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The full impact of multisystem disease such as obstructive sleep apnoea (OSA) on regions of the central nervous
system is debated, as the subsequent neurocognitive sequelae are unclear. Several preclinical studies suggest that
its purported major culprits, intermittent hypoxia and sleep fragmentation, can differentially affect adult hippocampal
neurogenesis. Although the prospective biphasic nature of chronic intermittent hypoxia in animal models of OSA has
been acknowledged, so far the evidence for increased ‘compensatory’ neurogenesis in humans is uncertain. In a
cross-sectional study of 32 patients with mixed severity OSA and 32 non-apnoeic matched controls inferential
analysis showed bilateral enlargement of hippocampi in the OSA group. Conversely, a trend for smaller thalami in the
OSA group was noted. Furthermore, aberrant connectivity between the hippocampus and the cerebellum in the OSA
group was also suggested by the correlation analysis. The role for the ischemia/hypoxia preconditioning in the
neuropathology of OSA is herein indicated, with possible further reaching clinical implications.
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Introduction

Obstructive sleep apnoea (OSA) is a highly prevalent
multisystem disease that affects up to 30-40% of selected
patient populations [1-4] and presents an independent risk
factor for stroke[5-7]. It also likely exacerbates the stroke
damage, as well as increases the risk of a subsequent
stroke[3,8]. OSA is predicted to become an even greater health
problem in the future because two of its most prominent risk
factors, obesity and older age, are on the rise[2,3]. Patients
with OSA suffer repeated nocturnal episodes of pharyngeal
obstruction, resulting in the intermittent hypoxia (IH),
reoxygenation, episodic arousals and sleep
fragmentation[9,10]. Recent studies also suggest that the
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elderly patients with OSA co-morbidity may suffer accelerated
brain atrophy, cognitive decline and the onset and severity of
dementia[1,3,9,11]. Notwithstanding this, OSA-associated brain
injury is commonly reported as subtle[12], its associated
neurocognitive deficits as mild and diffuse, and their full or
partial reversibility by the current gold standard treatment
continuous  positive  pressure airway (CPAP), as
debatable[9,10,12-18].

The root of this discrepancy has been previously attributed to
the use of different image analysis methods in various studies
over the years, varied statistical thresholds and lack of OSA-
standardised battery of sensitive neurocognitive tests[12]. This
explanation, however, disregards the inter-individual
heterogeneity to a given hypoxic stimulus during OSA[19] and
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it likely also discounts for the effects of sleep staging on
regional neuronal vulnerability to episodic arousal and oxidative
stress[10,20]. Equally, we consider that it does not account for
any cardiovascular and cerebrovascular protection conferred
by ischemic preconditioning, resulting from the nocturnal cycles
of hypoxia-reoxygenation[10,19]. Ischemic preconditioning
represents a generalized adaptation to ischemia by variety of
cells that was initially demonstrated in the cardiovascular
system of patients with OSA and later shown to occur in
several other organs, including brain[19,21]. In OSA, during the
apnea the activation of several gene programs (e.g. including
the hypoxia inducible factor-1)[22] is thought to induce vascular
remodelling, neo-angiogenesis, productive autophagy, reactive
gliosis, various synaptic alterations, and to increase adult
neurogenesis[4,19,23-26].

New neurons are produced on a continuous basis in normal
adult human brain well into senescence with neural stem/
progenitor cells residing in two major neurogenic regions: the
subventricular zone lining the lateral ventricles and the dentate
gyrus (DG) of the hippocampal formation[27,28]. Hypoxic/
ischaemic insults in rodent models are powerful stimulators of
adult neurogenesis in both neurogenic niches, and otherwise
dormant regions such as the striatum and hippocampal
pyramidal cell layer CA1 (Figure 1A)[29]. Chronic IH in animal
models of OSA is associated with impaired spatial learning that
coincides with the increased apoptosis in the cortex and CA1
region of the hippocampus [4,30,31]. Gozal and colleagues
demonstrated increased proliferation in the DG at a later stage
of this process, which was present despite of the ongoing noxa.
It was suggested that biphasic, temporal change in DG
proliferation may account for the partial recovery of clinical
function in the later stages of IH exposure[31]. In accord,
several other preclinical studies demonstrated protective nature
of moderate IH suggesting that ischemic preconditioning-like
processes may occur[4,32]. For example, in one rodent model,
the IH intervention after the ischemic event lead to increased
expression of brain derived neurotrophic factor (BDNF),
increased  hippocampal neurogenesis and functional
synaptogenesis, as well as in improvement in spatial learning
and long-term memory impairment[24,25]. In another study, IH
in adult rats was also shown to promote hippocampal
neurogenesis, and to mimic antidepressant-like effects[33].
Recently, IH protocols have been also investigated as a tool to
“prime” neural progenitor cells prior to transplantation into the
injured CNS[34].

