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Abstract

High-throughput transcriptomic experiments have made it possible to classify genes that are ubiquitously expressed as
housekeeping (HK) genes and those expressed only in selective tissues as tissue-specific (TS) genes. Although partitioning a
transcriptome into HK and TS genes is conceptually problematic owing to the lack of precise definitions and gene
expression profile criteria for the two, information whether a gene is an HK or a TS gene can provide an initial clue to its
cellular and/or functional role. Consequently, the development of new and novel HK (TS) classification methods has been a
topic of considerable interest in post-genomics research. Here, we report such a development. Our method, called HKera,
differs from the others by utilizing a novel property of HK genes that we have previously uncovered, namely that the
ranking order of their expression levels, as opposed to the expression levels themselves, tends to be preserved from one
tissue to another. Evaluated against multiple benchmark sets of human HK genes, including one recently derived from
second generation sequencing data, HKera was shown to perform significantly better than five other classifiers that use
different methodologies. An enrichment analysis of pathway and gene ontology annotations showed that HKera-predicted
HK and TS genes have distinct functional roles and, together, cover most of the ontology categories. These results show that
HKera is a good transcriptome partitioner that can be used to search for, and obtain useful expression and functional
information for, novel HK (TS) genes.
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Introduction

Transcriptomics, which investigates patterns of gene expression

across different tissues and different experimental conditions on a

genome-wide scale, is a key component of post-genomics research.

Genes that are ubiquitously expressed over a wide range of tissues

and experimental conditions are usually called housekeeping (HK)

genes, while those that are not are called tissue-specific (TS) or

tissue-selective genes [1,2]. To study a complex transcriptome,

such as that of the human genome, it is often useful to determine

which genes of the genome are HK genes and which are TS genes

in order to understand their roles in cellular functions or disease

processes [3–5]. Many bioinformatics tools have been developed

for this purpose (e.g., [6–9]), although classification as HK and TS

genes is not unambiguous, as it depends on the classification

criteria and methodologies used [10].

At least six different methodologies have been used to partition

a transcriptome into HK and TS genes, namely those that classify

the genes based on the 1) magnitude of expression (Exp), 2)

number of present calls of expression (PCall), 3) fraction present

weighted expression intensity (FPEI), 4) tissue specificity index

(TSI), 5) biophysical properties (Phy), or 6) Fourier analysis of

expression data obtained at different time points in the cell cycle

(Fourier analysis). Exp identifies genes as HK genes based on the

criterion of high [2] or fairly constant [11,12] expression, whereas

PCall does not focus on the magnitude of expression, but, instead,

uses a certain number of ‘‘present calls’’ as a threshold [13,14],

and FPEI [15] is a combination of the two. In contrast, TSI [16]

uses a quantitative measure of variation in expression profiles in

different tissues to evaluate the tendency of a gene to be HK (little

tissue-wide variation) or TS (high variation). Different from all of

the above, Phy [17,18] ignores the expression data completely and

uses the observations that, compared to TS genes, HK genes tend

to be shorter [2], be flanked with more short repeats [17], have

fewer protein domains [19], show lower promoter sequence

conservation [20], and have simpler transcriptional regulation and

slower rates of evolution [21,22] to distinguish between HK and

TS genes. Finally, Fourier analysis [23] transforms time-series gene

expression data into Fourier spectra for a support vector machine

(SVM, a machine learning method) to classify genes as HK or TS.

Despite their proven usefulness in numerous studies, all of these

methods have shortcomings. For instance, Exp, PCall, FPEI, and

TSI all tend to identify HK genes that are expressed at a high and/
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or fairly constant level and therefore may miss those expressed at a

low level or at significantly different levels in different tissues

[14,24,25]. As for Phy, despite the appeal of not using expression

data, there have been conflicting results for the properties of HK

genes (e.g. whether the gene structures of HK genes are compact

[2,26] or not [27]), which is not surprising, since there is a

significant overlap in static gene properties between HK and non-

HK genes [28]. Finally, the main limitation of the more

sophisticated Fourier analysis is its use of time-series expression data

and the resultant higher cost.

We have previously shown that the ranking order of expression

levels for HK genes tends to be preserved from one tissue to

another and that dispersion, stableness, and co-expression are the

three factors making the greatest contribution to this novel

property of HK genes that can be decomposed into a composite of

16 tensor components [28]. Here, we describe the development of

an SVM classifier for designating a given human gene as an HK or

TS gene based on the tensor structure of tissue-wide gene

expression profiles. We have named this classifier HKera, ‘era’

being an abbreviation for ‘expression ranking assessment’. HKera is

similar to Fourier analysis in that they both utilize a mathematical

transformation of an underlying structure of gene expression data,

but HKera does not require time-series data.

