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Abstract

As we talk, we unconsciously adjust our speech to ensure it sounds the way we intend it to sound. However, because
speech production involves complex motor planning and execution, no two utterances of the same sound will be exactly
the same. Here, we show that auditory cortex is sensitive to natural variations in self-produced speech from utterance to
utterance. We recorded event-related potentials (ERPs) from ninety-nine subjects while they uttered ‘‘ah’’ and while they
listened to those speech sounds played back. Subjects’ utterances were sorted based on their formant deviations from the
previous utterance. Typically, the N1 ERP component is suppressed during talking compared to listening. By comparing
ERPs to the least and most variable utterances, we found that N1 was less suppressed to utterances that differed greatly
from their preceding neighbors. In contrast, an utterance’s difference from the median formant values did not affect N1.
Trial-to-trial pitch (f0) deviation and pitch difference from the median similarly did not affect N1. We discuss mechanisms
that may underlie the change in N1 suppression resulting from trial-to-trial formant change. Deviant utterances require
additional auditory cortical processing, suggesting that speaking-induced suppression mechanisms are optimally tuned for
a specific production.
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Introduction

Speech is a complex social and motor act, and as we speak, we

unconsciously adjust our speech to more closely match the

external expectations of our peers as well as our own internal

expectations of what our speech should sound like [1–3]_EN-

REF_1. Socially, speakers unconsciously alter their pronunciation

to better mirror the speakers around them [2,3]. Internally, when

our speech is artificially perturbed while we talk, we unconsciously

alter our voice to match the sounds we intended to produce [1]. It

follows, then, that speech perception influences speech production

at the level of the speech sound. The brain may accomplish this

iterative sensory-motor-sensory looping process through a largely

unconscious forward model mechanism that allows for the

anticipation of the vocal output, the assessment of the match

between the expected and observed output, and the adjustment to

the motor plan to correct the movement in the moment [4,5].

A growing body of research explores the role of auditory

feedback in speech production by altering what subjects hear as

they speak. Over a century ago, it was noticed that when

background noise is increased, speakers react by increasing their

speaking volume, a phenomenon known as the Lombard Effect

[6,7]. More recently, on-line manipulation of f0 (fundamental

frequency) in one direction has been shown to cause speakers to

alter their fundamental frequency in the opposite direction [8].

Such frequency compensation is even greater when vocal folds are

anesthetized, suggesting a crucial role of both somatosensory and

psychoacoustic feedback in speech control [9]. Direct cortical

recordings during an f0 manipulation speaking and listening

experiment are beginning to help us understand the role of

feedback in speech control [10]. Compensation for altered

feedback is also seen with on-line formant manipulation, where

subjects unknowingly change their vowel production in the

opposite direction of the altered feedback, with such adaptation

persisting across trials even in the absence of altered feedback

[1,11–14]. A mismatch between expected and actual auditory

feedback results in increased BOLD activity in the superior

temporal cortex [15,16]. Error correction to modulated feedback

is also present in birdsong [17]. Thus, auditory feedback

mechanisms may be universal to vocally communicative species

and not limited specifically to the human capacity for speech.

The working parts of the forward model system that likely

underlie compensation for modulated feedback have been

described alternately as ‘‘efference copy’’ and ‘‘corollary dis-
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charge.’’ These neural signals allow us to distinguish between

stimuli resulting from our own actions and sensations coming from

external sources, a distinction that is crucial to survival in a

potentially dangerous or hostile environment [18–20]. Addition-

ally, they may allow us to implement some measure of feedback

control to ensure that our movements are successful [11,12].

Although corollary discharge and efference copy are often used

interchangeably, it is helpful to distinguish between them. During

motor planning, an ‘‘efference copy’’ of the motor action is sent to

the sensory cortex, where it arises as a ‘‘corollary discharge’’ of the

expected sensory consequences of the motor action. When there is

an exact match between the actual event and the expected event,

sensory responsiveness is suppressed [21,22]. The current study

focuses on the degree of match between the current speech sound

and the immediately previous one during talking.

