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Abstract

We study the evolution of a finite size population formed by mutationally isolated lineages of error-prone replicators in a
two-peak fitness landscape. Computer simulations are performed to gain a stochastic description of the system dynamics.
More specifically, for different population sizes, we compute the probability of each lineage being selected in terms of their
mutation rates and the amplification factors of the fittest phenotypes. We interpret the results as the compromise between
the characteristic time a lineage takes to reach its fittest phenotype by crossing the neutral valley and the selective value of
the sequences that form the lineages. A main conclusion is drawn: for finite population sizes, the survival probability of the
lineage that arrives first to the fittest phenotype rises significantly.
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Introduction

The quasispecies model is a paradigm of the evolution of self-

replicative sequences [1–3]. It assumes a population of error-prone

replicators that evolves under the selective pressure caused by their

competition under any constraint, e.g. constant population.

Although this model has been mainly developed in the determin-

istic limit, i.e. under the assumption of infinite size population and

fixed environmental conditions, the relevance of fluctuations in its

dynamics was already stressed in Eigen’s seminal paper [4]. Given

a population of N error-prone self-replicative sequences of n
binary digits, the total number of different sequences that can be

formed is 2n. Therefore, the ratio p~N 2{n provides the

probability of finding a particular sequence in a neutral landscape.

This number is extremely low even for very large population sizes

(e.g. if n~100 and N~109, then p&10{20). Fitness differences,

together with initial conditions, make some sequences more

frequent than others. Precisely, the fittest sequences, in the event

that they exist, are the target of evolution by natural selection.

Although the influence of the mutation rate in this evolutionary

process has been widely studied [5–8], less attention has been paid

to the relation of the mutation rate and the evolutionary time [9–

11].

In the simplest non-neutral fitness landscape, it is assumed that

all sequences except one, the master or fittest sequence, have equal

fitness. If initially the population has a non-null proportion of the

master sequence and the mutation rate is low enough, as time

passes a distribution of mutant sequences is formed around the

master sequence. This state is usually called quasispecies [4]. This

distribution is quite stable even for finite size populations. On the

contrary, as a consequence of the error-prone self-replication, the

quasispecies can be destabilized if a higher second fitness peak (e.g.

another sequence with a larger amplification factor) exists. The

evolution towards the fittest sequence depends on several factors,

mainly the mutation rate, the Hamming distance between the two

peaks, the relative difference between the two fitness peaks and, as

will be stressed in this paper, on the population size. For finite size

populations, searching for new genotypes is restricted to a close

neighborhood of the steady quasispecies. The exploration of the

far distant sequence landscape is practically unreachable in finite

time because, as has been said above, only populations of the order

of 2n have a non-negligible probability of finding a new sequence

located at a medium Hamming distance (e.g. d~10).

Besides this limitation, finite size effects become apparent when

competition between independent lineages occurs [12,13]. If we

consider two lineages formed by error-prone sequences that evolve

in a two-peaks landscape, each with a different mutation rate, the

question arises as to which of them will survive in the stationary

state if initially each lineage occupies a fraction of the population.

As we will see in the Results section, the answer depends on the

size of the whole population. It is shown that optimal mutation

rates exist that enhance the probability of survival of a lineage (and

so, forming a quasispecies peaked around the fittest phenotype).

Since having different mutation rates implies different evolution-

ary times, this result is explained as a consequence of arriving first

to their fittest sequence.

In order to compute an evolutionary time in infinite populations

described in terms of ordinary differential equations (e.g. using the

molar fraction of each phenotype) the characteristic time has been

introduced beforehand [14]. Recently, this approximation has

been used to quantify the dependence of the evolutionary time on

the mutation rate for different fitness landscapes [15]. We showed

that, as a consequence of the trade-off between the searching

capabilities and the fixation probabilities of the master sequences,
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the characteristic time exhibits a minimum for a positive mutation

rate lower than the error threshold. We discussed the consequenc-

es of arriving first for a population of error-prone replicators and

realized that having a low evolutionary time (i.e. a mutation rate

close to the optimal value) could have determinant consequences

in finite size populations. To evaluate the evolutionary time in this

case we apply a generalization to this characteristic time [16].

However, its computation is seriously limited when either the

population size or the mutation rate are too small.

The main goal of this paper is to study the evolution of a finite

size population formed by mutationally isolated lineages of error-

prone replicators in a two-peak fitness landscape and the influence

that some parameters, namely the mutation rate and the

population size, have on this dynamics. In all cases, competing

lineages that have the same fitness landscape differ exclusively in

their mutation rates. Since the final outcome of lineage

competition will depend on the intra-lineage evolutionary

processes, we first deal with this internal competition from a

deterministic perspective in the first subsection of Results. Finite

size effects in inter-lineage competition is studied computationally

by means of a reduced model that is presented, justified and

compared with the complete model in the next subsection in the

Results. In the subsection ‘‘Lineage competition’’ this reduced

model is applied to obtain the prevalence of each lineage in terms

of their characteristic time and mutation rates for different

population sizes. It is proven that the percentage of survival of the

mutator lineages is not obviously dependent on the population

size, which can be explained by the characteristic time of the

lineages. In the Discussion we summarize our results and make

some brief comments about their implications for real systems such

as viruses and bacteria.

Results

Intra-lineage competition
Let us assume first a population of binary sequences of length n

that forms a unique lineage. An amplification factor that measures

its propensity to self-replicate is assigned to each sequence (its

fitness). The model assumes a two-peak fitness landscape, i.e. there

are three distinct phenotypes: I0, the sequence whose digits are all

0, I1, the sequence whose digits are all 1 and Ie, the error tail, that

is formed by the rest of the sequences. The amplification factors of

the master sequences I0 and I1 are A0 and A1, respectively. The

amplification factor of the error tail is denoted as Ae and verifies:

A1wA0wAe. A similar fitness landscape with two equal peaks was

previously applied in [17] to study the distribution of mutants in a

degenerated quasispecies.