To evaluate the performance of an HK gene classifier, a so-

called ‘gold-standard’ set of HK genes is required, and several such

sets have been derived and used as the benchmark to evaluate HK

(TS) gene classifiers [2,6,10,14]. In this work, HKera and five other

HT (TS) prediction methods were evaluated using three widely-

used HK gene sets and one very large HK set derived recently

from RANseq experiments as benchmark. The results showed that

HKera performed significantly better than the five other methods

evaluated (a comparison with Fourier analysis was not made because

we did not use time-series data). Furthermore, an analysis using

the functional annotations of the Kyoto Encyclopedia of Genes

Figure 1. Developing the HKera classifier. (A) The HKera classifier is one of five SVM models resulting from 5-fold cross validation of SVM learning
on 300 ‘gold-standard’ HK genes and 300 ‘gold-standard’ TS genes (see Methods). (B) To create the attributes for the SVM learning, each query gene
used for training and test (Qi) was paired with each of 50 reference genes (Rj) (see Methods) to compute the Kendall’s t of their tissue-wide gene
expression profile, which was then decomposed into 16 tensor components (A1, A2, …, A16) following our previously described procedure [28]. The
mean of each tensor component averaged over a set of query genes (e.g. HK1, TS1, etc. in (A)) provided one of the16 attributes used to train/test the
SVM models.
doi:10.1371/journal.pone.0083040.g001

HKera, a Human Transcriptome Partitioner
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and Genomics (KEGG) [29], Protein Information Resource (PIR)

[30], and Gene Ontology (GO) [31] revealed that functional

categories enriched in HK genes are distinct from those enriched

in TS genes, supporting the notion that, by and large, the two have

distinct functional roles in the cell.

Materials and Methods

Datasets
The GSE2361 Affymetrix microarray data for human genes

compiled by Ge et al. [32] was downloaded from GEO

depositories [33] and processed using previously described

procedures [28]. This GSE2361 dataset contains gene expression

profiles for 13,075 genes in 36 normal human tissues. As

previously [28], this dataset was divided into three gene sets,

namely HK, TS, and MR (‘‘middle-ranged’’), the HK set

consisting of a set of 388 genes present in the 408 HK gene set

manually curated by Zhu et al. [10], the TS set consisting of 734

genes that satisfy four stringent criteria for being TS genes [28,32],

and the MR set consisting of the remaining 11,953 genes. Three

hundred HK genes and 300 TS genes were then randomly

selected from the HK or TS set to train and test the SVM models

of HKera described below.

We treated the set of 388 HK genes curated by Zhu et al. [10]

and two other HK sets derived from microarray data [2,14] as

‘gold-standard’ HK genes, since they have been used as such in the

past (e.g. [15,18,28]). The HK set identified by Ramskold et al. [6]

was also treated as gold-standard, since it was derived from

RNAseq experiments, which can detect expression signals more

comprehensively and at a higher resolution than conventional

microarray experiments [34]. These four HK gene sets were

denoted, respectively, as HK388, HK383, HK557, and HK6121, the

subscript indicating the size (number of genes with expression data

in GSE2361) of the set, while the set of 734 TS genes used to

train/test HKera was denoted as TS734.

Development of HKera
HKera is an SVM model from a five-fold cross validation, in

which the 300 HK (and 300 TS) genes randomly selected from the

HK388 and TS734 sets were arbitrarily partitioned into five

subgroups of equal size, each of which was alternately used for

testing, while the remaining four subgroups were used for training

(Figure 1A). This resulted in five models and, although fairly

similar results were obtained for all five (see Results), for simplicity,

the one with the best numerical performance was chosen as the

HKera classifier.

The attributes used to train the SVM models were the 16

components (Figure 1B) derived by tensor decomposition of

Kendall’s t, a measure of tissue-wide concordance in the ranking

order of expression levels between any two genes [28]. The

meanings of these 16 attributes are schematically illustrated and

explained in supplemental Figure S1 in File S1, along with an

example of actual data for a specific gene pair in Figure S2 in File

S1. Since this method requires data for gene pairs, it was necessary

to have a set of reference genes with which to pair any query gene

(training or testing). In principle, any gene can serve as a reference

gene. Indeed, similar performances were obtained when three very

different reference gene sets were used (see supplemental Table S1

in File S1). These three reference gene sets contained, respectively,

50 HK genes, 50 TS genes, or 25 HK and 25 TS genes randomly

selected from the HK388 and TS734 sets described above after

excluding those already selected to be included in the training and

test sets. To demonstrate it was not necessary to use only HK

genes as reference genes to derive HKera, in this study, we report

only the results of the HKera built using the reference set of 50 TS

genes. We employed the bioinformatics toolbox of the Matlab

software (version 7.6.0.324, release R2008a) [35] available at

http://www.mathworks.com, particularly its ‘‘svmdecision’’ com-

mand, to build the HKera classifier. Using HKera, every gene in the

training set received a score from 21 to +1, indicating the extent

of its tendency to be an HK gene (a more positive score) or a TS

gene (a more negative score), but some test genes may receive a

score slightly beyond the 21 or the +1 limit. In this work, those

with a positive score were regarded as HK genes and those with a

negative score as TS genes. Using a threshold of zero, the

GSE2361 data set (13,075 genes) was partitioned into 8,072 HK

genes (61.7%) and 5,003 TS genes (38.3%).

Table 1. HK criterion and the resulting number of HK genes
in the GSE2361 set using different methods.

