionless one:

€hh~uzsin(h) ð17Þ

with the normalized torque u~
C

mgr
such as jujƒumaxv1.

Then, by considering X , Y and U as the discrete variables,

representing respectively h, _hh and u, we can decompose the

probabilities as follows:

P(X tzDt,Y tzDtjX t,Y t,Ut)~

P(X tzDtjX t,Y t,Ut)|P(Y tzDtjX t,Y t,Ut)
ð18Þ

and the following discrete Gaussian forms:

P(X tzDtj½X t~x�,½Y t~y�,½Ut~u�) ! N (mx~xzDt:yz 1
2
Dt2(uzsin(h)),sx)

P(Y tzDtjX t ,Y t,Ut) ! N (my~yzDt|(uzsin(h)),sy)

(
ð19Þ

with Dt the discrete time step.

So here, we approximate in discrete time the equations of the

dynamics with a Gaussian uncertainty hypothesis, described by

parameters sx and sy.

Simulations were done for a state space of jX j~jY j~51 and

jU j~21 with sx~sy~0:2.

Using the following cost function:

g(x,u)~
0 if x~goal and u~0

1 else

�

the obtained Value function and quasi-distance are similar but not

equal (cf. Fig. 3).

For the Value function (without discount factor), the zero cost

for the goal state (needed for convergence) only propagates very

slightly and distant states have almost the same expected cost.

In contrast, the quasi-distance exhibits larger variations over

states because it is not smoothed by the computation of the mean

cost expectation of the Value Iteration method.

The constant cost chosen in this problem results in minimizing

‘‘path length’’ (number of state transition) and uncertainty (as the

quasi-distance results in
P

minuf
1

p
g).

We computed the optimal policy with Value Iteration:

p(x)~ argmin
u

g(x,u)z
X

z

cV (z)p(zjx,u)

( )

Similarly for the quasi-metric method we computed the argmin

policy as the policy minimizing the expected distance:

p(x)~ argmin
u

g(x,u)z
X

z

d(z,y)p(zjx,u){d(x,y)

( )

Figure 3 shows the deterministic policies obtained for both

dynamic programming and quasi-distance. Here again, small

differences occur even though the policies are mostly bang-bang. We

notice that small differences also occur due to the border effect

that is provoked by discretization.

Despite these differences in both the Value function and the

policy, overall behavior is very similar.

Quasimetric Approach to Decision Making
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Figure 3. Comparison of obtained value function, quasi-distance and policies for the inverted pendulum system. (A) Value function
obtained with undiscounted value iteration. (B) quasi-distance. (C) Policy obtained with undiscounted value iteration. (D) Policy obtained with the
quasi-distance (most probable policy).
doi:10.1371/journal.pone.0083411.g003

Figure 4. Behaviors obtained with quasimetric and dynamic programming methods with different discount factors. Starting from the
initial stable state, both methods lead to the objective but with different trajectories.
doi:10.1371/journal.pone.0083411.g004
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Results of these policies can be seen on figure 4, starting from

position p with a velocity of 0. We can see that the trajectory

obtained with the quasimetric method is slightly longer than that

obtained with undiscounted Value iteration (optimal), but still

better than that obtained with discounted Value iteration

(suboptimal with c~0:95).

We also compared computation time in terms of state space size

(jX j|jY j with a constant action space size jU j~21) between

discounted Value iteration and quasimetric methods. Figure 5

shows the results obtained for the single-goal quasi-distance (quasi-

distance from all states to the goal) and its associated P(U jX )
policy, along with Value iteration with different discount factors.

These results were computed based on the same input transition

probabilities with single thread C++ implementations of algo-

rithms on an Intel Core2 Duo E6700 @ 2.66GHz desktop

computer.

We can see that Value iteration heavily depends on the chosen

discount factor and is much slower than the quasimetric method

for discounts close to 1. Notice that computation time for the

quasimetric method includes graph construction (which should be

done only once), quasi-distance and policy. As an illustration, for a

state space of jX j|jY j~91|91~8281, graph construction takes

129 s, quasi-distance (Dijkstra shortest path) takes 3 s and policy

takes 31 s while Value iteration with c~0:95 takes 1469 s.

Nonholonomic system. A slightly more complicated system

is the Dubins car model [4]. This system is interesting because it

exhibits nonholonomic constraints for which optimal control is

difficult. However, it has generated a large amount of work during

last decades and several studies have provided in-depth under-

standing and formal solutions of such systems and successfully

applied optimal methods for real-world robots (see [42,43]).

A Dubins car nonholonomic system is described with:

_xxt

_yyt

_hht

0
B@

1
CA~

cosht

sinht

0

0
B@

1
CAulz

0

0

1

0
B@

1
CAua ð20Þ

with the control input ul and ua respectively the linear and angular

velocity.