The efference copy and corollary discharge mechanisms have

been studied during vocalization using invasive techniques across

the animal kingdom, from crickets and bats to marmoset monkeys

and humans [18,23–29]. In all cases, auditory responsiveness is

suppressed when the animal is vocalizing. Similar findings have

been reported in humans using non-invasive techniques such as

scalp recorded electroencephalography (EEG) and magnetoen-

cephalography (MEG), which measure electrical and magnetic

fields, respectively. In these studies, the N1 of the EEG-based

event-related potential (ERP), or the M100 of the MEG-based

response, reveals increased activity in the auditory areas of the

cerebral cortex during speaking, but the level of activity is lower

than that observed when the same speech sound is recorded and

played back to the speaker, who passively listens to the sequence of

sounds. This speaking-induced suppression [30] is interpreted as

reflecting the action of the efference copy and corollary discharge

systems on auditory cortical processing [11,21,31,32].

The auditory N1 is generated in primary and secondary

auditory cortex [33], and its amplitude increases with sound

intensity and relevance. As such, it might be considered an index

of the amount of resources dedicated to processing a stimulus.

Suppression of N1 during talking reflects more cost-effective

processing of expected sounds; when there is not a match between

the expected and the actual sounds during talking, processing costs

are high.

In our study, subjects repeated the vowel sound ‘‘ah’’ every few

seconds and later heard their speech played back to them, all while

EEG activity was recorded. This setup allows us to compare the

N1 elicited by speech sounds between talking and playback

conditions, as well as between utterances with high and low pair-

wise variability. Our paradigm is optimal for investigating speech-

related cortical activity for a number of reasons. First, producing

the sound ‘‘ah’’ in isolation instead of a more complex utterance

minimizes muscle activity, which would otherwise introduce noise

into the EEG recordings. Second, by using a common speech

sound that does not convey any semantic information on its own,

we can investigate the mechanisms underlying speech production

without needing to account for potentially confounding linguistic

or cognitive processing. Third, because subjects in our study

received minimal instruction or prompting and were not

instructed to produce utterances consistently or at specific times,

any variability in speech utterances arises from natural speech

variability.

Using the N1 component of the ERP, we asked, what is the

auditory cortical response to the natural variability of speech

sounds during talking? Specifically, does an utterance that is

inconsistent with (‘‘Far’’ from) the previous utterance elicit a larger

N1 than an utterance that is consistent with (‘‘Near’’ to) its

immediately preceding neighbor? Additionally, is the brain

sensitive to this variation while passively listening to a recording

of that speech? Lastly, can we verify that speech output variability

is sequentially dependent?

Results

Task and behavioral data
Subjects were instructed to say ‘‘ah’’ at their own pace over the

course of 187 seconds [34–36]. The number of utterances varied

from 44 to 179 (mean = 90.5; S.D. = 24.4). The average interval

between two ‘‘ah’’ onsets was about 2 seconds (mean = 1984.0 ms;

S.D. = 556.7). The mean utterance duration was 262.4 ms

(S.D. = 86.8).

N1 amplitude
We recorded the ERP to speech onset during talking and

playback of the recorded speech train, and we measured the N1

component to speech onset during Talk and Playback conditions.

We confirmed the N1 suppression during Talk compared to

Playback in a repeated measures analysis of variance (F1,

98 = 12.36, p = .001; Table 1). This can be seen in Figure 1b

where we overlay the ERPs during Talk and Playback. For each

subject, speech trials were sorted into tertiles (Near, Mid, and Far)

based on trial-to-trial Consistency, computed as each trial’s two-

formant Euclidean distance from the previous trial (Fig. 1a); the

ERPs of the trials in each tertile were averaged together. This trial-

to-trial Consistency interacted with Condition to have a significant

effect on N1 suppression (F2, 196 = 3.09, p = .048; Fig. 1d). In

Figure 1b, Near and Far Talk ERPs are significantly different from

each other at all data points within the box (all ps,.05). When

contrasting the three levels of Consistency (Near, Middle, and Far),

trials that were Near their preceding neighbors had significantly

more N1 suppression than trials that were Far from their

neighbors (F1, 98 = 6.23, p = .014). The contrasts between Near

and Mid (F1, 98 = .230, p = .632) and Mid and Far (F1, 98 = 3.222,

p = .076) were not significant.