Method HK criterion
Number of
HK genes Reference

Exp Nx§200§35a 1,114 [2]

PCall Npvalue(x)ƒ0:01§35b 1,685 [13,14]

FPEI NFPEI(x)§100§35c 2,064 [15]

TSI TSIƒ0.1d 1,039 [16]

Phy P§0:8e 1,219 [18]

RNAseq RPKM§0:3f 6,121 [6]

HKera HKera score§0:0 7,761 This work

aAny gene is an HK gene if it has an expression intensity (x) . = 200, as
recommended by [2], in at least 35 tissues. N is the number of tissues.
bThe p value for gene expression intensity needs to be less than 0.01 to make a
detection call of ‘Present’ [13], and a gene needs to have a ‘Present’ call in at
least 35 tissues to be considered an HK gene. N is the number of tissues.
cFollowing [15], genes with an FPEI score above 100 in at least 35 tissues were
defined as HK genes. N is the number of tissues.
dTSI [16] is bounded between 0 and 1. A lower TSI indicates a lower tendency
for the gene to be TS (or a higher tendency for it to be HK). The 0.1 threshold
was chosen following [16].
eFor each gene, the Näive Bayes classifier [18] calculates a probability (P) of it
being an HK gene; in this study, we choose those with a P value greater than 0.8
to be classified as HK genes.
fAccording to [6], those genes with an RPKM (reads per kilobase of exon model
per million mapped reads) score greater than 0.3 were classified as HK genes.
doi:10.1371/journal.pone.0083040.t001

Table 2. Performance of HKera’s SVM models derived from 5-
fold cross validation on training/test data.

Training (%) Test (%)

Model Accuracy Recall Precision Accuracy Recall Precision

1 99.2 98.8 99.6 92.0 87.7 96.1

2 99.2 99.0 99.4 92.3 89.7 94.9

3* 99.3 98.7 99.9 95.2 93.3 96.9

4 99.5 99.3 99.8 91.7 87.3 95.8

5 99.0 98.2 99.7 93.5 90.0 96.9

*Model 3 was chosen to represent HKera in this study.
doi:10.1371/journal.pone.0083040.t002

HKera, a Human Transcriptome Partitioner
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Figure 2. Performance of six HK prediction methods on four benchmark HK sets. The plots are ROC curves of sensitivity vs. 1-specificity,
where sensitivity (i.e. recall) and specificity are defined, respectively, by Equation (1) and Equation (3) in the Methods. The six HK prediction methods
compared are PCall [13,14], Exp [2], TSI [16], Phy [18], FPEI [15], and HKera (this work), and the four benchmark HK sets are (A) HK388 [10], (B) HK383 [14],
(C) HK557 [2], and (D) HK6121 (RANseq) [6].
doi:10.1371/journal.pone.0083040.g002

Figure 3. Distribution of HKera scores for various gene sets. Using the HKera classifier, every gene in each gene set was scored by a numerical
value that indicated its tendency to be HK (more positive) or TS (more negative). Note that the entire GSE2361 set was scored, as it was divided into
the three sets HK388, TS734, and MR (see Methods). In this work, 0.0 was the threshold used to divide the MR set into HK genes and TS genes.
doi:10.1371/journal.pone.0083040.g003

HKera, a Human Transcriptome Partitioner
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Performance Evaluation
To evaluate HKera and other HK prediction methods, we

calculated the following performance measures:

recall~
TP

TPzFN
ð1Þ

precision~
TP

TPzFP
ð2Þ

specificity~
TN

TNzFP
ð3Þ

accuracy~
TPzTN

TPzFPzTNzFN
ð4Þ

where TP denotes true positive, FP false positive, TN true negative,

and FN false negative. When evaluating the five-fold cross

validation, TP was the number of correctly predicted HK genes

for the 300 genes chosen from the HK388 set to be included in the

training and testing sets and TN was the number of correctly

predicted TS genes for the 300 genes chosen from the TS734 set;

when computing the receiver operating characteristic (ROC)

curves [36] for HKera and the other methods to compare their

performance, TP was the number of correctly predicted HK genes

in each of the four benchmark HK sets, i.e. HK388 [10], HK383

[14], HK557 [10], and HK6121 [6], and TN was the number of

correctly predicted TS genes in the TS734 set. For both

computations, FP was the number of TS734 genes predicted to

be HK and FN the number of benchmark HK genes predicted to

be TS. A few genes present in both the TS734 set and the

benchmark HK set (3 using HK383, 5 using HK557, and 103 using

HK6121) were excluded from the computation of the performance

measures. The criteria used to define HK genes in the GSE2361

dataset using the various methods compared in this study are listed

in Table 1.

Functional Annotation and Enrichment Analysis
About two-thirds of the MR genes were scored as positive by

HKera, yielding thousands of predicted HK genes. To investigate

what functional roles of these genes might differ from those of the

genes scored negatively and thus classified as TS genes, genes of

the MR set were sorted by their HKera score and divided into four

sets of putative HK genes and two sets of putative TS genes, each

containing about 2,000 genes. The choice of 2,000 as a cut-off was

arbitrary, but was based on the consideration that a choice of

1,000 would result in each group having too few members for

enrichment analysis (data not shown). We employed the DAVID

Bioinformatics Resource [37,38] to compute the p value for genes

in each set and for genes in the HK388 set and the TS734 set to be

associated with a specific pathway category of KEGG [29] and the

p value for the likelihood of their being ubiquitous according to

PIR [30]. We then extended the enrichment analysis to GO

categories [31], in which comparisons were made with gene sets

derived from FPEI [15] and RNAseq experiments [6].

