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Abstract

Commuting data is increasingly used to describe population mobility in epidemic models. However, there is little evidence
that the spatial spread of observed epidemics agrees with commuting. Here, using data from 25 epidemics for influenza-like
illness in France (ILI) as seen by the Sentinelles network, we show that commuting volume is highly correlated with the
spread of ILI. Next, we provide a systematic analysis of the spread of epidemics using commuting data in a mathematical
model. We extract typical paths in the initial spread, related to the organization of the commuting network. These findings
suggest that an alternative geographic distribution of GP accross France to the current one could be proposed. Finally, we
show that change in commuting according to age (school or work commuting) impacts epidemic spread, and should be
taken into account in realistic models.
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Introduction

The multi-scale network of social interactions [1,2] makes rapid

dissemination of transmissible diseases possible, as illustrated

recently by pandemic A/H1N1 2009 influenza and SARS [3,4].

In this context, predicting the efficacy of public health interven-

tions requires the identification of the most relevant factors for

dissemination [4]–[5]. For instance, international air travel was

found to provide good prediction for the worldwide spread of

SARS and influenza A/H1N1 2009 [3,4]; it was however shown

that intervention on the global air traffic would be of limited

efficacy [6]. At a more local scale, air travel is less relevant and

other types of movement must be taken into account. Commuting,

i.e. daily movements from residence to work or school, has been

widely used to describe spatial mobility in models, using exhaustive

datasets [7,8] or gravity models [9,10].

Except for a report on the correlation between influenza

epidemic peak timing and inter-states commuting in the USA [9],

whether commuting may explain the spatial spread of epidemics

has been little studied. Influenza like illness (ILI) incidence time

series, as monitored by the Sentinelles network since 1984 in

France, provide data at a high spatial resolution (NUTS3) that can

be used in this respect (http://www.sentiweb.org). These data,

unique in duration and spatial resolution, helped elucidate long

sought questions like the impact of school closure during epidemics

[11] and to validate model predictions for pandemic flu [12].

Commuting data based on the census of the population is also

available at an even finer scale.

Using these two databases we first analyzed how commuting

data relates to disease spread at a local level. We then examind the

underlying mechanisms of propagation using an epidemic model

derived from commuting networks An indicator based on the

similarity of epidemic courses in excess of random movements was

developed. Finally, we investigated how age differences in

commuting networks, i.e. to school or to work, led to changes in

the spatial spread of diseases.

Materials and Methods

Data
Sentinelles data. The Sentinelles network [13] is comprised

of over thirteen hundred general physicians (GPs), accounting for

approximately 2% of the total number of French GPs. They report

the number of observed influenza-like illness cases on a regular

basis, using a standardized case definition (more than 39C fever

with myalgia and respiratory syndromes). We used the data of 26

consecutive seasonal influenza epidemics, from 1985 to 2010

(Figure 1). The data was obtained on a weekly basis at the NUTS3

(‘department’) level. There are 95 NUTS3 areas in France. To

jointly analyse multi-year epidemics, we defined each year week 0

as the national epidemic peak, and considered 15 weeks of data

before and after this date.

Demography and commuting. We used the data collected

in the 1999 census data in France. All data were obtained at the

LAU1 level, that we refer to as ‘district’ afterwards. There are

3704 districts in France. In each district, the population was split

into 5 age classes : less than 3 years old; 3 to 10; 11 to 18; 18 to 65

and more than 65. These categories were retained to capture large

changes in mixing groups due to schooling (3–10 and 11–18) and

work (18–65). The frequency of each age class was obtained from

census data in each district, as well as the percentage of population

with a professional occupation. We also computed the average
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number of contacts of an individual of age a with members of the

same household of age a’ in each district, denoted by MD
H (a,a’) in

district D.

The commuting dataset, derived from census data, contains the

movements of more than 25 millions of adults and 9 millions of

children. Commuting frequencies between districts were comput-

ed as a matrix MS(D,D’) for school-based commuting and

MW (D,D’) for work-based commuting, where D stands for the

district of residence and D’ for the district of destination. The

matrices were normalized by rows, yielding the percentage of the

population of the district of residence commuting to the district of

destination; for example MX (D,D) was the percentage of people

remaining in their district of residence for school or work.