Despite the abundance of animal data suggesting the
association between chronic intermittent hypoxia, ischemic
conditioning and the subsequent adaptive increase in adult
neurogenesis in several affected brain regions, this putative
association has so far proved elusive in clinical studies of the
CNS changes in OSA[12,14,35-40]. To date, volumetric,
predominantly voxel based morphology (VBM), studies of CNS
changes in OSA patients, including those performed by our
group, point to predominantly hypotrophic effects in number of
cortical regions and subcortical structures[14,35-38,40,41].
However, there is high variability in results across clinical
studies of OSA and the findings are not always concordant
between different neuroimaging methods[12,42]. Moreover,
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many of the neuroimaging methods used in earlier studies
might not be sufficiently sensitive to authoritatively record
subtle and spatially diffuse changes in regions such as
hippocampal formation and the (cerebello)-thalamocortical
oscillator. The connectivity between these regions is
considered by some to present the core neurocircuitry of OSA
neuropathology[10,43].

In order to address some of these issues, we used magnetic
resonance imaging and the fully automated volumetric analysis
method, FreeSurfer (FS), to study changes in several
subcortical structures in mixed severity OSA patients and age-
matched healthy controls[44]. The FS method has been
extensively validated in a number of clinical studies where it
was shown efficient in quantifying subcortical volumes in
dementia[45], epilepsy[46] depressive disorders[47] and
aging[48]. Our a priori hypothesis was that volumes of
hippocampus, thalamus and cerebellum would differ across
diagnostic groups.

Methods

Patients were recruited from Royal Brompton and Charing
Cross Hospitals sleep clinics. Inclusion criteria were apnoea/
hypoponea index (AHI) >15 events/h. Exclusion criteria were a
history of respiratory disease, cerebrovascular/ischaemic heart
disease, diabetes mellitus, neurological/psychiatric disorder,
alcohol or illicit drug abuse, or current intake of psychoactive
medications.

The same exclusion criteria were used for controls who were
recruited from a database of healthy volunteers. Additionally,
those with a history of sleep problems or habitual snoring were
excluded. Polysomnography and questionnaires were used to
exclude OSA (AHI <5 events/h); apneas were defined as >80%
drop in airflow for 10s and hypopneas were defined as >50%
reduction in airflow from baseline with a >4% dip in saturation,
or an arousal from sleep. The study was part of an on-going
research programme to investigate the impact of OSA on the
brain; some images were previously assessed as a sub-set of
a wider study [14]; all subjects gave informed written consent.

2.1 Ethics

This study was approved by the Brompton Harefield & NHLI
Research Ethics Committee. Written informed consent was
obtained from each participant and the scans were
anonymously analyzed. All clinical investigations were
conducted according to the principles expressed in the
Declaration of Helsinki.

2.2 Magnetic resonance imaging and image analysis

All participants underwent MR imaging and T1-weighted MR
images were acquired using a 1.5T scanner (Magnetom Vision,
Siemens Healthcare, Camberley, Surrey, UK) and a 3D MP-
RAGE sequence (Tl 300 ms, TE 4 ms, in-plane resolution
1.0x1.0 mm) with contiguous 2 mm coronal slices.

The T1-weighted images were processed and volumetry
performed using an automated method, FreeSurfer, as
previously described[44,45,47-50]. During this fully automated
process removal of non-brain tissue, automated Talairach
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Sites of compensatory neurogenesis in preclinical models of ischemia and OSA.
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Figure 1.