Self-replication is error-prone. As usual, q is the quality factor

per digit, i.e. the probability of exact self-replication of each digit.

The mutation rate m per digit is, therefore, m~1{q. In reference

to master sequence I0, the sequences that differ in d digits form the

Hamming class Hd . The mutation matrix that yields the

probability that a sequence of Hamming class Hl produces during

replication a sequence of the Hamming class Hk is given by [18].

Qkl~
Xmin(k,l)

i~l{nzk

k

i

� �
n{k

l{i

� �
qn 1{q

q

� �kzl{2i

ð1Þ

If we assume that every sequence belonging to each Hamming

class has the same amplification factor and that the total

population is kept constant, the time evolution of the molar

fraction of each Hamming class, yhj is described by the ODE

system:

d yhj

d t
~yhj(Aj Qjj{

X
i

Ai yhi)z
X
k=j

Ak Qjk yhk ð2Þ

for j~0, . . . ,n. Here, without loss of generality, a null death rate of

Di for all sequences has been assumed. Therefore, the selective

value [4] of each Hamming class is Wk~Ak Qkk.

If initially the whole population is considered to be formed only

by master sequences I0 then, as time passes, a first quasispecies is

obtained around I0 until it is displaced by the formation of a

second quasispecies around the fittest genotype I1. The latter

quasispecies is asymptotically stable and its structure depends

mainly on both the mutation rate m and the ratio A1=Ae.

Throughout the paper we will take a sequence length n~10.

For this case, the non-linear ODE system of Eq. (2) has eleven

differential equations that can be solved numerically using, for

instance, a Runge-Kutta method implemented in MATLAB. The

characteristic time for the time evolution of the master copy I1,

denoted as Tc, is then computed as in [14,15] (see also the section

Methods). As an example, Fig. 1 depicts the evolution of the molar

fractions of each Hamming class for the initial value problem with

yh0(t~0)~1 and yhi(t~0)~0 for all i~1, . . . ,10 for a mutation

rate m~0:025. The amplification factors are taken: A0~2,

A1~10 and Ae~1. As can be seen in Fig. 1, the population of

the different Hamming classes appears and disappears successively

until a stationary state is achieved. This stationary state is formed

by a distribution of Hamming classes around the fittest sequence

I1, forming a quasispecies. Two important points are worth

stressing here. The first one is that the mutation rate determines

the characteristic time of the formation of this final quasispecies.

The second one concerns the low concentration that the mutant

phenotypes have during the evolution from the master phenotype

I0 to the other master I1. It is precisely the convergence of both

factors that makes internal fluctuations especially relevant when

several lineages with different mutation rates compete in finite size

populations. Indeed, for finite size populations, having a lower

characteristic time that allows them to reach the fittest phenotype

first could favor the selection of the lineage with the larger

mutation rate (contrary to the deterministic prediction) because

the phenotypes of the other lineage die out. Obviously, in the limit

of infinite population sizes having a low characteristic time is not

relevant because, independently of the intermediate low concen-

tration of the mutants the lineage with the lower mutation rate,

which has a larger selective value, will asymptotically dominate the

equilibrium population (forming a quasispecies around its fittest

genotype I1). The influence of the characteristic time on the

selective properties of independent lineages will be explored in

detail in the following sections.

However, first at all, we have to overcome a technical problem

caused by the natural computational limitations. The model

presented in the previous paragraphs assumes a certain Hamming

distance between the two master sequences. In the deterministic

limit, this distance can be covered in a reasonable time since an

infinite number of sequences are self-replicating and, as a

consequence of mutation, effectively looking for new genotypes

in the sequence space. However, when the size of the population is

finite and much lower than the size of the sequence space 2n, the

searching capabilities of the population are drastically reduced and

the computational time rises enormously. This fact, in practice,

prevents the computation of the characteristic time and, conse-

quently, a complete study of the finite size effects in the evolution

of this kind of replicator systems.

The Advantage of Arriving First
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A reduced model. To avoid this drawback, we define a

reduced model that considers all the Hamming classes from H1 to

H9 as only one class, Ie, that can be taken as an error-tail of both

master sequences. Essentially, this reduction rescales the evolu-

tionary time of the population. In so doing, the complete ODE

system of Eq. (2) of dimension nz1 is simplified to the following

tridimensional ODE system:

d yr0

d t
~ yr0(A0 Q00{

P
i Ai yri)z

P
k=0 Ak Q0k yrk

d yre

d t
~ yre(Ae Qee{

P
i Ai yri)z

P
k=e Ak Qek yrk

d yr1

d t
~ yr1(A1 Q11{

P
i Ai yri)z

P
k=1 Ak Q1k yrk

ð3Þ

where yr0,yr1, and yre are the molar fractions of the master copies

I0, I1 and the error tail Ie in the reduced scheme.

A reasonable choice for the mutation rate of the error-tail, Ie,

for either of the master copies, I0 and I1, is as a weighted average

rate over the intermediate Hamming classes, i.e.