Talk versus Playback condition
It is important to note that N1 suppression differences were

driven by the Talk condition. In separate ANOVAs, Consistency

was significant during the Talk condition (F2, 196 = 3.26, p = .040),

especially when contrasting responses to Near and Far utterances

(F1, 98 = 6.37, p = .013). There were no significant changes in N1 in

the Playback condition for overall Consistency (F2,196 = .594,

p = .551) nor for Near versus Far contrasts (F1, 98 = .836, p = .363).

Distance from median utterance
In another analysis, instead of sorting trials by comparing the

formant values of a trial to those of its immediately preceding

neighbor, we compared the trial’s formant values to the median

formants of all trials. Thus, a trial binned into the Far tertile has a

large Euclidean distance from the median F1 and median F2

values across all trials, regardless of whether it is similar or

different from its immediately preceding neighbor. With this

distance-from-median analysis, we found no Consistency by

Condition interaction (F2,196 = .336, p = .693).

Comparison of different lags
To test for a relationship between the current utterance and

other recent utterances, we compared the Euclidean distance

between an utterance and the most recent utterance (lag1), the

second most recent utterance (lag2), and so on through lag5

(Figure 2). As noted above, sorting trials by lag1 (current vs. most

recent utterance) formant change reveals a significant Consistency

Processing Variation in Our Own Speech
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x Condition interaction. No other lags had significant interactions

(F2,196,1.25, p..2). We added the factor ‘‘Lag’’ to our statistical

model and found an interaction effect with Condition x

Consistency x Lag when contrasted linearly (F1,98 = 5.323,

p = .023). There were no significant pairwise differences between

individual lags beyond lag1 vs. lag5 (F1,98 = 5.070, p = .027).

Pitch (f0)
We investigated whether pitch, or fundamental frequency (f0),

affected N1 suppression by sorting trials based on their f0 deviation

from the previous utterance as well as by their deviation from the

median f0 value. Neither approach yielded significant relationships

(F,1.5, p..23).

Intensity
Additionally, we sorted trials by their intensity by measuring the

recorded utterance’s root mean square (RMS) amplitude. Trials

were sorted into tertiles based on their RMS values, giving us

‘‘quiet,’’ ‘‘medium,’’ and ‘‘loud’’ trial groupings. We found no

Intensity by Condition interaction on N1 suppression

(F2,196 = 2.71, p = .072). Although trending toward significance,

the effects were opposite of these seen for sorting based on formant

differences: in separate Condition analyses, Intensity had a non-

significant effect on N1 during Talk (F2,196 = 1.67, p = .190) but a

significant effect during Playback (F2,196 = 3.23, p = .042) such that

louder sounds elicited larger N1 components. See below for Talk

vs. Playback discussion.

We separately sorted trials based on trial-to-trial change in

RMS amplitude and found a significant Condition by trial-to-trial

Intensity change interaction (F2,196 = 3.96, p = .021) driven by

decreased N1 suppression for second tertile trials. However, we

found no linear Intensity change by Condition contrast

(F1,98 = 1.029, p = .313). In follow-up analyses, neither Talk

condition (F2,196 = 2.84, p = .061) nor Playback condition

(F2,196 = 1.67, p = .191) had a significant trial-to-trial Intensity

effect, and neither had a linear contrast across tertiles (F,1.1,

p..30).

Stimulus onset asynchrony (SOA)
Similarly, we analyzed the trials based on how quickly they

followed the previous trial, grouping trials into ‘‘short,’’ ‘‘medi-

um,’’ and ‘‘long’’ SOA tertiles. We found no SOA by Condition

interaction (F2,196 = .09, p = .914). We separately sorted trials

based on trial-to-trial change in SOA and found no Condition by

trial-to-trial SOA change interaction (F2,196 = 2.33, p = .10) nor

linear trial-to-trial SOA by Condition contrast (F1,98 = 1.379,

p = .243). Talk condition did have a significant effect of trial-to-

trial SOA (F2,196 = 3.415, p = .035) driven by a small second tertile

N1. There was no linear contrast (F1,98 = 1.257, p = .265) for Talk

condition trial-to-trial SOA-sorted trials, and neither a Playback

condition trial-to-trial SOA effect nor linear contrast (F,.5, p..5).