We identified communities using the weighted ‘Louvain’

algorithm [14]. This algorithm clusters nodes by maximizing the

weight of links within each cluster while minimizing that between

clusters. The communities identified with the school commuting

network and the work commuting network were compared with

the Jaccard index, which compares 2 clusterings by measuring the

number of district pairs that are gathered together in both

clusterings over the number of comparable district pairs (a pair of

districts is considered comparable if the 2 units belong to the same

community in at least one clustering).

Disease transmission model
Natural history of influenza infection. The natural history

of influenza infection was described as a 4 stage SEIR process:

individuals were first susceptible to the disease (stage S), then latent

(infected but not infectious yet; stage E), infectious (stage I) and

finally recovered and removed from transmission (stage R). We

simulated transmission using the generation time distribution, i.e.

the time from infection in a primary case to infection in a

secondary case, as in Mills et al. [15]. For all asymptomatic cases

and symptomatic cases within households, the generation time

distribution was modelled by a gamma distribution with mean 3:7
days and standard deviation 3:1 days. For symptomatic cases in

the community, the generation time was gamma distributed with

mean 1:1 days and standard deviation 0:4 day [16]. These

differences account for the reduced time spent in the community,

school or workplace by symptomatic cases. We assumed an initial

percentage of susceptibility of 80%, irrespective of age.

Transmission. A discrete time (time step 0.2 days) deter-

ministic transmission model was implemented. We assumed that

only professionally active individuals in age class 18–65 would

commute to work, and that all children aged 3 to 18 attended and

commuted to school. School-based commuting matrices were the

same in age classes 3–10 and 11–18. No births and deaths were

considered during the time of simulation, nor any change in place

of residence or of destination.

At each time step, the number of incident cases DIa,D(t) in age

class a and district D was computed as Sa,D(t)|Pa,D(t) where

Sa,D(t) was the number of susceptible individuals and Pa,D(t) the

probability of infection. The probability of infection was calculated

according to the following equation:

(1).

Pa,D(t)~1{e
{(lH

a,D
(t)zlS

a,D
(t)zlW

a,D
(t)zlCo

a,D
(t))Dt ð1Þ

where lX
a,D(t) was the force of infection exerted on an individual of

age a in district D from place X .

Household based force of infection was computed using the age-

specific average number of contacts in the household. More

precisely, the force of infection was proportional to the density of

infected contacts among household members as follows (2) :

lH
a,D(t)~bH

P
a’ M

D
H (a,a’)|(IA

a’,D(t)zIS
a’,D(t))P

a’ M
D
H (a,a’)|Na’,D(t)

ð2Þ

where bH was the pairwise rate of contact leading to transmission

in the household. IA
a’,D(t) and IS

a’,D(t) were respectively the number

of asymptomatic and symptomatic incident cases, which were

considered equally able to transmit the infection.

For school-based (X = S) and workplace-based (X = W) force of

infections, we used a similar approach, computing the expected

density of infection among contacts as (3):

Figure 1. Spatial spread of influenza like illness in France. Incidence for 100000 inhabitants as monitored by the Sentinelles network during
season 1985–1986. Maps are 2 weeks apart.
doi:10.1371/journal.pone.0083002.g001
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lX
a,D(t)~

bX

P
D’ MX (D,D’)|

P
D’’ MX (D’’,D’)|(IA

a’,D(t)zIS
a’,D(t))P

D’ MX (D,D’)|
P

D’’ MX (D’’,D’)|Na,D’’

ð3Þ

here bX was the pairwise rate of contact leading to transmission.