Figure 4. Cross-coverage between HKera and benchmark HK sets at various thresholds of the HKera score. At each score threshold,
genes with a score greater than the threshold were classified as HK genes, while the same number of genes was randomly selected from the whole
pool (GSE2361) to form a random set. The percentages of HKera-predicted HK genes (solid symbols) and randomly selected genes (empty symbols)
that were present in the benchmark set considered were computed at various thresholds of the HKera score (top panel); the percentage of the
reverse coverage was also computed (bottom panel).
doi:10.1371/journal.pone.0083040.g004

HKera, a Human Transcriptome Partitioner
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Table 3. Number and percentage of genes annotated with the indicated KEGG pathway or PIR tissue specificity term enriched in
different HK and TS gene sets.

Gene seta
enriched/annotated
genes in this set

KEGG pathway or PIR
tissue specificity term

Number of KEGG
(PIR) genes

% of KEGG (PIR)
genes in this set p valueb

HK388 KEGG: 270/276 hsa03010 Ribosome 84 94.1 2.0E-91

hsa03050 Proteasome 42 92.9 1.8E-39

hsa03040 Spliceosome 113 46.9 1.1E-32

hsa03022 Basal transcription factors 33 69.7 1.7E-18

hsa04120 Ubiquitin-mediated proteolysis 117 34.2 2.2E-17

hsa00970 Aminoacyl-tRNA biosynthesis 30 63.3 2.2E-11

hsa03020 RNA polymerase 11 100.0 3.7E-05

hsa03420 Nucleotide excision repair 44 22.7 1.7E-02

PIR: 26/61 (PIR) Ubiquitous 247 4.5 1.3E-04

(PIR) Expressed ubiquitously 13 23.1 7.0E-03

(PIR) Widely expressed 165 3.6 2.3E-02

(PIR) Ubiquitously expressed 118 4.2 2.9E-02

HKI (1,2,000) KEGG: 202/686 hsa00190 Oxidative phosphorylation 130 56.9 3.3E-29

hsa05012 Parkinson’s disease 128 57.0 7.6E-29

hsa05010 Alzheimer’s disease 163 46.0 6.2E-22

hsa05016 Huntington’s disease 180 43.9 1.3E-21

hsa04722 Neurotrophin signaling pathway 124 33.1 7.5E-06

hsa05110 Vibrio cholerae infection 56 42.9 4.9E-05

hsa04142 Lysosome 117 29.9 1.1E-03

hsa05120 Epithelial cell signaling in
Helicobacter pylori infection

68 33.8 8.4E-03

hsa05220 Chronic myeloid leukemia 75 32.0 1.5E-02

PIR: 134/621 (PIR) Ubiquitous 247 28.3 9.7E-16

(PIR) Ubiquitously expressed 118 23.7 4.1E-05

(PIR) Widely expressed 165 21.2 4.5E-05

HKII (2,001,4,000) KEGG: 51/595 hsa03018 RNA degradation 57 36.8 5.6E-04

hsa04142 Lysosome 117 24.8 2.4E-02

PIR: 49/685 (PIR) Ubiquitous 247 19.8 9.2E-05

(PIR) Widely expressed 165 20.0 1.4E-03

(PIR) Ubiquitously expressed 118 21.2 2.8E-03

HKIII (4,001,6,000) KEGG: 0/571 – – – –

PIR: 40/685 (PIR) Ubiquitous 247 16.2 1.8E-02

HKIV (6,001,7,761) KEGG: 51/511 hsa04060 Cytokine-cytokine receptor
interaction interaction

262 19.5 6.5E-04

PIR: 0/578 – – – –

TSI (7,762,9,953) KEGG: 110/638 hsa04080 Neuroactive ligand-receptor
interaction

256 21.1 9.7E-04

hsa04060 Cytokine-cytokine receptor
interaction

262 20.6 3.5E-02

PIR: 0/761 – – – –

TSII (9,954,11,953) KEGG: 77/728 hsa04610 Complement and coagulation
cascades

69 49.3 3.9E-08

hsa00830 Retinol metabolism 54 38.9 1.6E-02

hsa00982 Drug metabolism 62 35.5 4.6E-02

hsa00140 Steroid hormone biosynthesis 46 43.5 4.1E-03

hsa00591 Linoleic acid metabolism 28 46.4 4.0E-02

PIR_TS: 13/860 (PIR) Expressed by the liver and secreted
into the plasma

23 56.5 1.8E-05

TS734 KEGG: 12/222 hsa00140 Steroid hormone biosynthesis 46 26.1 4.4E-04

HKera, a Human Transcriptome Partitioner
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Results