Speech autocorrelation
To examine how speech utterances influence their neighbors,

we investigated the relationship between the formants of sequential

speech trials by finding the autocorrelation of formant Euclidean

length change across trials. (See Methods for more details.) In an

analysis of variance across eleven lags, the negative lag-one

correlation (r = 2.47, Fisher-transformed) differed greatly from all

other lags (F.240, p,.001). Correlations at other lags remained

between +/2.05. However, across subjects, lag-one autocorrela-

tion scores were uncorrelated with Near-Far N1 suppression

change and overall N1 suppression.

ERP-behavioral correlations
Age correlated marginally with overall Talk-Play suppression at

midline electrodes (Fz: r = .195, p = .053; Cz: r = .203, p = .044),

with N1 suppression increasingly slightly with age. However, there

was no relationship between age and Near-Far ERP differences

(2.03 ,r,.08, p..45).

Discussion

Speakers suppress auditory processing of their own speech more

when the speech sound is similar to the most recent production.

Our findings suggest that the auditory cortex is sensitive to slight

variations in speech during talking. The subjects in this study had

no instructions to produce consistent speech sounds, suggesting

that the brain’s sensitivity to deviations in speech production is

invoked automatically without strategic, top-down control. The

larger N1 to deviations from the previous sound suggests an

additional allocation of auditory cortical resources, an energeti-

cally expensive process. Importantly, it was trial-to-trial change,

not deviation from the median of all utterances, which resulted in

a larger N1 in this task. This suggests that auditory cortex

compares the current utterance to the previous utterance during

repeated productions of the same utterance.

Why is an utterance’s deviation from the previous trial the

driver of the N1 effect, and not the deviation from the median

utterance? Niziolek, Nagarajan, and Houde suggest that proximity

to the centroid of a vowel’s range of production alters cortical

activity 100 ms after vowel onset [37]. However, there are a few

key differences between the two studies. First, while Niziolek et

al.’s study asked participants to say real English words with various

vowels (‘‘eat,’’ ‘‘Ed,’’ and ‘‘add’’), our experiment only prompted

participants to produce a particular-sounding utterance, ‘‘ah’’ (/a/

). /a/ is a common speech sound in American English, but it

conveys no meaning on its own–it is only in combination with

other phonemes that this speech sound can represent a concept.

Table 1. ANOVA results for the N1 ERP, with trials binned by
trial-to-trial (lag 1) formant Euclidean distance.

Measure df F sig.

Anterior-Posterior (AP) 1.249 49.775 ,0.001

Laterality (Lat) 2.627 19.481 ,0.001

Condition (Cond) 1 12.359 0.001

Cond * Lat 2.812 4.789 0.004

Cond * Consistency 1.971 3.091 0.048

Near versus Far contrast 1 6.23 0.014

Cond * AP 1.262 3.025 0.075

Cond * Lat * Consistency * AP 10.995 1.088 0.367

Cond * Consistency * AP 2.523 0.967 0.398

Cond * Lat * Consistency 4.517 0.888 0.481

Consistency 1.952 0.61 0.54

Summary of repeated measures analysis of variance for the N1 event-related
potential component, using Greenhouse-Geisser correction for sphericity when
appropriate. AP (anterior-posterior) and Lat (laterality) reflect electrode location
and include frontal, frontal-central, and central AP electrode bands from five
lateral bands including and around the midline. We found that Cond (Condition:
Talk and Playback) interacted with Consistency (an utterance’s formant similarity
to the previous utterance: Near, Mid, and Far) to have a significant effect on N1
size.
doi:10.1371/journal.pone.0082925.t001
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Additionally, Niziolek et al. compared a trial’s formants to the

median formants using the average of the first 50 ms; here, we

averaged the formant values from the entire utterance. Finally,

and perhaps most importantly, speakers in our study were able to

directly compare their current utterance with their previous

utterance because all of the utterances were the same phoneme

and thus had the same motor target. Niziolek et al.’s task

prompted speakers to say a variety of utterances quasi-randomly,

so this repetitive motor planning model was not available to the

speakers. Thus, the different findings of these two seemingly

similar studies actually represent different processes: (1) the

comparison of a spoken word to cognitively stored stereotypes of

its elements; versus (2) the comparison of one of a series of

repeated spoken utterances to the auditory consequences of the

previous effort to perform the same action.