Using this formulation, the contacts in place D’ are counted with

all people effectively commuting to this place, from place D as well

as from all places D’’ directly connected to D’.
For community based transmission, the force of infection was

computed using the same principle as above by (4).

lCo
a,D(t)~bCo|P

D’ MCo(D,D’)|
P

D’’ MCo(D’’,D’)
P

a’ (I
A
a’,D(t)zIS

a’,D(t))P
D’ MCo(D,D’)|

P
D’’ MCo(D’’,D’)

P
a’ Na’,D’’

ð4Þ

where the sum was on all districts D’ sharing a border with district

D. To take into account the different behavior of people during

day and night, we considered that individuals were only

commuting during the day, and staying at home during the night.

Therefore, we considered that individuals could only interact

within their households at night.

We calibrated transmission parameters bS , bW , bC and bH so

that simulated epidemics had durations and attack rates consistent

with observed epidemics (see http://www.sentiweb.org). More

precisely, in the Sentinelles network, a typical epidemic starts

when incidence increases over 150 cases/100000 per week, and

remains above this threshold for approximately 10 weeks; the

cumulated excess cases during this period ranges between 2 and 8

percent of the population. We selected parameters with which the

duration with an incidence larger than 150/100000 was 10 weeks,

and the excess cumulated cases was 5.5% of the population.

Several sets of b values were still possible, and we finally selected

values so that one half of the cases were due to school or work

transmission (respectively 35:6%+0:008 and 10:1%+0:001), and

the other half to local transmission (household and community,

respectively 29:9%+0:005 and 24:2%+0:006 of transmission).

This repartition compared with other choices reported in [17] and

[7], although we put a little more weight on school/work

transmission. Using these parameters, the initial exponential

growth coefficient of the epidemic was 0.75 log(person)/week, in

the same range as those observed during the last 25 epidemic

seasons in France (0.5 to 1.0).

Statistical analysis of data and results
Spatial auto-correlation analysis. Moran’s I statistic [18]

was used to evaluate the spatial auto-correlation of ILI incidence

data. Moran’s I was calculated by:

I~
NP
wij

|

P
i

P
j wij(xi{x)(xj{x)P

i (xi{x)2
ð5Þ

where N is the number of spatial units, xi the incidence observed

in unit i and wij the spatial weight of the link between i and j.

Moran’s I ranges between 21 and 1, with negative values

indicating negative correlation among neighbors, while positive

values indicate positive correlation. To assess whether commuting

agreed with spatial incidence, we computed the wij as the size of

the population commuting between i and j [19].

Moran’s I was computed for each week before and after

epidemic peaks, and averaged, week-wise. The same procedure

was repeated 1000 times using random permutations to calculate

p-values. To test for the specific role of the commuting network as

opposed to commuting distance only, we compared these indices

with those obtained using random commuting networks, where the

distribution of distance travelled was kept the same as in the

original data, but commuting trips were chosen at random in any

direction. We repeated the above calculation for 100 such random

networks.

We also used Mantel’s test as described in [9]. The correlation

between incidence time series was first calculated for all pairs of

departments, then compared with the flows (ingoing and outgoing)

between departments.

In all cases, permutation tests were used to calculate P-values.

Overlap between epidemics. We used the overlap measure

introduced in Colizza [20], that takes into account the similarity in

spatial spread, as well as in total incidence. Values close to 1
indicate similar incidence in all places at a given time, while values

of 0 correspond with little overlap. In all cases, epidemics were

started with one infected children in a single district. The overlap

between two epidemics, started in districts I and II , was calculated

as

H(t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j I I

j (t)

N

P
j I II

j (t)

N

s

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{

P
j I I

j (t)

N
)|(1{

P
j I II

j (t)

N
)

s
0
BBBBB@

1
CCCCCA

|
X

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PI (t)|PII (t)

q
ð6Þ

where PI (t) described the geographical distribution of incidence

among districts at time step t in epidemic I , and iI (t) was the

incidence per population at time t. The overlap measurement is

for a given time t. Irrespective of the starting places, the overlap

measure always grew to 1 with time.