Qje~

Pn{1
1

n

i

� �
qn{i(1{q)i

2n{2
ð4Þ

for j~0,1. The combinatorial term takes into account the number

of sequences that form each of the Hamming classes. Thus, the

mutation matrix for this model is given by:

Q~

qn

Pn{1
1

n

i

� �
qn{i (1{q)i

2n{2
(1{q)n

1{qn{(1{q)n 1{

Pn{1
1

n

i

� �
qn{i (1{q)i

2n{1{1
1{qn{(1{q)n

(1{q)n

Pn{1
1

n

i

� �
qn{i (1{q)i

2n{2
qn

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð5Þ

Fig. 2A and 2B compare the trajectories obtained by numerical

integration of Eq. (3) and the complete system of Eq. (2) when

n~10 and A0~2, Ae~1 and A1~10 for two mutation rates

m~0:025 and m~0:0001, respectively. As can be seen, both

systems behave similarly although over a different time scale. As

expected, the same stationary state is reached but sooner in the

reduced system. Fig. 3 depicts the characteristic time Tc as a

function of the mutation rate for both models for m-values in the

interval ½10{4,0:3991� taken at steps of 10{3. As before, the values

of the amplification factors are A0~2, Ae~1 and A1~10. As can

be appreciated in Fig. 3, the Tc-curve of the reduced model is

qualitatively similar to that of the general model, though it is

displaced to lower values. The differences between both models

are more significative for low values of the mutation rate. Note

that for mutation rates larger than &0:2 the population is in error

catastrophe and the phenotype with the largest amplification

factor is no longer selected [19]. In conclusion, at least at a

qualitative level, the reduced model provides a reasonable

description of the evolutionary behavior of the population but in

a much shorter time scale. As will be shown in the next section,

this reduction is going to allow an exhaustive study for low size

populations.

The characteristic time of the time evolution of I1 for different

values of the amplification factor A1 for the reduced model is

shown in Fig. 4. The figure depicts Tc for A1 ( = 2, 2.1, 2.2, 5, 10,

20, and 30) as a function of the mutation rate m[½10{4,0:4� (with a

m-step equal to 10{3). Since Tc takes different scales as the value of

A1 approaches that of A0, the curves for A1~2,2:1 and 2:2 have

been included in the inset. As before, A0~2 and Ae~1. As it can

be observed, the curves for large values of A1 are qualitatively

similar, all exhibiting a minimum value for approximately the

same mutation rate mop and a relative maximum near the error

catastrophe (an extended description of this behavior has been

previously presented in [15]). Note that as the amplification factor

A1 decreases, the curves move to the left and to higher values of

Tc. In the limit, when A1 tends to 2 from above, the characteristic

time increases enormously (several orders of magnitude higher

than the scale used in Fig. 4) for all values of m. Moreover, the

relative maxima disappear in the degenerate case A0~A1~2,

while the characteristic time reduces monotonously with m before

entering the error catastrophe. The five points in the curves show

the values that will be analyzed in more detail in the following

subsections.

A stochastic simulation. As has already been stressed, the

size of real populations is much lower than the size of the sequence

space and, therefore, finite size effects may become relevant. If, in

addition, competition is present, the deterministic approximation

that considers infinite size populations does not assure reasonable

results. Different approaches have been proposed to handle finite

size populations [20–22]. In general, analytic methods that search

for explicit solutions have practically been discarded due to the

system complexity. Instead, computational algorithms have proven

Figure 1. Time evolution of the molar fraction of each of the
eleven Hamming classes (H0 to H10) that form the sequence
space when n~10. Initially, the whole population is formed by
sequences I0 , i.e. yh0(t~0)~1. It is assumed that the amplification
factors of all the sequences that belong to the Hamming classes
(H2,:::,H9) are equal and are given by Ae~1. The amplification factors
of the master copies that form the Hamming classes H0 and H10 are
A0~2 and A1~10, respectively. The mutation rate is m~0:025.
doi:10.1371/journal.pone.0083142.g001

The Advantage of Arriving First
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to be very efficient, although very time-consuming [23]. In this

paper, we have used a Gillespie’s stochastic simulation algorithm

(SSA) [21] to carry out simulations of a finite size population of

sequences that is described by the reduced model presented in the

previous subsection Eq. (3).

To compute the characteristic time of the time evolution of the

fittest sequence in each simulation first we average its population

over the last 1000 steps and second, we compensate the areas over

the averaged curve with those below the curve. This is equivalent

to considering a straight line as the asymptotic value of the

population [16]. All the simulations are run long enough to assure

that the population has reached its asymptotic phase and that its

average value is approximately that of the stationary state. Table 1

shows the average values of the characteristic times and the

standard deviations generated from 200 independent simulations

for five mutation rates and different population sizes. All the

simulations have been performed using sequences of length n~10
and amplification factors: A0~2 and Ae~1. As before, initially

the whole population is composed by master sequences I0. As can

be seen, the characteristic time is very large for the lowest

mutation rate, m~10{3 in comparison with the rest, mainly

caused by the high searching time. Large characteristic times also

appear for the largest mutation rate analyzed, m~10{1. However,

in this case, this is a consequence of the high values of the fixation

time, i.e. once the fittest phenotype I1 is found, the time the

population takes to stabilize the quasispecies peaked around I1.

Between these two extremes, the stochastic Tc exhibits a minimum

value that occurs, depending on the population size, in m~0:025
or m~0:05 (as indicated by a superscript in the table).