It is critically important to note that the difference in N1

suppression for the different degrees of deviance (Near vs. Far) was

due to the effects during Talk, not Playback. If we had seen similar

changes in the Playback condition, then we could attribute the

Near versus Far N1 differences to purely auditory mechanisms,

unrelated to the speech motor plan. Indeed, there is a large

literature showing enhanced cortical responsiveness to deviant

sounds during listening. Deviant sounds can elicit larger N1,

mismatch negativity (MMN), and P3a sensory-specific ERP

components compared to non-deviant or standard sounds [38–

40]. In our study, these components were not elicited by the

sounds that differed from the previous sound during passive

Figure 1. Relationship between trial-to-trial formant change and N1 suppression. Examples of trial sorting for one subject, a forward
model, and the average event-related potentials (ERPs) of similar and dissimilar trials across all subjects. (a) We estimated each ‘‘ah’’ utterance’s first
two formant frequencies to find the Euclidean distance between each ‘‘ah’’ and its preceding neighbor. We grouped these trials into thirds: Near, Mid,
and Far (referring to their formant similarity to the preceding utterance) and trimmed-mean averaged each grouping together. (b) Grand average
ERPs from 99 subjects, recorded from the midline frontal site (Fz), for Talk and Playback conditions for Near and Far trials. Data points with significant
Talk Near versus Far differences boxed and include the N1 ERP component (paired t-test, two-tailed, p,0.05). (c) Proposed framework for our
findings. Premotor cortex sends an efference copy of a planned action to auditory cortex, where a corollary discharge is formed that represents the
expected sensory consequences of the planned speech act. The actual percept is then compared to the predicted percept. Mismatch between
predicted and actual percepts may be responsible for reduced suppression during Talk (from Mathalon et al. 2008)[35]. (d) Average N1 amplitude
across all subjects and fifteen frontal-central electrodes with standard error bars. Talk versus Playback N1 effect at all trial groupings represents N1
suppression (p = .001). We found an overall trial Consistency effect on N1 suppression (p = .048) as well as a greater Near versus Far effect on SIS
(p = .014), showing decreased N1 suppression when an utterance varies highly from its previous neighbor.
doi:10.1371/journal.pone.0082925.g001
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listening. Because the Talk condition was significantly affected but

not the Playback condition, our findings reflect an active speech-

related feedback mechanism and not more basic auditory

perception processes.

In fact, the forward model mechanism at work when looking at

trial-to-trial deviation seems to overpower more general auditory

processing of self-produced speech. When sorting trials by intensity

(RMS amplitude), Talk condition N1 does not vary, while

Playback condition N1 is larger for louder utterances. Since Talk

condition N1 does not change with intensity, the predicted sensory

feedback must include information about the planned intensity of

the impending self-produced sound.

It is also worth noting that trial-to-trial formant deviation was

the only speech measure to evoke differences in N1 suppression.

Differences in utterance intensity, time between utterances, and

pitch (both trial-to-trial change and distance from the median)

were not correlated with changes in N1 amplitude. Although we

gave subjects very few instructions, the main requirement was to

produce the ‘‘ah’’ vowel sound. In English, vowels do not contrast

in pitch, loudness, or any feature other than formants, so our task

primarily demanded formant control. However, we also instructed

subjects to produce utterances about every two seconds and at a

comfortable speaking volume around 80 dB SPL, yet we found no

affect of SOA or loudness on the N1. Thus, because of its

importance to vowel differentiation, we believe that formant

control is most critical in utterance production, even when the

utterance is a simple phoneme carrying no linguistic information.

While we found a strong effect of trial-to-trial formant

variability on the N1 component, the purpose of this trial-to-trial

comparison is not clear. There are multiple possible explanations

for our findings, each of which assumes a different goal and

underlying mechanism. For example, if the goal is to minimize

production errors and constantly improve utterance production so

as to ‘‘home in’’ on a target production, then models of speech

motor control will help us understand the mechanisms at play.