Sites of compensatory neurogenesis in preclinical models of ischemia and OSA. A) Dentate gyrus and

CA1(arrows) support neurogenesis in animal models of ischemia and OSA [29,31,33]; human hippocampal subfields are shown
(coronal/sagittal planes), adapted with permission from [72]. B) Potential aberrant connectivity between the hippocampus and

cerebellum in OSA patients.
doi: 10.1371/journal.pone.0083173.g001

transformation, segmentation of the subcortical white matter
(inclusive of segmentation of corpus callosum to five parts)[51]
and deep grey-matter volumetric structures, intensity
normalization, and cortical reconstruction were done. A
neuroanatomical label was assigned to every voxel in the MR
image volume, where the probability of a label at a given voxel
was computed not just in terms of the grey-scale intensities
and prior probabilities at that voxel, but also as a function of the
labels in a neighbourhood of the voxel in question. Given our a
priori hypothesis regarding the differences in hippocampal
volumes, this step was particularly pertinent as it enabled
correct separation of the hippocampus and amygdala, which
have similar grey-scale values[44]. The analysis was
performed using parallel running streams with no variability to
the data processing conditions[52]. The segmented 3D images
of structures of interest were inspected for gross errors through
visualization with 3D slicer (Version 3.2 1.0, NIH, USA) (IR),
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and the volume values were extracted by implemented Unix
scripts (WC and MK).

The Kolmogorov-Smirnov test was used to test the normality
of distributions. To analyse differences in variety of
demographic parameters between controls and OSA patients,
Student’s t-test was initially applied (Table 1). All statistical
analyses had a 2-tailed a level of <.05 for defining significance
and were performed by a biostatistician (MM) on the statistical
software “STATISTICA 10.0" (http://www.statsoft.com). The
gender differences between the two groups were found non-
significant (Pearson Chi-Square test, P=.450). The intracranial
volume (ICV) calculated by the FreeSurfer did not differ
significantly between groups (t-test, P=.514) and a one-way
analysis of covariance (ANCOVA) was conducted (age as a
covariance) on the ICV normalised data (i.e. volume/ICV) to
assess between-group differences (Table 2). Finally, we also
explored the presumed interregional connectivity between the
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Table 1. Demographic Information.

Hippocampal Hypertrophy and Sleep Apnea

OSA n= 32; mean [SD]

Control n= 32; mean [SD]

Age (years) 48.50 [12.51]

BMI (kg/m?)* 31.48 [4.34]
AHI (events/h)® 42.3 [23.81]
ODI (events/h)"* 31.4[19.43]
ESS” 13.2 [4.64]
Right-handedness (%) 100

49.91 [11.43]
24.94 [3.61]
2.1[1.61]

1.2 [1.33]
4.7[3.69]

100

* Significant difference between OSA patients and healthy controls (P<.001). There was no significant difference in the age between the two groups (P=.64). Normality was
checked using Kolmogorov-Smirnov test. The plots appeared approximately normally distributed so independent sample t-test statistics were used to compare patients and

controls.

Abbreviations: AHI, apnoea/hypopnoea index; BMI, body mass index; ESS, Epworth sleepiness scale; n, number; ODI, oxygen desaturation index; OSA, obstructive sleep

apnoea; SD, standard deviation.
doi: 10.1371/journal.pone.0083173.t001

Table 2. Subcortical Volumes as determined by FreeSurfer.

Structure Controls (n=32) mean [SD] OSA (n=32) mean [SD] ANCOVAZ? P values t — test? P values
Right Hippocampus 4168 [502] 4337 [462] .049* .042*

Left Hippocampus 4301 [475] 4454 [477] .067 .057

Right Thalamus 7055 [1054] 6719 [827] .094 .225

Left Thalamus 7196 [1059] 6966 [961] .302 .539

Right Cerebellum (Cortex) 54105 [5345] 52464 [4974] 416 495

Left Cerebellum (Cortex) 52681 [5146] 51001 [56119] .366 459

Right Cerebellum (White Matter) 15310 [2491] 14659 [1777] .363 411

Left Cerebellum (White Matter) 15116 [2414] 14772 [1985] .758 .852

In the table, for each neuroanatomical structure statistical analysis of group differences for volumes normalised to the ICV was performed; t-test and ANCOVA test (covariate

with age), were done. Volumes are given as mm3.

@Bonferroni corrected P values. *Significant difference between OSA patients and healthy controls (P<.05). Abbreviations: ANCOVA, Analysis of covariance; ICV,

intracranial volume; OSA, obstructive sleep apnoea; SD, standard deviation.
doi: 10.1371/journal.pone.0083173.t002

hippocampi and cerebellar cortices with Pearson correlations;
controlled for ICV and age[53].