Lineages competition
Competition is another factor that can enhance finite size effects

on populations of replicators. We postulate that the sequences of

each lineage cannot change their mutation rate. This is a

reasonable assumption when the mutation rate varies on a time

scale greater than that of the competition [24]. Since lineages are

independent of each other, the extinction of one lineage is an

absorbing barrier. As a consequence, the internal noise inherent to

Figure 2. Time evolution of the molar fractions of each of the
three phenotypes (A0~2, Ae~1 and A1~10) for the h-model
divided into Hamming classes (denoted by the subindex h and
curves in blue) and the reduced r-model (subindex r and red
curves). The mutation rates are (A) m~0:025 and (B) m~0:0001. Note
that the trajectories of both models are quite similar to the trajectories
corresponding to the reduced model shifted to the left i.e. to lower
values of time.
doi:10.1371/journal.pone.0083142.g002

Figure 3. Characteristic time Tc of the molar fraction of the
phenotype A1 whose genotype is formed by all 1 as a function
of the mutation rate for both the h-model (blue) and the r-
model (red). The mutation rate varies in the interval ½10{4,0:3991� in
constant steps of Dm~10{3. The amplification factors are A0~2, Ae~1
and A1~10. Note that both curves are qualitatively similar to that
corresponding to the reduced model shifted to lower values of the
characteristic time.
doi:10.1371/journal.pone.0083142.g003
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finite size populations can completely change the fate of evolution.

In this section, lineages with different mutation rates compete

under a constant in average and finite total population constraint.

Let us first consider a population of two lineages, L(1) and L(2),

each one formed by three phenotypes A
(i)
0 , A(i)

e and A
(i)
1 for i~1,2

that evolve in a two-peaks landscape. The mutation rates per digit

of the sequences in each lineage are denoted by m(i) (i~1,2). As

before, the amplification factors of the sequences are A0~2,

Ae~1 and A1~10 and equal for both lineages.

One interesting case occurs when one of the lineages is error

free, i.e. m(1)~0. We want to estimate the probability of fixation of

the other lineage for different mutation rates m(2). From the

analysis of the deterministic equations, there exists a critical value

m(2)
c such that if 0vm(2)

vm(2)
c &0:08764, the lineage L(2) takes

over the entire population independently of the initial conditions.

Otherwise, L(1) is selected for all the initial conditions. This result

is no longer valid for finite size populations as is shown in Fig. 5. In

fact, the probability of fixation of lineage L(2) is less than 1, i.e. less

than 100% of the simulations yield a fixation of L(2) for all m(2) for

N~105. For N~106, this probability equals 1 for some values of

m(2) within an interval contained in ½0,m(2)
c �. Note that, contrary to

the infinite approximation, when m(2)?0 the probability of

fixation also converges to 0. A smooth transition to null probability

also appears for m(2)-values below the deterministic critical value

m(2)
c . The results depicted in Fig. 5 are obtained from 200

simulations and an initial population divided into 90 per cent I
(1)
0

and 10 per cent I
(2)
0 .

When the mutation rate of the sequences that form both

lineages is larger than 0, concretely m(1)~10{4 and

m(2)~2:5|10{2, the dynamics become more complex. Fig. 6A

shows the time evolution of the molar fraction of all the

phenotypes (A0,Ae, and A1) of each lineage in the deterministic

approximation (obtained by numerical integration of the corre-

sponding ODE systems Eq. (3)). The total molar fraction of each of

the lineages is also shown in Fig. 6B. As can be seen, the system

tends asymptotically to select the lineage with the largest selective

value that corresponds to that with the lowest mutation rate, i.e.

L(1). Nevertheless, the characteristic time of lineage L(2) is small

enough with respect to the corresponding Tc of lineage L(1) to give

rise to three phases in the dynamics: (i) an increase in the

proportion of L(1) in the population, with the symmetric decrease

of the proportion of L(2). In this phase, none of the lineages have

achieved their largest phenotype with A1~10. But, because the

selective values for their master sequences with A0~2 verify

W
(1)
0 wW

(2)
0 , then L(1) displaces L(2), at least momentarily. (ii)

Since the mutation rate of L(2) is much larger than that of L(1), its

characteristic time is much lower and its corresponding fittest

sequence is found first. This phenotype self-replicates better than

the rest and, in consequence, almost displaces lineage L(1)

although, at this time, it is mostly formed by sequences I
(1)
0 and

I (1)
e . (iii) Finally, the lineage L(1) finds its best phenotype and,

because W
(1)
1 wW

(2)
1 , grows to reach its stationary concentration

and displaces the phenotypes of lineage L(2) that becomes extinct.

Consequently, after this third phase, the whole population is

formed only by sequences of L(1). Importantly, the action of

internal noise in the second phase of the time evolution of the

lineages is going to be responsible for the disparity between the

results obtained in the finite and infinite approximations. Finally, it

Table 1. Mean and standard deviation of the characteristic
time Tc obtained in the stochastic simulations.

A1 N Mutation rate

1023 2.561022 561022 7.561022 1021

5 105 90683 5.160.4a 5.660.3 6.860.2 8.860.3

106 1568 4.960.1a 5.5460.08 6.7460.07 8.860.1

107 862 4.8860.04a 5.5360.02 6.7460.03 8.8160.03

10 105 80681 2.460.3a 2.560.2 360.1 3.660.2

106 1067 2.160.1a 2.4260.06 2.960.05 3.5760.04

107 562 2.1260.03a 2.4260.02 2.8960.01 3.5760.01

20 105 58658 1.360.3 1.360.2a 1.560.1 1.860.1

106 967 1.0860.08a 1.2160.04 1.4360.04 1.7560.03

107 361 1.0560.02a 1.260.01 1.4260.01 1.7460.01

30 105 58654 160.3 0.960.1a 160.1 1.260.1

106 766 0.7660.08a 0.8360.05 0.9860.04 1.1960.03

107 361 0.7160.02a 0.8260.01 0.9760.01 1.1860.01

aLowest values of Tc .
Mean and standard deviation of Tc for the phenotype A1 for different values of
the mutation rate, population size and amplification factor A1 . In all
simulations, the whole population is initially formed by sequences I0 with an
amplification factor A0~2. As before, the amplification factor of the error tail Ie

is Ae~1. For each experimental setup 200 runs were performed.
doi:10.1371/journal.pone.0083142.t001