For each pair of districts in France, we aimed to identify up to

what date after first introduction epidemics grew more similarly

than expected if commuting was at random. This is measured by

criterion, C1 that we computed as follows. First, the commuting

networks were reshuffled, by permuting, at random, the destina-

tions in the original network. This procedure retained the

distribution of degrees in incoming and outgoing links, but

randomized the destinations all over France, implementing a

random commuting network. Then, epidemics were simulated

starting from the same pair of districts using the reshuffled

networks. The ‘‘above randomness’’ part was computed as the

time during which the overlap of the epidemics simulated using

the original networks was larger than that with the reshuffled

networks (Figure 2). Large values of C1 indicated that the two

epidemics looked alike for a long time.

Sensitivity analysis. To test the sensitivity of the model to

the proportion of infections occuring in each context, we

performed 100 simulations with a set of parameters, for which

32:0%+{0:005 of transmission occured at home,

36:5%+0:0056 at school or work and 31:3%+{0:0009 in the

community, starting from randomly selected districts. Overlap was

used to compare these simulations to the former ones.

An analysis of sensitivity was also performed to test the impact

of the hypothesis that adults asymptomatic individuals had a

reduced generation time, by simulating 100 outbreaks with a

random initial case where only children would have it. As before,

overlap was used to compare the simulations to the former ones.

Commuting and the Spread of Infectious Diseases
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The sensitivity of the results to the proportion of adults initially

immunized was also tested, simulating 100 outbreaks intitialized in

randomly chosen districts with different rate of immunity (0, 10,

20, 30, 40, 50, 60 and 70%). Simulations were compared to

outbreaks generated with a 80% rate of immunity for adults using

overlap.

Results

Commuting networks
Workers from one district commuted on average to 133 other

districts, and school aged children to an average 75 destinations

(Figure 3-a,b). The average commuting distance was 14.8 km and

12.4 km for work and school, with 15% of workers commuting

outside their department, but only 6.7% for children (Figure 3-c).

Long distance travel (.100 km away) was however as common for

work and school (1.5% of the cases).

The diameter (i.e. the longest minimal path from one place to

the other) of the commuting network was 3 for work and 4 for

school.

The importance of short-distance commuting also showed in the

communities found by clustering (Figure 3-d,e). Indeed, all

communities were constituted of adjacent districts, although this

is not a constraint of the method. The Jaccard index for the work

and school communities was 0.519, showing that approximately

half the districts belonged to the same community in both the work

and school networks. The differences arose for the most part from

places along the borders between clusters. The work network

produced less communities than the school network, especially in

Figure 2. Measuring similarity in spread above randomness C1.
Lines correspond with overlap measures for a given pair of district at
different times after introduction of a single infected. For a particular
pair (green line), we also present the overlap measure obtained using
reshuffled networks for the same pair (red line). Criterion C1 was
defined as the time when the green line crossed the red line.
doi:10.1371/journal.pone.0083002.g002

Figure 3. Commuter mobility in France. (a,b)Total number of individuals leaving each district via work commuting (a) and school commuting
(b). (c) Proportion of commuters and travelled distance in the school network (red) and the work network (green). (d,e) Clusters identified in the work
(d) and schoool (e) commuting networks.
doi:10.1371/journal.pone.0083002.g003
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the Paris region, highlighting the more local structure of school

commuting.

Commuting and observed epidemics in France
In the 26 epidemics observed in the Sentinelles network, the

spatial autocorrelation computed with weights derived from school

and work commuting was significantly greater than 0. In other

words, incidence increased synchronously in strongly linked areas.

Moran’s I was significantly greater than 0 (Pv0:001) as soon as 8
weeks before the national peak and remained greater than 0 up to

9 weeks afterwards(Figure 4-a), with maximum value 1 to 3 weeks

before the date of the national peak. The magnitude of Moran’s I

was approximately the same with all spatial weights.

Likewise, Mantel’s test performed with weights matrix derived

from school and work commuting was positive (Mantel’s

correlation being equal to 0.069 for work commuting and 0.060

for school commuting), confirming the existence of a spatial auto-

correlation linked to commuting movements (Pv0:001).

Commuting and simulated epidemics
Simulated epidemics started from different places were all

similar in timing and incidence at the national level. Moran’s I

analysis exhibited the same behavior as in the observed epidemics

(Figure 4-b) and was significantly positive using all weight matrices.