Performance of SVM Models
Table 2 summarizes the performance for each of the five SVM

models resulting from five-fold cross validation on training/test

data of randomly selected HK and TS genes (see Methods). The

three measures (accuracy, recall, and precision) were nearly all

.99% perfect for training and remained very good (the worst

being 87% recall for one model) for the test. We chose model 3 to

be HKera because it gave the best test result for all three

performance measures. Note that although the 16 attributes used

by HKera were derived from ranking order data [28], they

themselves are not ordinal data and therefore machine learning

methods for ordinal classifications [39–41] may not be easily

applied, not to mention that, to our knowledge, these methods

tend to classify data into ordinal classes (i.e. the output end of the

learning) but do not classify data with ordinal features (i.e. the

input end). When five other machine leaning methods (decision

tree, neural network, rule learner, naı̈ve Bayes, and instance-based

learning algorithm) representing different categories of classifica-

tion methodologies [42] were used instead of SVM, the results

showed that HKera (i.e. SVM) was among the best performers

(Figure S3 in File S1).

Comparisons with Other Methods using Different
Benchmark HK Sets

The abilities of HKera and five other methods (PCall, Exp, FPEI,

Phy, and TSI) to identify HK genes from the GSE2361 dataset

were compared using the ROC evaluation of four benchmark HK

sets (HK388 [10], HK383 [14], HK557 [10], and HK6121 [6]). ROC

is a measure of sensitivity (i.e. recall ability) as a function of

specificity, in which a larger area under the ROC curve

(conventionally known as the AUC) indicates a better perfor-

mance. As shown in Figure 2, when the sensitivity, or the

percentage of recall, was not required to be high, most of the HK

genes recalled were correct (i.e. specificity high, or 1-specificity

close to zero) for all methods, but when greater sensitivity was

required, differences in performance between the methods became

apparent. With all sets, HKera exhibited the best performance,

producing not only an almost perfect ROC curve for HK388 on

which the classifier was trained (see Methods), but also an excellent

ROC curve for the other three benchmark sets. Given its

simplicity, TSI, which, like HKera, employs a mathematical

transformation, albeit a much simpler one [16], performed

surprisingly well. In contrast, PCall, Exp, and FPEI all exhibited

an unbalanced performance, being accurate at low sensitivity, but

bad at high sensitivity, except when using the HK383 set.

Compared to PCall, Exp, and FPEI, Phy had a prediction accuracy

that was relatively insensitive to the HK set used for evaluation,

but a much smaller AUC, presumably owing to its use of static

gene properties and not expression data, as mentioned above.

HKera Scores and Coverage of Benchmark HK Sets
Figure 3 shows the distribution of HKera scores using various

benchmark gene sets and the MR set, which, together with HK388

and TS734, contain the entire 13,075 genes of the GSE2361 set.

Overlaps of the HKera scores were seen among the various gene

sets, including between the HK388 set, the TS734 set, and the MR

set (11,953 genes), reinforcing the notion that HK and TS genes

are largely distinguished based on qualitative descriptions and

different quantitative measures will yield different HK/TS genes.

Nevertheless, numerous MR genes appeared to have expression

characteristics similar to those of expert-curated HK genes, as

suggested by their similar high HKera scores, and can therefore be

considered as HK genes in the subsequent functional analysis.

Although a more positive HKera score indicates a higher tendency

of having canonical HK expression characteristics, 0.0 was chosen

as the threshold to partition the human transcriptome (Figure 3),

because it produced a balanced cross-coverage between HKera-

predicted HK genes and those determined from RNAseq data

(Figure 4). An Excel file containing a complete listing of the 13,075

GSE2361 human genes ordered by HKera score is provided as a

supplement (Table S2 in File S2).

Enriched KEGG Pathways and GO Categories
Of the 13,075 genes for which expression data is given in

GSE2361 that were analyzed in this work, only 3,729 (28.5%) had

pathway information in KEGG and only 4,190 (32.0%) had tissue

specificity data in PIR. For those genes with available pathway or

tissue specificity data, those annotated with different KEGG

pathways and PIR tissue specificity categories that were enriched

(p,0.05) in the HK (TS) genes grouped according to HKera scores

(see Methods) are presented in Table 3. Consistent with the notion

that HK genes are expressed in a wide range of tissues, while TS

genes are not, genes annotated with the PIR categories of

‘‘ubiquitous’’ and related terms were enriched only in the HK

groups, while those annotated with tissue-specific expression (e.g.

for liver and testis) were enriched only in the TS groups. In

addition, apart from the seven pathways of molecular biology’s

central functions that we have previously shown to be enriched in

the HK388 set [28], several others indispensable to cells, such as

DNA repair, energy production (oxidative phosphorylation), RNA

degradation, and cell waste management (lysosome), were also

enriched in the HK groups. Many disease- and infection-involved

pathways were enriched in the HK groups, suggesting that many

of the predicted HK genes are important for cell viability and that

defects in these genes often lead to disease. In contrast, pathways

involving biosynthesis, metabolism of sex and reproduction

Table 3. Cont.