However, N1 variability based on trial-to-trial formant change

could represent the activity of other goals such as sensory

prediction coding and consistency monitoring, attention, or

intentional variability. Thus, the findings highlighted above may

come from any of a variety of cortical processing mechanisms.

Motor control models attempt to describe how people learn

from previous attempts at a movement in order to better perform

that action. Even with a well-defined motor goal and in the

absence of perturbed sensory feedback, noise in the execution of

the motor command causes actual movements to vary from trial to

trial. According to the planned aim point correction (PAPC)

model, previous motor signals are referenced to plan the next one.

Crucially, ‘‘corrections are made relative to the previous

movement’s planned aim point,’’ so both planning and uncon-

trollable motor noise influence the next movement’s aim point

[41]. Previous speech research found a negative correlation

between sequential utterances [42], hinting that repetitive speech

may function as a ‘‘memoryless’’ Markov chain where the

outcomes of speech acts beyond the most recent utterance are

unavailable to the speech planning mechanism. Importantly,

Purcell and Munhall found a correlation between utterance-to-

utterance changes and compensation for altered speech feedback

such that subjects with the greatest compensation had the most

negative sequential utterance difference correlation. Other motor

control models focus on speech explicitly. For example, in the state

feedback control (SFC) framework, within-utterance feedback

compares expected auditory consequences to the actual auditory

percepts [4,5]. The DIVA (Directions Into Velocities of Articu-

lators) model of speech production also accounts for within-

utterance corrections, where experimenter-altered auditory feed-

back encourages a compensatory change in production while

unaltered somatosensory feedback resists any changes [5,13].

However, SFC only accounts for within-utterance corrections,

while DIVA updates its motor program after each utterance in

order to converge on the target, but only during the learning

phase.

The effect of trial-to-trial formant variation on the cortical N1

component in our study suggests that a PAPC-like framework

could underlie speech motor control. In the PAPC model,

feedback from the actual endpoint of the previous movement is

compared to the task target, which stays constant across all trials.

The next motor planned aim point corrects for the error of the

previous trial–that is, the mismatch between the target and actual

endpoint that results from a combination of planning error and

unknowable random noise. Thus, each movement takes into

account the success or failure of the previous movement to match

the target and updates its plan accordingly. Here, our findings

suggest a comparison between the current utterance and the most

recent utterance, where large differences between sequential

utterances are correlated with increased auditory cortical activa-

tion. As previously described, a speaker’s utterance tended to move

in the opposite direction as the last utterance in terms of the first

two formants, although we did not find any correlations between

the strength of these sequential changes and the N1 [42]. A key

difference between our findings and the PAPC model is that in our

study, the comparison between sequential utterances is para-

mount, whereas the comparison between the previous movement’s

outcome and the task target is central to PAPC. Perhaps the

(relative lack of) constraints of our task encouraged subjects to

strive for trial-to-trial consistency instead of matching a task target.

Additionally, although comparison to utterances beyond the most

recent was statistically unrelated to N1 suppression, there was a

significant linear decrease across these lags, which does not fit with

the PAPC model and warrants further investigation. Whatever the

reason, our findings are inconsistent with the current PAPC model

Figure 2. Cohen’s d effect sizes across lags. Cohen’s d effect sizes
of Talk minus Playback N1 event-related potential (ERP) suppression for
Near versus Far trials when compared in formant space to the most
recent trial (Lag 1), the second-most recent trial (Lag 2), etc., through
Lag 5. Although only Lag 1 Near vs. Far formant change had a
significant effect on N1 suppression, there is a linear relationship
between lag and Near vs. Far N1 suppression effect size (p = .023).
doi:10.1371/journal.pone.0082925.g002
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but could fit a model that corrects for the error in a movement

toward a different (or varying) task target.