Here again, the index increased as the epidemic spread and was

the largest shortly before the date of national peak.

As for observed epidemics, Mantel’s test was found to be

positive for simulated epidemics (mantel correlation was equal to

0.106 with work commuting and 0.121 with school commuting).

Overlap in initial epidemic spread. Irrespective of the

starting district, national incidence was very similar over the

course of the epidemic. Even if the national incidence were similar,

overlap changed depending on the pair of districts considered.

Initial overlap was very variable using the observed commuting

network, but always increased to 1 with time. Remarkably, the

overlap in epidemics using reshuffled networks was also large, and

quickly increased to 1 as well.

The excess in overlap, as measured by criterion C1, ranged from

0 to more than 180. The first case arose for epidemics started from

distant places, with C1 increasing in neighboring districts. There

was a large negative correlation between C1 and distance

(r~{0:916+0:040, Spearman correlation). Almost all district

pairs more than dlim~100 km away had C1~0, in other words

epidemics started from districts more than dlim km away showed

little resemblance in initial spread.

On the contrary, C1 increased when the two starting districts

were closer, indicating spread on common paths. However, the

variance of C1 was large, even at small distances, indicating that

Figure 4. Autocorrelation in incidence for observed and simulated epidemics. (a) Mean value of Moran’s Index computed on the 26
epidemics from the Sentinelles network, and (b) on 100 simulated epidemics. In each case, the blue line uses work commuting based weights or
school (red line). Gray areas corresponds to the 95% expected values when no autocorrelation is present.
doi:10.1371/journal.pone.0083002.g004

Figure 5. Typical pathways according to initial infective
location. For each district, C1 values were averaged over all neighbors
less than 100 km away. Basins of attraction were identified by
clustering.
doi:10.1371/journal.pone.0083002.g005
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distance was not the only condition for similar spread. For

example, 2 epidemics started in districts less than 10 km away

could be less similar than 2 epidemics started more than 50 km

away; and epidemics started from less than 10 km away could

have a very similar spread or quickly diverge depending on the

pair of districts considered.

We found that the correlation between C1 and the proportion of

commuters between districts was also large (r = 0:854+0:038), and

that both distance and volume contributed to the value of C1: The

partial correlation between C1 and the proportion of commuters,

conditional on distance, was 0:415. The coefficient of determina-

tion of distance and proportion of commuters on C1 was large:

r2~0:852+0:022.

To get a picture of initial common paths of spread, we averaged

the value of C1, in each district, over all neighbors less than

100 km away. A large value indicated common initial paths in all

epidemics started in close neighbors. Figure 5 illustrates these

preferential paths, as evidenced by large values of average C1 in

several places. Among the districts having the largest values of C1,

many were large French cities, like Paris, Toulouse or Marseille:

30 of the 50 largest French cities were among those with the largest

C1 values. Other districts with large average C1 were found as

suburban cities close to large cities; and some in coastal or border

districts. Overall, there was a large correlation between average C1

and the number of inhabitants in each district (r = 0:654+0:019).

Based on the average C1 value, we obtained 49 communities

based on Louvain clustering (Figure 5). Most of these clusters

included one or two very populated French cities, for which the

average value of C1 was the highest of the community. 33 clusters

included one of the 50 largest French cities and 5 other included a

city less important in size, but large relative to its neighboring

districts. Other large French cities were included in previous

clusters, as they were strongly connected to a large city (Aix, for

example, 22nd biggest city in France, was aggregated with

Marseille, 2nd most populated city, which is both close and well

connected to it). 6 of the remaining clusters did not include major

French cities and corresponded with sparsely populated areas.

Finally, coastal or border districts tended to cluster together on a

geographical basis.

Age dependent commuting networks
Commuting for work and school created two layers of mixing

that could lead to differences in the spatial spread. Indeed, the

distance traveled to work was larger, suggesting increased

dissemination, but transmission in children is typically larger and

could take precedence on transmission by adults. We therefore

simulated the spread of epidemics in models where either

commuters for school or work remained in their place of

residence, with the same number of contacts.