Gene seta
enriched/annotated
genes in this set

KEGG pathway or PIR
tissue specificity term

Number of KEGG
(PIR) genes

% of KEGG (PIR)
genes in this set p valueb

hsa00150 Androgen and estrogen
metabolism

37 24.3 2.2E-02

PIR_TS: 14/357 (PIR) Testis-specific 39 35.9 1.6E-07

aHKera score-sorted MR genes were divided into 4 HK sets (HKI-HKIV) and 2 TS sets (TSI and TSII), each containing ,2,000 genes (see Methods).
bThe p values for the KEGG pathway were estimated using the Boferroni correction method by controlling the family-wide false discovery rate (FDR) under 5%. An
additional criterion, gene number .10, was used to screen for genes enriched in the gene set with PIR tissue specificity annotations [37].
doi:10.1371/journal.pone.0083040.t003

HKera, a Human Transcriptome Partitioner
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hormones, and metabolism of retinol and drugs (a reaction that

takes place in liver [43]), were enriched in the TS groups.

Similarly, the GO terms showing up in the enrichment analysis

were markedly different for HK and TS genes: this was especially

evident for biological process (BP) (Figure 5) and cellular

component (CC) (Figure S4 in File S1), but was also seen for

molecular function (MF) (Figure S5 in File S1). Furthermore, with

the exception of ‘‘binding’’ in MF (Figure S5 in File S1), those GO

terms enriched in both HS and TS genes, i.e. ‘‘localization’’ in BP

(Figure 5, left panel) and ‘‘structural molecule activity’’ in MF

(Figure S5 in File S1), were separable at the next level of GO

annotation (Figure 5, right panel and Figure S6 in File S1,

respectively). This marked difference is generally in accordance

with HK genes being involving in fundamental cellular processes

and functional activities executed by various components of the

cell and in different locations in the cell, and with TS genes being

involving in regulation, immune, and other cellular responses,

such as cell mobility.

Figure 5. Percentage of genes annotated with the indicated GO term in different HK and TS sets. The figure shows the percentages of
genes annotated with the indicated enriched GO category (determined using FDR-corrected p,0.05) in the indicated HK or TS gene set. Genes not
associated with any enriched GO term were not used to compute the percentage. At GO’s level 2 (left graph), ‘Localization’ (GO: 0051179) was the
only enriched BP category common to both the HK and TS sets; however, at the next level (level 3) of this category (right graph), the enriched GO
terms for the two gene sets were different. Note that, ‘‘cellular localization (GO: 0051641)’’ and ‘‘macromolecule localization (GO: 0033036)’’ denote
that a protein or macromolecule is transported to a specific location in a cell, while ‘‘localization of cell (GO: 0051674)’’ denotes that a cell is
transported to a specific location [40]. Similar results were obtained for the analysis using GO Cellular Component (CC) (Figure S4 in File S1) and
Molecular Function (MF) categories (Figure S5 in File S1).
doi:10.1371/journal.pone.0083040.g005
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Discussion

By definition, HK genes are expressed for functions that are

common to all cells and TS genes are expressed for functions

specific to certain types of cells. Consequently, the criterion of

‘‘ubiquitous expression’’ has commonly been employed to identify

HK genes. Using microarray expression data, the number of HK

genes identified has ranged from scores to a few hundreds

[2,10,14], while, using FPEI predictions [15], it increases to

,2,000. However, even this seemly large number of 2,000 is a

gross underestimate compared to that of .6,000 obtained in

experiments using RNAseq [6], so-called next generation sequenc-

ing capable of producing transcriptomes of a finer resolution than

microarray technology [34]. In the present study, using the tensor

structure of gene expression profiles, rather than expression levels

or number of present calls, we showed that HKera was capable of

identifying thousands of HK genes from microarray data with a

good coverage of RNAseq-derived HK genes (Figure 4). Further-

more, compared to several other HK classifiers, HKera gave a

significantly better performance against a number of benchmark

HK sets derived from both microarray and RNAseq studies

(Figure 2). It is noteworthy that the 16 ranking order-derived

tensor components of gene expression profile were fairly orthog-

onal between the TP (HK388) and TN (TS734) data used to derive

HKera (Figure 6), explaining its success. Indeed, HKera performed

significantly better than SVM models trained on features used by

the other HK classification methods compared, and including

those features altogether achieved little, if any, improvement on

HKera’s performance (Figure S7 in File S1). This is because the 16

attributes of HKera are much more significant features than those

used by Exp, TSI, FPEI, PCall, and Phy, and had in fact captured

almost all the information needed to classify the HK/TS genes in

the benchmark training set, as indicated by the results of the

information gain [44] analysis (Figure S8 in File S1). Leave-

one(feature)-out analysis also showed that, of the 16 attributes (A1–

A16), those with ranking presence (A1–A8) were slightly more

important than those with ranking absence (A9–A16) in their

impact on HKera performance, with A8 being the most significant

feature (see Figures S1 and S2 in File S1 for explanations for the

meaning of each of the 16 features). However, the differences were

small, and leaving any feature out would all decrease, albeit not

significantly, the accuracy of HKera predictions (Figure S9 in File

S1). Since preservation of expression ranking order of HK genes

has been previously observed using several different expression

datasets and in data from different expression platforms [28], we

can expect the HKera approach to be applicable to other large-

scale gene expression data.