For the sake of simplicity, we constrain the linear velocity to a

constant value ul~1:0 and the angular velocity ua~u[ {1; 1½ �.
If we consider a probabilistic version of this system, the

transition probabilities for the dynamic model are:

P(X tzDt,Y tzDt,HtzDtjX t,Y t,Ht,Ut) ð21Þ

which can be rewritten with some independence assumptions as

the product:

P(X tzDtjX t,Ht)P(Y tzDtjY t,Ht)P(HtzDtjHt,Ut) ð22Þ

and the following discrete Gaussian forms:

P(X tzDtj½X t~x�,½Ht~h�) ! N (mx~xz(cos(h)):Dt,sx)

P(Y tzDtj½Y t~y�,½Ht~h�) ! N (my~yz(sin(h)):Dt,sy)

P(htzDtj½Ht~h�,½Ut~u�) ! N (mh~hzu:Dt,sh)

8><
>: ð23Þ

We computed the quasimetric for this system in a discretized

state-space with the following parameters:

X~½{5,5� Y~½{5,5� H~½{p,p� U~½{1,1�

jX j~jY j~jHj~51 jU j~11

sx~sy~sh~0:05 Dt~0:25

The accessibility volume obtained from the origin – i.e. the

volume of the state space that can be reached with a path length

Figure 5. Comparison of computation time for the under-actuated pendulum example.
doi:10.1371/journal.pone.0083411.g005
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inferior to a given value – is very similar to the optimal

deterministic one from [42] (cf. Fig. 6). Although it is not clear

what signification accessibility volume could have for a probabi-

listic model, these two methods behave quite similarly. It is to be

noted that this result was obtained with our general method

without any specificity about the problem.

If we simulate this system by adding noise to the position,

according to the described model, and use a random draw policy

as described before we can see that the average trajectories

obtained correspond mostly to direct loops (cf. Fig. 6).

These two symmetrical loops are comparable to the optimal

deterministic behavior. On average, the behavior of the system

closely match the theoretical deterministic optimal. Due to the

noise, it is almost impossible to reach the goal in one trial. Most of

the time the goal is missed (with one trajectory passing very close)

and then the controller starts another loop or a figure of eight

(trajectories on the left side of the red curves).

Conclusion

We propose a new general method for control or decision

making under uncertainty. This method applies for the discrete

MPD case with positive cost and infinite or indefinite horizon. The

principle of this approach is to define a goal independent

quasimetric to the state space which can then be used to compute

a policy for a chosen goal or set of goals. Thus, each distances from

all to one state describing a subspace of the whole quasimetric can

be viewed as an approximation of the Value function.

To compute the distances between states we proposed to used

the ‘‘mean cost per successful attempt’’ of a direct transition that

we propagate by triangle inequality. We show that this distance

computation can be reformulated as a standard deterministic

shortest path problem allowing the use of efficient algorithms.

Thanks to this property we have shown that the quasimetric

approach may lead to a very significant gain in terms of

computational cost compared to dynamic programming. Illustra-

tive examples were treated and have shown very good results.

We have demonstrated that for systems with possible prison

states (excluding the goal), the quasimetric can significantly differ

from the optimal solution when prisons are ‘‘avoidable’’.

Moreover this method is still able to produce a solution for

problems with ‘‘unavoidable’’ prisons where standard dynamic

programming approach cannot. We proposed a way to finely tune

risk sensitivity and risk/cost trade-off, defining risky states and a

possible threshold on risk taking. Interestingly, this kind of risk-

related behavior is reminiscent of that present in humans and is

still to be compared to classic methods in human decision making.

We also proposed a soft-max like way to compute a policy,

which provides an entire distribution rather than a unique optimal

deterministic action. Dealing with a probability distribution over

actions provides, in our sense, a less restrictive way of considering

control under uncertainty. With this method it is for instance,

possible to make a decision when faced with multiple equivalent

actions, thus introducing variability in actions and allowing

exploration. This soft-max method, along with the random draw

action, is also applicable to the Value function.

Extending this method to the HMM cases we described, is

computationally very cheap compared to the optimal POMDP,

which is usually intractable. Moreover, one can question whether

solving the POMDP is relevant when the model is imperfect or

may change over time. Although our method is not optimal in the

general case and lacks information-gathering behavior, we think it

could be a useful bootstrap for learning using available prior

knowledge, even if the latter is very coarse. Indeed, it could

occasionally be more interesting to use a simple model with

uncertainties than a very complicated model which is nonetheless

rarely perfect. Therefore, we could consider our method as a

trade-off between solving the POMDP and learning from scratch.

Figure 6. Results obtained for the non-holonomic system. (A) Accessibility volume of the Dubins car obtained with geometrical methods
(adapted from [42]). (B) Discrete accessibility volume obtained for the described probabilistic case using the quasimetric method (axes aligned
similarly). (C) Average trajectory for 500 simulations of 50 timesteps obtained starting at (x,y,h)~(0,0,0) with goal at (x,y,h)~(0,0,0) with a stochastic
simulation and a drawn policy. Red curves are the optimal trajectories for a deterministic system.
doi:10.1371/journal.pone.0083411.g006
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Finally, this very general approach can be applied to a wide

range of problems involving control under uncertainty. Although it

is currently restricted to discrete space, infinite/indefinite horizon

cases, we hope to see contributions from the community of control

and planning as much of the techniques developed for dynamic

programming can be applied to this method.
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