Epidemics were started from 100 random districts with the 3

possibilities : commuting to work and school, only to school or only

to work (Figure 6-a,b,c). Epidemics simulated with the two

commuting reached a national peak in a narrow time window, the

time of peak slightly depending on the size of district of departure

Figure 6. School and work commuting networks and the spatial spread of epidemics. (a,b,c) ILI epidemic curves using all commuting
networks (a), only work commuting (b) and only school commuting (c). Epidemics were started form 1000 randomly chosen districts. (d) Overlap
between epidemics using work (blue curve) or school commuting (red curve).
doi:10.1371/journal.pone.0083002.g006
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population (correlation {0:087+0:031) or on the number of

commuters sent by the district of departure in the school and the

work network (correlation were respectively {0:106+0:032 and

{0:133+0:032). The final attack rate was not influenced by the

district of departure. The spread of epidemics simulated with only

one type of commuting was more variable, with an increased

range of time to the national peak.

Not unexpectedly, ignoring one commuting network led to

epidemics that spread less rapidly. The peak of epidemics

simulated with school commuting were on average delayed by 2

weeks, although with large variability. For some simulations, the

propagation was faster when only school commuting was present,

but this was independent of the district of departure (correlation of

delay with district population : 0:037+0:198; correlation with the

number of children commuting from the district : 0:011+0:197).

The impact was more important for epidemics simulated with

work commuting, which were more delayed, and with highest

variability.

Finally, simulated outbreaks where all commuters followed the

same commuting pattern, either school or work, were much in line

with the results above. Overlap with original simulations was

almost perfect when using only the school network but differed

markedly from the start when using only work commuting (w

Figure 7 -a).

Sensitivity analysis. The overlap between simulations with

different rates of contacts and the original simulations started in

the same district was very large (Figure 7 -b) as 95% of overlap

values ranged between 0.9929 and 0.9998 through the entire

course of the epidemic. This indicates that the spread of the

epidemic was very similar in both cases and that our results

regarding to how networks shape the initial spread were robust to

this modification.

Similarly, the overlap between epidemics with a reduced

generation time for symptomatic adults and without was very

large (Figure 7-c) with 95% of overlap values ranging between

0.9931 and 0.9999 during the whole course of the epidemics. This

showed that the results regarding initial spread of the disease was

robust to this assumption.

The overlap between simulations with 80% of susceptible adults

and other percentages of immunization decreased with the rate of

susceptibility of adults (Figure 7-d).

Discussion

Our analysis showed that commuting data determines the

spread of influenza in modern populations, as evidenced by the

large autocorrelation in observed ILI incidence in regions

connected by commuting. Building on this observation, we

provided an in depth study of the consequences of mobility as

described by commuting in the initial spread of epidemics,

Figure 7. Sensitivity analysis. Overlap between epidemics simulated with first model and epidemics propagating only by school (red) or work
(blue) commuting (a), with epidemics for which asymptomatic adults do not have a reuced genration time (b), with epidemics simulated with
different parameters of transmission (c). (d) Overlap between epidemics in which 80% of adults are susceptible with epidemics with different rates of
susceptibility.
doi:10.1371/journal.pone.0083002.g007
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showing how to identify preferential paths in a densely connected

territory. Last, we showed that age specific heterogeneity in

commuting leads to different patterns of spread, depending on the

age category the most involved in transmission.

The spatial structure of epidemics in France was manifest

according to the change in Moran’s index over time. The index

increased up to a maximum just before the national epidemic

peak, and decreased afterwards. This spatial structure was hinted

at by the non random structure of spatial incidence pointed out by

Bonabeau et al. [21] and the decreasing correlation with distance

found by Crepey et al. [22]. However, neither of these studies

linked these observations with human mobility. Here, we showed

that these properties could be explained by commuting, strength-

ening the case for using commuting data to model the spatial

spread of diseases at a regional scale. We measured the correlation

between incidence and commuting using Moran’s I and Mantel’s

test. These provide complementary information regarding the

association of commuting with spatial disease spread. Indeed,

Moran’s I compares magnitudes in connected regions, while

Mantel’s test is more sensitive to the timing of the peaks between

epidemics. As in Viboud [9], Mantel’s test supported the

hypothesis of correlation between epidemic spread and commut-

ing volume. Our conclusions are further supported by the fact that

in the simulated epidemics, Moran’s I and Mantel’s test displayed

the same pattern as for observed epidemics.