It has been noted that the consensus between different HK gene

sets identified by different methods, including those often used as

benchmark, is not very good (10%–80%) [10,15]. In comparison,

the agreement between HKera and RNAseq was better: the

percentage of genes designated as HK genes by RNAseq and

predicted as such by HKera (using the threshold of a 0.0 HKera

score) was 83.1%, while the converse coverage of HKera-predicted

HK genes by RNAseq was 60.7% (Figure 7). The HKera scores

(Figure 7, right panel) also showed that method-consensus genes

(e.g. those common to the HKera, RNAseq, and FPEI sets or those

only common to the HKera and RNAseq sets) generally had a better

HK/TS-distinguishing HKera score than either HKera-unique or

RNAseq-unique genes. Using a consensus from multiple prediction

methods or a high HKera threshold would therefore be advisable

practice for finding HK genes with high confidence. Nevertheless,

many method-unique genes did have a good HKera score, some

even as good as those of the benchmark genes (Figure 3),

suggesting that different transcriptome-partitioning methods

examine, to some extent, different features of the transcripome.

These high HKera-score, method-unique genes are good candi-

dates for novel HK genes.

Interestingly, although the sets of HK and TS genes classified by

HKera, RNAseq, or FPEI were not highly concordant (Figure 7),

they all contained essentially the same enriched GO terms, most of

which would, in fact, have been captured by two much smaller

gold-standard sets (HK388 and TS734, see Figure 5); moreover, the

GO terms enriched in either HK or TS genes were highly

complementary, such that, together, they covered most of the GO

landscape (Figures 5, S4 (in File S1), and S5 (in File S1)). Perhaps

the most telling observation for a distinct role of HK and TS genes

is that, for BP, genes annotated as ‘cellular localization’ (‘‘a

localization process that takes place at the cellular level’’ [45]) were

enriched in the HK genes, while those annotated as ‘localization of

cell’ (‘‘any process in which a cell is transported to, and/or

maintained in, a specific location’’ [45]) were enriched in the TS

genes (Figure 5, right panel). This was further demonstrated in a

complete listing of HK- and TS-enriched CC terms (Table S3 and

Figure 6. Contributions of the 16 tensor components to Kendall’s t (TS734 vs. HK388). The equations for computing the 16 tensor
components have been reported previously [28].
doi:10.1371/journal.pone.0083040.g006
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S4 in File S1, respectively), in which all GO levels were

considered: namely, for example, genes annotated as ‘intracellular’

or ‘extracellular’ were enriched, respectively, in the HK genes or

TS genes and, while genes annotated as ‘cytoplasm’ and

‘membrane’ were enriched in both the HK and TS genes, a

more specific cell type (muscle for ‘cytoplasm’) or cell component

(plasma membrane for ‘membrane’) was enriched in the TS genes.

In conclusion, we have developed a novel transcriptome

partitioner and shown that it is superior to several other methods

in reproducing ‘gold-standard’ HK gene sets. The large number

(.7,000) of predicted HK genes is similar to that derived from

RNAseq experiments and, as indicated by the enrichment analysis

results, the human transcriptome can be partitioned into HK and

TS gene sets that occupy distinct parts of the GO spectrum,

reinforcing the notion that they have distinct cellular and

functional roles.

Supporting Information

File S1 Figure S1. Schematic illustrations of the 16 attributes

used to derive HKera. (A) A schematic illustration of tissue-wide

gene expression ranking (R) for a pair of genes and the three main

contributing factors (Stableness (S), Co-expression (C) and

Dispersion (D)) of its ranking order concordance and discordance

[28]. The up and down arrows respectively point to increasing

presence (+) and increasing absence (2) of the indicated variable.

(B) Illustrations for each of the 16 attributes (A1–A16), which are

products of a tensor operation on an equation that relates the

expression ranking order (Kendall’s t) and the three factors [28].

Figure S2. The distribution of attribute value for a gene pair and

its tissue-wide expression and expression ranking profiles. (A) (Left)

The fractional values for the presence (+) and absence (2)

contribution of Stableness, Co-expression, Dispersion and Rank-

ing as computed by tensor decomposition of gene expression

ranking data [28], for a specific pair of genes (NCBI Entrez gene id

5143 and 55142). (Right) A wheel presentation of the composite

values of the 16 attributes (A1–A16) used to derive HKera, showing

that component A13 dominates for this gene pair. (B) Tissue-wide

profile of gene expression levels (left) and rankings (right) for the

two genes, showing that they have a high value on Stableness and

Co-expression, but a low value on concordant rankings and

Dispersion. NI.0 is the number of tissue pairs in which the rank of

gene 5143 is higher than that of gene 55142, and NI,0 is the

number of tissue pairs in which the rank of gene 5143 is lower than

that of gene 55142. Note that there are a total 630 tissue pairs for

36 tissues, and ranking presence (R+) is low because NI.0 and

NI,0 are about equal. Figure S3. Mean performance of HKera

(SVM) and five other machine learning methods. Like HKera,

Figure 7. Common and unique HK/TS genes predicted by HKera, RNAseq, or FPEI, and their HKera-score distributions. Here, the
canonical HK (HK388) and TS (TS734) genes were excluded, leaving only the MR genes for the analysis. Note that, whereas FPEI assigned a small subset
of the transcriptome as HK or TS, HKera and RNAseq divided the transcriptome into two sets, i.e. those that were not predicted as HK genes were
placed in the TS set.
doi:10.1371/journal.pone.0083040.g007
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models of the other machine learning methods were derived using