Results

Sixty four participants were studied with MR neuroimaging
(Table 2). A priori hypothesis investigation concentrated on
analysis of group differences for three neuroanatomical
structures previously shown as affected in OSA, hippocampus,
thalamus and cerebellum. The hippocampi were found larger
bilaterally in OSA group and increase on the right was
statistically significant (absolute mean values OSA, 4336.5
mm? vs control, 4167.7 mm3). A statistically non-significant
trend for smaller thalami in the OSA group was noted, more so
on the right (absolute mean values OSA, 6718.9 mm? vs
control, 7054.6 mm?®). No statistically significant differences
were noted between cerebellar cortical and white matter
volumes of the two studied groups (Table 2).

Amongst the values for several other FreeSurfer
automatically calculated subcortical structures, only two more
group differences in volumes reached statistical significance;
those of choroid plexus and the middle anterior portion of
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corpus callosum. Both left (F (1,62)=4.08, P=.048) and right
choroid plexus (F (1,62)=5.36, P=.024) were found
hypertrophic in OSA group (Table S1). Conversely, the volume
of the mid-anterior portion of the corpus callosum was
significantly decreased in OSA patients (F (1,62)=4.47, P=.
039). The results for the remaining subcortical structures
calculated by FS are summarized in the Table S1.

Post hoc interregional correlation analyses (Figure 1B; Table
S2) revealed positive correlations in the OSA group (n=32) for
both hippocampi with dominant cerebellar cortex (right,
r=0.379; P=.032; left, r=0.357; P=.045) and for the right
hippocampus with ipsilateral cerebellar cortex (r=0.363; P=.
041). None of these correlations were significant in the control
group (n=32).

Discussion

During OSA, changes in cerebral blood flow occur[54] and
apnea-induced hypoxemia combined with reduced cerebral
perfusion likely predisposes patients to nocturnal cerebral
ischemia[55,56], as well as hypoperfusion of certain brain
regions during the awake states[57]. The evolving nature of this
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OSA-associated brain injury is suggested by the findings of our
study. The coexistence of hyper- and hypotrophic changes in
OSA group implies intricate and dynamic interaction of various
noxius events alongside workings of the endogenous repair
systems in the brain, and these may include ischemic
preconditioning and enhanced neurogenesis [21,27,58].

4.1 Hypertrophic changes and relation to previous
studies

The role for the altered neurogenesis and possible
conditioning effect of OSA in our patients was suggested by the
significant enlargement of hippocampal volumes of up to 4 %
greater than that of the control values. Additionally, the
hypertrophy of choroid plexus, an important source of adult
neurogenic factors and signalling molecules for the migration of
cells in the SVZ[27], was noted. These findings are compatible
with reported hypertrophic change of these structures under
ischaemic conditions[59].

Previous clinical studies of the CNS changes in OSA (as
summarised in [12]) predominantly report hypotrophic changes
in OSA patients. Allowing for the fact that the cross-sectional
design of our study permits for association, rather than any
claim of the causal relationship, we suggest some possible
explanations for this divergence. Firstly, our cohort represented
patients with mixed disease severity and hence potentially
differed from other investigated cohorts that incorporated
patients on the more severe end of the OSA spectrum[12].
Indeed, the duration of the exposure to IH and the intensity of
the hypoxia bouts are important determinants of whether IH is
protective or harmful[4,26,32]. Secondly, our patients were
relatively young, mostly in their forties with no obvious major
co-morbidities, and possibly at early stages of disease onset.
The age-dependent decline in adult neurogenesis is an
accepted phenomenon, although it appears to be mediated
more by the age-related alterations in the cellular environment
than impaired responsiveness of progenitor cells to neurogenic
stimuli[29].

Unlike the earlier studies that utilized the optimized VBM
method, this study used the fully automated FS analysis that
was proven particularly effective for analysis of subcortical
structures[44,49,50]. Conversely, the whole-brain VBM method
has been shown in a study as less sensitive than the other
methods when it comes to detecting abnormalities in small
subcortical structures[49]. In a recent magnetic resonance
spectroscopy study of OSA patients, decreased frontal lobe
neuronal viability and integrity and decreased hippocampal
membrane turnover was shown although the use of VBM
method did not show any lesions in the same patients in those
regions[42]. It should be noted that in animal studies,
subregions of hippocampus were shown to be differentially
sensitive to chronic 1H[23,26,30]. For example CA1 was
particularly IH-sensitive and prone to increased levels of
apoptosis whilst CA3 and DG were significantly less so[23]. DG
was additionally able to undergo  compensatory
neurogenesis[31].  Further enhancements of cognitive
vulnerability to IH exposures occurred in CA1 in rats fed on an
obesity-inducing diet[60]. It is, hence, possible that depending
on the balance of these changes and their overall offset, the
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whole volume of the hippocampus might be ultimately noted as
either hyper- or hypotrophic. Finally, volume increase in
hippocampus could represent an epiphenomenal, or
downstream, effect of the connectivity with other brain regions,
which include prefrontal cortex, amygdala and thalamus.