Figure 4. Values of the characteristic time for the reduced r-
model for mutation rates in the range ½10{4,0:4� at constant

steps Dm~10{3. In the main figure the amplification factor A1 of the
fittest phenotype is: 5 (blue curve), 10, (green), 20 (red) and 30 (cyan). In
the inset, A1 takes the values: 2 (blue curve), 2:1 (green curve) and 2:2
(red curve). In all cases, A0~2 and Ae~1. The points in the curves of
the main picture correspond to the values mutation rate (from left to
right), m~0:001,0:025,0:05,0:075,0:1. These values are applied later in
stochastic simulations. As expected, increasing the value of the highest
peak in the sequence landscape, A1 , reduces the characteristic time.
Furthermore, as depicted in the inset, as A1 approaches A0 the curves
tend to become monotonous and move up several order of magnitude.
doi:10.1371/journal.pone.0083142.g004
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is worth mentioning that the average selective value of the

population W approaches asymptotically its maximum value

W
(1)
1 ~10(1{10{4)10, although it can decrease momentarily in

some of the phases of evolution (e.g. during the first phase, in the

case depicted in Fig. 6C).

Fig. 7 shows how the probability of fixation of lineage L(2) varies

with the population size and the amplification factor of the fittest

phenotype A1. In all these experiments the mutation rate of

lineage L(1) is m(1)~10{4. The rest of the parameters are kept as

before, i.e. A0~2, Ae~1. Initially, the two lineages are equally

represented in the whole population and they are formed

exclusively by phenotypes A0. Each experiment has been repeated

1000 times for low population sizes and 200 times for larger ones.

Fig. 7A shows the percentage of fixation of L(2) when A1~5. In

this case, larger values of the mutation rate m(2) yield lower

probabilities of fixation of L(2). In Fig. 7B, when A1~10, the

results are not so evident, although seems to be opposite, i.e larger

mutation rates m(2) give rise to larger probabilities of fixation of

L(2). In the other two figures, 7C and 7D, the situation is clearly

established. Besides, the probability of fixation of L(2) for all

population sizes and all mutation rates shows a monotonous

dependence on A1. Note that, in contrast to the deterministic

description, all curves converge to a 100% fixation for high

population sizes. The exception is the case A1~5 for the mutation

rate m(2)~0:1 where the probability of fixation of lineage L(2)

remains null for all population sizes. This result can be explained

by the closeness of this mutation rate to the error threshold.

To further investigate how the probability of fixation depends

on the initial conditions and the value of the highest peak (largest

amplification factor) A1, we carry out a serial of experiments

whose results are summarized in Fig. 8. In all the simulations the

mutation rates for both lineages are fixed: m(1)~10{4 and

m(2)~0:025 for L(1) and L(2), respectively. In the deterministic

approach, since the selective value of the fittest phenotype of each

lineage verifies W
(1)
1 ~A1(1{10{4)10

wW
(2)
1 ~A1(1{0:025)10

then, the lineage L(1) is selected. As can be seen, this is not the

case when the size of the population is not high enough to reach

the deterministic limit. In fact, even for very large populations sizes

(i.e. N[½106,107�), the fixation of L(2) reaches 100% of the

simulations. For N[½104,105� a non-null probability of fixation of

L(2) exists that, for a given population size and initial conditions,

tends to increase with the amplification factor A1. However, for

smaller population sizes the internal noise is so high that the

fixation of L(2) is very low. Note that, even when the initial

condition of I
(2)
0 is low a high probability of fixation still exists for

population sizes in the interval ½106,107�.
In summary, all these results confirm that for population sizes

which are high, but not high enough to reach the deterministic

limit, the lineage with the largest value of the mutation rate (the

mutator lineage) can take over the whole population. This is a

consequence of arriving first to the fittest phenotype which, by

natural selection, displaces the less fit sequences of the other

lineage. The important fact is that, a priori, the fittest phenotype,

that belongs to the low mutator lineage, is never reached. The

question arises as to whether an optimal mutation rate exists that,

for a given population size, optimizes the probability of fixation.

This question is addressed next by studying the time evolution of a

finite population formed by five lineages with different mutation

rates.

As in the previous simulations, an initial population divided

equally among five lineages with different mutation rates evolves

over time until the stationary state, i.e. the selection of one of the

lineages, is achieved. Initially, only sequences I
(i)
0 exist. In all

lineages the amplification factor of the error tail is Ae~1. The

mutation rates of each lineage take the values already highlighted

in Fig. 4, concretely: m(1)~10{4, m(2)~2:5|10{2,

m(3)~5|10{2, m(4)~7:5|10{2 and m(5)~10{1. The amplifica-

tion factors of the fittest sequence in each lineage are equal and is

varied in the simulations (see Table 2). The population size ranges

from 102 to 107. As before, the results shown in Table 2 are

obtained from 1000 simulations for N~100,1000 and 200

simulations for larger population sizes. As can be seen in this

table, for all values of A1 and population sizes in the interval

½105,107� the lineage L(2) is selected. Importantly, this lineage has

the mutation rate that yields the lowest characteristic time of its

fittest sequence, i.e. m~2:5|10{2. For N~105 and amplification

factor A1~30, the lineage L(3) presents similar percentages of

selection. On the contrary, for low population sizes (102 and 103)