the 16 tensor components of expression rankings as attributes. The

performance was evaluated on the same training (A) and test (B)

set data described in Methods. The performance represents the

average of the results (for accuracy, recall, and precision; see

Methods) obtained from five-fold cross validations. Error bars are

standard deviations of the five-fold cross validation models. The

six machine learning methods compared are: HKera (SVM), J48

(J48 decision tree, a logic-based algorithm), MLP (multilayer

perception, a perceptron-based technique), OneR (one rule, a rule

learning algorithm), Naı̈veBayes (a statistical learning algorithm),

and KNN (k nearest neighbor, an instance-based learning

algorithm). We used the Weka software (http://www.cs.waikato.

ac.nz/ml/weka/) to derive these models. Figure S4. Percentage of

genes annotated with the indicated CC term in different HK and

TS sets. The figure shows the percentages of genes annotated with

the indicated enriched GO category (determined using FDR-

corrected p,0.05) in the indicated HK or TS gene set. Genes not

associated with any enriched GO term were not used to compute

the percentage. At GO’s level 2, the enriched GO terms for the

two gene sets were different. Figure S5. Percentage of genes

annotated with the indicated MF term in different HK and TS

sets. The figure shows the percentages of genes annotated with the

indicated enriched GO category (determined using FDR-corrected

p,0.05) in the indicated HK or TS gene set. Genes not associated

with any enriched GO term were not used to compute the

percentage. At GO’s level 2, ‘Structural molecule activity’ (GO:

0005198) and ‘binding’ (GO: 0005488) were the two enriched MF

categories common to both the HK and TS sets; however, at the

next level (level 3) of these categories, the enriched GO terms for

the two gene sets were mostly different (see Figure S6 in File S1 for

the result of ‘Structural molecule activity’ at level 3; data not

shown for ‘binding’). Figure S6. Percentage of genes annotated

with ‘Structural molecule activity’ (GO:0005198) in different HK

and TS sets. The figure shows the percentages of genes annotated

with the indicated enriched GO category (determined using FDR-

corrected p,0.05) in the indicated HK or TS gene set. Genes not

associated with any enriched GO term were not used to compute

the percentage. At GO’s level 3, the enriched GO terms of

‘structural molecule activity’ for the two gene sets were different.

Figure S7. Mean performance of SVMHKera, SVMConv and SVMAll.

The mean performance (average of accuracy, recall and precision

rates from five-fold cross validation) of SVM models derived using

different features: SVMHKera used HKera scores, SVMConv used

scores computed from the HK criteria (Table 1 in the main text) of

the five conventional HK classification methods (Exp, PCall, FPEI,

TSI, and Phy) compared in this study, and SVMAll used all these

scores. For TSI and Phy, the score was assigned to be the TSI index

value and the Phy probability value, respectively; for Exp, PCall and

FPEI, the score was the fraction of 36 tissues in which the gene in

question was regarded as expressed by the method (e.g. expression

intensity . = 200 for Exp, see Table 1). RNAseq was excluded

because microarray gene expression data were used in this

comparison. The performance was evaluated on the same training

(A) and test (B) set data described in Methods. Error bars are

standard deviations of the five-fold cross validation models. Figure

S8. The information gain of the six HK classification features used

to derive SVMAll. The information gain, which ranges between 0

and 1 and can be computed based on theory of information

entropy [44], is a measure of the capability of a feature to

distinguish between HK class and TS class, based on the feature’s

presence or absence in the HK388 and TS734 benchmark set (see

Methods for the benchmark dataset and Figure S7 in File S1 for

the derivation of SVMAll). Error bars are standard deviations of the

five-fold cross validation models. Figure S9. Leave-one(feature)-out

accuracies of HKera. These accuracies were computed by leaving

the indicated feature (one of the 16 tensor component attributes)

out in HKera predictions of the training (A) and test (B) set data

described in Methods. Arrow points to the accuracy of HKera using

all of the 16 attributes (see Table 2). Error bars are standard

deviations of the five-fold cross validation models. Table S1.

Performance of HKera derived using different sets of reference

genes. Table S3. Number of genes annotated with the indicated

enriched cellular component GO terms in all levels in the HK

genes predicted by HKera. Table S4. Number of genes annotated

with the indicated enriched cellular component GO terms in all

GO levels in the TS genes predicted by HKera.

(DOC)

File S2 Table S2. List of all 13,075 genes (in GSE2361) with

their HKera score and GO, KEGG and PIR annotations. (This

table is provided in a separate, Excel file).

(XLS)
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