4.2 Hypotrophic changes

In the current study, hypotrophic changes were noted in OSA
patients in the middle anterior portion of corpus callosum and a
trend of reduced volume in the right thalamus. This is in
accordance with previous clinical studies[12] and possibly
supports the hypothesis that a disturbed thalamocortical
oscillator underlies some of the neurodeficits[10,61]. One of the
major sources of thalamic afferents to the hippocampus (e.g.
CA1 and subiculum) is from nucleus reuniens, the largest of
the midline nuclei of the thalamus, the region known to be
strongly activated by chronic IH[62,63]. Nucleus reuniens has
been implicated in associative learning and object recognition
and it is proposed to gate information flow between the
hippocampus and the medial prefrontal cortex[64,65].

Similarly, the noted reduction of the mid-anterior portion of
corpus callosum in the OSA patients in our study is in
agreement with previous diffusion tractography (DTI) studies of
white matter tracts changes; it likely represents the effects of IH
on the later myelinating part of this tract[66,67].

4.3 Correlations with volumes of cerrebellar cortex

Our group has previously shown hypotrophic changes in
cerebellar cortices of OSA patients[14]. We also suggested that
functional deficits noted in OSA, such as for example dysmetria
of thought and affect, could be seen as the by-product of being
at the milder end of spectrum of cerebellar cognitive affective
syndrome [10,68]. In this study, no significant differences in
cerebellar volumes were recorded although aberrant
connectivity with hippocampal structures was suggested by the
interregional volume correlations analysis (Figure 1B).

Although there are no direct monosynaptic anatomical
connections between hippocampi and cerebellum, their
connectivity is thought to be important for the control of
movement under states of heightened emotion, novel
conditions, and for the associative learning. Hippocampus is
connected to cerebellum via the pontine, reticular and olivary
nuclei whilst the return loop is via the fastigial nucleus and
thalamus[69]. Recently, a role for hippocampal theta
oscillations in coordinating a widely distributed memory system
for associative learning, of which cerebellum is a part, has
been proposed[70]. Moreover, it was suggested that
hippocampal theta oscillations, also thought to play the role in
hippocampal neurogenesis[27], can modulate the functional
properties of the cerebellum[70].

Whilst these volumetric correlations can be only very
tentatively taken to suggest a true aberrant connectivity[53] in
the OSA group, they nonetheless circumstantially intimate that
‘compensatory’ entraining of cerebellum by hypertrophic
hippocampi may occur.
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4.4 Limitations

This study did not incorporate neuropsychological testing
and the lack of the related correlational data with the noted
volumetric changes means that no conjecture about the
compensatory role of the prominent enlargement of hippocampi
can be made. Furthermore, correlations between regional
volumes were exploratory and hypothesis generating and
therefore should be interpreted cautiously, as well as confirmed
in future studies. It should be noted that the ultrastructural
determinants of group differences in morphology of the
hippocampus and thalamus are unknown. Addressing these
limitations will require detailed post-mortem and other in vivo
(adult neurogenesis) imaging methods in order to determine
those ultrastructural underpinnings. Finally, the strict exclusion
criteria used in this study disallows for any judgments to be
made regarding interactions between OSA and its
comorbidities such as hypertension and diabetes, both strongly
associated with OSA and also known to cause brain
injury[2,9,71].

Conclusion

In summary, our findings demonstrate for the first time the
hypertrophy of hippocampus in OSA patients with mixed
disease severity. It is proposed that these enlargements
represent the end effect of the neuroglial ischemic
preconditioning[21,22,26,29,58]. This interpretation is
consistent with extensive preclinical evidence that increased
hippocampal neurogenesis occurs in response to IH, which
consequently increases in volume and thickness[29,31,33,72].
Aberrant connectivity between limbic regions and cerebellum
was also inferred by our study. However, limitations of our
study include the moderate sample size and cross-sectional
design, which can suggest only an association rather than a
causal relationship between noted changes in OSA patients.

It has been previously suggested that increasing age and
OSA work additively (or even synchronistically) to overwhelm
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