In our systematic exploration of the model dynamics, a three

stages scenario for the spread of epidemics emerged. The first stage

followed introduction of an infected individual in the population.

The lack of large C1 value for districts more than 100 km apart

reflected the spatial scale of this first phase, and the large variance

in C1 values evidenced the strong dependence on the initial

location for initial spread. During this stage, transmission occurred

in the initial community and its proximal districts over a few

weeks. It ended when infection reached an amplifier district. This

was illustrated by the existence of districts with a large average C1

value, showing that these places produced epidemics that were

very similar to those started around. The second stage saw the

spread from the first amplifier district to other districts at a longer

range, via long distance links. In this second stage, it was mostly

large cities that were attained all over the territory. The last stage

started with the spread around large cities, but quickly led to

transportation of cases both locally and globally, yielding the

national epidemics. Importantly, this structure arose from the

features of observed commuting data. One of the challenges was to

be able to identify the amplifier nodes and their basins of

attraction, and the downstream propagation paths directly from

such data. This is where the methods introduced in our paper are

of broader interest.

We used the raw commuting data from the census, instead of a

smoothed version based on a gravity model [9,23,24]. As our data

was exhaustive, it was not necessary to use modelling in the first

place. Using raw data leads to more heterogeneity in commuting

links, given different districts at the same distance and with the

same population may not receive the same number of commuters.

It may also lead to results that are very dependent on the reported

mobility, which captures only a part of human mobility. Allowing

individuals to mix in a local community (district and close

neighbors) was a way to keep the particular features of the

commuting data, while allowing for inaccuracies or random moves

not measured in commuting. We also chose to differentiate school

and work commuting, when most metapopulation models either

ignore school commuting [9,23] or assume the same rate of

contact between individuals in the 2 contexts [24]. In our

simulations, we found that the interactions of the two networks

tended to homogenize epidemic curves, irrespective of the starting

location. Indeed, the timing of the peak was in a very limited

range, irrespective of the starting place. With our choice of

parameters, the spatial spread of the disease was driven more

strongly by school commuting than by work commuting: removing

the work network affected less overall transmission than the

converse. The prominence of the school network is likely a

consequence of our assumption that over 40% of all transmissions

occurred in school. However, this analysis shows that differences in

commuting networks could lead to changes in spatial spread. For

example, it was reported that school holidays mostly affected how

quick a disease would spread [25,26], but this result did not take

into account differences between work and school commuting.

Our results show that closing schools may also affect preferential

paths of spread.

Seeding epidemics with only one case, as we did in the

systematic analysis, is presumably not very realistic. Indeed, real

epidemics may be seeded by repeated introductions from abroad

over a few weeks. We however selected this simple seeding pattern

to study systematically the influence of the initial place of

introduction, as it allowed a rather simple way to compare

epidemic courses through their overlap. This type of seeding likely

reduces noise and leads to increased spatial autocorrelation, as

noted in Figure 4.

Thanks to the systematic search for locations having large

similarity with others, we identified preferential paths for epidemic

spread due to human mobility. Clustering districts according to the

average C1 measure allowed to define clusters showing the ‘basin

of attraction’ for these preferential paths, as shown in Figure 5.

Most clusters were centered around an important city of the area,

which may not be highly populated compared to other cities, but

was relatively important compared to neighboring places. The role

of such places must be studied further in the context of

epidemiologic surveillance. Indeed, it suggests that to capture a

new epidemic, it would be interesting to have at least a GP in each

cluster. It must be studied whether this would be more effective

than allocating surveillance based on population coverage [27].

Moreover, as the behavior of epidemics from any district in a

cluster tends to resemble the behavior from a central city, focusing

on the main cities identified in the study could lead to the optimal

use of GPs for surveillance.
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