and values of the amplification factor A1~5,10,20, the lineage

L(1) with the lower mutation rate and a large selective value is

mostly selected. For the intermediate size N~104 none of the

lineages have a clear selective advantage, which is likely due to the

Figure 5. Percentage of fixation of lineage L(2) formed by error-
prone self-replicative sequences against lineage L(1) formed by
a sequence with a null mutation rate (i.e. m(1)~0) for different
population sizes N . 90% of the initial population is formed by

genotypes I
(1)
0 of lineage L(1) and the rest 10% of genotypes I

(2)
0 . The

amplification factors are: A
(1)
0 ~2 for L(1) and A

(2)
0 ~2, A(2)

e ~1 and

A
(2)
1 ~5 for L(2) . The mutation rate of the sequences of L(2) , m(2), ranges

from 10{4 to 10{1 . Concretely, the m(2)-values used are:
0:0001,0:0125,0:025,0:0375,0:05,0:0625,0:075,0:0875 and 0:1. The pop-
ulation sizes that correspond to each curve are: N~104 (blue line),
N~105 (green) and N~106 (red). The right vertical axis represents the
deterministic molar fraction. The violet curve represents the equilibrium
molar fraction obtained by numerical integration of the ODE system for
values of m(2) at constant steps of 10{5 . Note that in the deterministic
limit of infinite population an abrupt transition occurs at a mutation
rate of m(2)&0:08764. As it can be seen, this transition occurs gradually
for finite size populations.
doi:10.1371/journal.pone.0083142.g005
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fact that the selection pressure and time evolution are almost

compensated. In any case, these results suggest that, at least for an

intermediate range of the population sizes ½105,107�, the mutation

rate that provides the minimum Tc is highly correlated with the

probability of survival under a selective pressure.

Discussion

The validity of the infinite size approximation, i.e. the

deterministic approach, depends very much on the problem

under study. For instance, finite size effects do not seem to be

particularly relevant for the formation of a quasispecies around a

wild type phenotype [25]. In contrast, this limit is scarcely valid for

quantifying the evolutionary time of populations of sequences or

lineages of sequences. It turns out that for small population sizes

evolution can be practically impeded due to the huge increase of

the searching time, i.e. the time needed to find a better phenotype.

This fact can change the fate of evolution as deduced from the

deterministic description. In this paper, we have explored the

evolutionary time in finite populations using a simple model of

quasispecies lineages that evolve in a two-peak landscape.

Importantly, the finite size effects are so drastic that the

deterministic limit cannot be applied to predict the evolution

outcome. The question of how large the population must be to

assure the deterministic limit is, in our opinion, of great interest.

Nonetheless, as has been pointed out above, it depends on the

intrinsic characteristics of the problem, in particular, on the fitness

landscape, the mutation rates and initial conditions. Furthermore,

there is no clear way of determining the dependence of the internal

fluctuations on these factors, and its exploration using computer

simulations is almost impossible due to the large size of the system.

The mutation rate is an essential parameter to determine the

time taken to reach the fittest sequence from the master one and to

stabilize. In the deterministic limit, this time can be estimated by

the characteristic time [14]. An analog to this time can be used to

estimate an evolutionary time in finite size populations [16]. The

question arises as to what extent the characteristic time associated

to a lineage (e.g. that of its fittest phenotype) is responsible for its

survival. In other words, whether lineages with low characteristic

time have a larger probability of being selected by natural selection

in a finite population. It must be stressed at this point that, in the

deterministic limit and above the error threshold, the only factor

that determines the final outcome of the evolutionary process is the

selective value of the phenotypes, independently of their charac-

teristic time. It turns out that, as Fig. 2B and Fig. 6B depict, the

error tail concentration is very low in the transition from the

master sequence to the fittest one, and then internal noise caused

by the finite size of the population becomes relevant. The major

consequence is that the fate of evolution, as predicted by the

deterministic model, can be drastically modified when dealing with

finite size populations. As presented in the Results, this disparity is

especially important when independent linages are competing in a

constrained finite population. This has already been obtained in

Figure 6. Lineage competition in the deterministic limit
obtained by numerical integration of the corresponding ODE
system. The mutation rates of the two lineages L(1) and L(2) are

m(1)~0:0001 and m(2)~0:025, respectively. As before, the amplification

factors of each phenotype in both lineages are: A
(1)
0 ~A

(2)
0 ~2,

A(1)
e ~A(2)

e ~1 and A
(1)
1 ~A

(2)
1 ~10. The whole population is initially

formed by genotypes I0 , shared equally in both lineages. Figure (A)

depicts the time evolution of each of the three phenotypes that form
each lineage. Solid curves correspond to phenotypes of L(1), whereas

dashed lines are for phenotypes of L(2). In figure (B) the three
phenotypes are aggregated to yield the molar fraction of each lineage,
L(1) (solid blue line) and L(2) (dashed green line). In (C) the time

evolution of the average fitness of the population (W ) is shown. The
three phases that appear in the temporal evolution of the phenotypes
and molar fractions of the lineages are separated by vertical black lines
(see main text for more details).
doi:10.1371/journal.pone.0083142.g006
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[12,13] for a system formed by two independent populations

(lineages) of error-prone replicators in a different fitness landscape.

Here, we have interpreted this stochastic outcome from the

characteristic time of the lineage (measured from the characteristic

time of their fittest phenotypes). The lineage that arrives first to its

fittest phenotype is able to displace the best adapted one, as

deduced from a deterministic approach, only in the case of finite

size populations.

As has been stated above, the assumption that lineages are

mutationally isolated is valid when sequence evolution occurs

without a significative modification of their mutation rate. This

hypothesis allows a complete computational treatment of the

population dynamics even when it is formed by five lineages.

Figure 7. Percentage of fixation of lineage L(2) as a function of the population size in the competition against the other lineage L(1)

for different values of the mutation rate of the sequences that form L(2) and for different values of the amplification factor A1: (A)

A
(1)
1 ~A

(2)
1 ~5; (B) A

(1)
1 ~A

(2)
1 ~10; (C) A

(1)
1 ~A

(2)
1 ~20 and (D) A

(1)
1 ~A

(2)
1 ~30. In all cases, the values of the other amplification factors are

A
(1)
0 ~A

(2)
0 ~2 and A(1)

e ~A(2)
e ~1 and the mutation rate of L(1) is m(1)~10{4 . As before, the initial population is divided equally into genotypes I0 of

both lineages. The values of m(2) used are: 0.1 (blue lines), 0.075 (green lines), 0.05 (red lines) and 0.025 (cyan lines). The population sizes simulated
are: 102 , 103 , 104, 105 , 106 and 107 . For low populations sizes 1000 runs were carried out for each experimental setup, whereas for N§104 two
hundred runs were enough to have negligible statistical errors.
doi:10.1371/journal.pone.0083142.g007
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When longer time scales are considered, lineages can then be

mutationally connected and hence, the mutation rate can evolve.

For instance, it could be assumed that some digits of the sequence

(a locus) codify the mutation rate of the whole sequence. Under this

assumption, a mutator phenotype could be fixed due to its better

selective value, but later the population would evolve again

towards a phenotype with a lower mutation rate. It is likely that a

phenomenon of transient ‘‘switch’’ in the mutation rate would

occur, similar to that described by [26]. However, this dynamics

could be radically different if more complex fitness landscapes,

that might be not only rugged but also dynamic, i.e. that change

over time, are taken into account. Obviously, this raises the

question as to what extent the results obtained from these models

are applicable to real fitness landscape, e.g that of viruses. Recent

papers have provided new experimental data and confirm that

they are in general more rugged, as expected, and with a high level

Figure 8. Percentage of fixation of lineage L(2) in terms of the population size in the competition against L(1) for different initial

percentages of I (2)
0 : 10% (blue lines), 20% (green lines), 30% (red lines), 40% (cyan lines) and 50% (violet lines). In all cases, the rest of the

population is formed by I
(1)
0 . Each graph considers a different value of the amplification factors of the fittest phenotypes I1 . Concretely: (A)

A
(1)
1 ~A

(2)
1 ~5; (B) A

(1)
1 ~A

(2)
1 ~10; (C) A

(1)
1 ~A

(2)
1 ~20 and (D) A

(1)
1 ~A

(2)
1 ~30. The rest of the amplification factors are: A

(1)
0 ~A

(2)
0 ~2 and A(1)

e ~A(2)
e ~1

and the mutation rates of L(1) and L(2) are m(1)~10{4 and m(2)~0:025, respectively. As in the previous figure, for each experimental setup 1000 runs
were performed for N~102,103 and 200 runs for larger populations sizes.
doi:10.1371/journal.pone.0083142.g008
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of neutrality (see [27] and references therein). Neutrality is already

present in the two peak landscape and, indeed, causes the drastic

rise of the characteristic time to achieve the fittest peak observed

for finite size populations. In addition, this fitness degeneracy is

partly responsible for the strong discrepancy with the deterministic

outcome. The effect of ruggedness on the characteristic time has

already been studied in a previous paper [15]. In that paper we

studied the characteristic time of a population of replicators in

more rugged landscapes, namely multiplicative with two peaks,

binary rugged and Kauffman-NK landscapes, and showed that it

presents a similar dependence on the mutation rate. Therefore,

although real fitness landscapes are essentially more complex and

differ globally from the double peak landscape model assumed in

our study, the results derived under this assumption are of great

interest from a local perspective, i.e a dynamics restricted to

successive moves from one master phenotype to another master in

its neighborhood in a relatively short time scale.

The matter of whether the high value of the mutation rates of

viruses results from natural selection is still under debate. Two

main explanatory lines have been stated. On the one hand, natural

selection would foster high mutation rates because they confer a

large adaptability to environmental changes. A lower bound to the

mutation rate would appear to maintain the information of the

quasispecies, the error threshold. So, according to this line of

reasoning, an optimal mutation rate will exist placed just above

this error threshold [28]. On the other hand, an alternative

explanation comes from the evidence that evolution is only acting

instantaneously and on finite size populations. Therefore, natural

selection would not be able to cross extended valleys between

fitness peaks, mainly caused by the accumulation of deleterious

mutations [29]. From this perspective, a high mutation rate would

appear as a side effect of selection for high replicative rates [30,31]

(a classical example of ‘‘selection for’’ instead of ‘‘selection of’’

[32]).

This paper has shown that both explanations are not mutually

contradictory. On the contrary, they explain two different

manifestations of natural selection acting on populations with

different sizes. The fixation of the mutation rates during evolution

depends strongly on the population size and it is highly likely that

the direction of adaptation might have changed repeatedly

according to the selective pressures that operate at each moment.

When the population size is low, the characteristic time is high and

the deleterious effect of the mutation rate causes the disappearance

of the mutator lineage. For medium size populations, the adaptive

capacity of the mutator lineage, reflected in its ability to arrive first

to its fittest phenotypes, overcomes the deleterious effects and

allows its selection over the entire population. For even larger

population sizes, in the deterministic limit, the greater adaptability

of the mutator lineage is no longer enough to displace the non-

mutator lineage, as this has similar potential to achieving its fittest

phenotype before disappearing, and then becoming fixed (to the

detriment of the mutator lineage).

A question that immediately arises from this discussion is

whether the selection of mutator lineages is a consequence of a

hitchhiking phenomenon, i.e. the selection of mutator alleles

because they are linked to other advantageous alleles that are

effectively selected by natural selection [24,33–37]. In light of our

results, these mutator alleles are selected because of their selective

advantage provided by a shorter evolutionary time. For interme-

diate population sizes, a phenotype that belongs to a lineage that

has the shortest evolutionary time enhances its probability of being

selected. This phenotype gets an advantage not only by lifting a

lineage but by riding the fastest one.

Methods

In some cases it is reasonable to describe the time evolution of a

population formed by several phenotypes in terms of continuos

variables, such as molar fractions. In the homogeneous case, the

dynamics of each variable is usually described in terms of

Ordinary Differential Equations. If the system exhibits an

asymptotic behavior, all molar fractions approach their equilibri-

um values and, by definition, the time they take to achieve this

state is infinite. However, this mathematical information has low

value in many practical problems where a stationary regime is

approximately reached in a finite time. Many different methods

have been suggested to get an estimation of the scale of this

intrinsic system dynamics. We recently presented in [15] the

characteristic time of a continuos variable as a way of overcoming

important deficiencies in previous definitions, particularly for non-

linear systems, by taking into account the whole path from the

initial condition to the final state of a given trajectory. As discussed

in that paper, this characteristic time can be interpreted as: (i)

specifically for linear system, as a weighted average of the inverse

of the system eigenvalues, (ii) the hypothetical time at which the

Table 2. Percentage of fixation of each lineage during the
stochastic competition of five lineages.

A1 2*N Mutation rate of each lineage

1024 2.561022 561022 7.5±1022 1021

5 102 97.8 0.9 0.8 0.5 0

103 84.5 5.6 6.6 3.3 0

104 16 43.5 27.5 13 0

105 0 99.5 0.5 0 0

106 0 100 0 0 0

107 0 100 0 0 0

10 102 94.8 1.5 1.3 0.8 1.6

103 64.5 5.9 10.6 11.2 7.8

104 4 31.5 47 14.5 3

105 0 95 5 0 0

106 0 100 0 0 0

107 0 100 0 0 0

20 102 93 1.8 1.6 1.5 2.1

103 57.5 5.9 13 12.2 11.4

104 0 21 33 33.5 12.5

105 0 66.5 32 1.5 0

106 0 100 0 0 0

107 0 100 0 0 0

30 102 93.6 1.7 1.5 0.9 2.3

103 54.5 6.8 12.3 13.4 13

104 0.5 13.5 33.5 26 26.5

105 0 48.5 47.5 4 0

106 0 98.5 1.5 0 0

107 0 100 0 0 0

Percentage of fixation of each of the five lineages with different mutation rates
in terms of the population size (N) and the amplification factor of the fittest
phenotype (A1). As before, A0~2 and Ae~1 in all the lineages. For each

experimental setup 1000 runs were performed for N[½102,103�, and 200 runs for

N§104 .
doi:10.1371/journal.pone.0083142.t002
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whole transition occurs and (iii) the mean time of the transition.

More recently, this concept has also been applied to estimate the

characteristic time of stochastic population systems where internal

noise is considered [16].

The ODE systems that describe the time evolution of the

population in the deterministic approximation that assumes an

infinite size Eq. (3) are solved numerically using a Runge-Kutta

scheme implemented under the standard software MATLAB.

Numerical integration is stopped when the molar fraction of the

fittest phenotype A1 at successive steps differs less than 10{4

during at least 200 consecutive steps. It is assumed that initially

only phenotypes A0 exist in the population. When more than one

lineages is present, the same proportion of phenotypes A0 of each

lineages is initially supposed. The trajectories of the phenotype

with the largest amplification factor are then used to compute the

characteristic time as described in Llorens et al. [14]. To be precise,

if y(t) is a monotonous trajectory of the dynamical system with

initial condition y(0) and equilibrium point then its characteristic

time reads:

Tc~

Ð?
0

t
d y

d t
dt

Ð?
0

d y

d t
dt

ð6Þ

For finite size populations we have used a well-known stochastic

approach, the so-called Gillespie’s algorithm, to simulate the time

evolution of the number of sequences of the possible phenotypes

that can be formed in the system. The Gillespie’s algorithm

provides an exact simulation of the time evolution of the number

of genomes of different phenotypes in a finite population [21]. The

algorithm was implemented in C. To generate pseudorandom

numbers we apply the Mersenne twister method [38]. To compute

the characteristic time of the fittest sequence, the program controls

the asymptotic phase of the simulations and determines the first

time the population of phenotypes A1 becomes larger than that of

phenotypes A0, that is denoted as tn1wn0
. Here n1 and n0 represent

the number of genomes with phenotypes A1 and A0, respectively.

The final time of each simulation is taken as:

tend~5 tn1wn0
ð7Þ

In so doing, we are assuring that the number of genomes of

phenotype A1 is already in its asymptotic phase and then, its mean

value is close to its steady state. A stochastic characteristic time is

computed in a MATLAB framework according to the procedure

previously described in [16]. Essentially, we approximate the

stochastic realization by a monotonously increasing curve that

converges to the mean value of the last 1000 values of n1. This

resulting continuous curve is then used to estimate the character-

istic time of a single simulation by means of the formula Eq. (6).

Finally, the average characteristic time is computed from 200

simulations. In addition, the standard deviation is also determined

for each experimental setup. In the experiments that involve more

than one lineage, a checking step for lineage disappearance is

included in the program. In the case of two lineages, the

simulation is stopped when all phenotypes that form a lineage

have died off. When five lineages are competing, the simulation

ends when four lineages disappear.
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