We can also approach our findings from a sensory prediction

model instead of an error correction model. The predictive coding

framework of brain function posits that the goal of perception is to

minimize sensory prediction errors [43]. An unexpected sound

updates the auditory stimulus prediction, a process likely involving

the mismatch negativity (MMN) ERP. The MMN was first evoked

by replacing a usual ‘‘standard’’ stimulus with an unexpected

‘‘deviant’’ one but has since been reported in more complex

environments [44,45]. Predictive coding can also be applied to

predictions of sensory consequences of one’s own movements

where the predictions can be sampled by motor processes to

monitor performance and update the motor plan. Our findings in

this study may arise from the mismatch between two adjacent

utterances. If the sensory system expects an utterance to sound like

the previous production, an utterance that varies from the

previous production may be processed as a deviant, as the sensory

consequence of the second production does not match the

predicted auditory sensation. A poor sensory prediction could

arise from an error in production that surprises the sensory system,

but it could also stem from decreased resources being allocated to

sensory prediction, as our study involved the possibly boring task

of repeating of the same vowel sound for three minutes. Of course,

any predictive coding mechanisms must explain the talking-

specific effect, as the same utterances elicited no significant

changes in N1 when played back to the speaker.

Alternatively, instead of being a production ‘‘mistake’’ that must

be corrected or perception-production mismatch, variability may

instead be intentional, at least within certain bounds. Purposeful

variation within a speech category (like the phoneme /a/) could be

used to test the range of acceptable productions of the same speech

sound. In this case, the N1 would represent a variability-

monitoring mechanism that tracks excursions away from the most

recently produced utterance. Indeed, studies of auditory feedback

in songbirds suggest that motor noise and trial-to-trial variability

can be used in this manner, especially when learning a new

vocalization [17].

As just outlined, there are a number of mechanisms that could

underlie the effect of trial-to-trial formant deviation on speaking-

induced suppression. Our task is designed to compare cortical

responses during speech production to passive listening of one’s

own speech [34]. Experimental simplicity is key to this investiga-

tion, which has previously uncovered cortical differences between

healthy speakers, patients with schizophrenia, and young partic-

ipants at high risk for developing a psychotic disorder [35,36].

Unfortunately, this simplicity makes it difficult for our study to

solve mechanistic questions of underlying processes. However, our

present findings are unique in the field of speech research, and

they provide novel insight into brain functioning during speech.

Any explanation for our findings will have to account for the N1

effect of small formant changes during speech but not during

playback of one’s own speech.

Our findings are consistent with the single unit findings of

Eliades and Wang (2005), who reported that variability of neural

response is related to variability of vocalization frequency and

energy (which were highly correlated with each other) [25].

However, our study extends their study in important ways. First,

our study showed sequential effects of subtle deviance by showing

that auditory cortex is sensitive to deviations in vocalization from

the immediately preceding one. Second, we showed this in

humans using non-invasive methods.

Speech is a complex motor action that requires constant on-line

feedback to ensure that the correct vocalization is produced. Based

on our findings, we now know that the auditory cortex monitors

repeated speech output at least in part by comparing an utterance

to its most recent neighbor. Utterances that vary greatly from their

neighbors produce a larger N1 ERP component, signifying

increased stimulus processing. There are no analogous N1

differences when subjects hear their own utterances played back

to them, suggesting that the N1 is affected by speaking-specific

feedback monitoring mechanisms. Further research will elucidate

the specific cortical mechanisms used to ensure phonemic

consistency.

Methods

We have previously described the general acquisition proce-

dures and ERP processing stream [34,36]. The appropriateness of

the task in investigating elements of the forward model is discussed

in Mathalon & Ford [35]. Below are the most relevant features of

the analysis, as well as analysis methods specific to this paper.

The UCSF institutional review board and San Francisco VA

Research Office approved this study.

Participants
99 subjects (mean age = 27.45, min = 12.8, max = 62.1,

SD = 11.005) were recruited by online advertisements, flyers,

and word-of-mouth. All subjects had normal hearing between

250 Hz and 4000 Hz as determined by a test of pure-tone

auditory threshold. Adult subjects provided written consent of

being informed of study procedures. For subjects under 18 years of

age, parents provided written informed consent and minors

provided written assent.

Procedure
Subjects first produced ‘‘ah’’ utterances (‘‘Talk’’ condition) and

later heard their utterances played back to them (‘‘Playback’’

condition).

In the Talk condition, subjects were asked to say the phoneme

‘‘ah’’ every 1–2 seconds for 187 seconds. Each participant’s speech

was recorded with a microphone placed near the mouth and sent

to the stimulus presentation computer, which was monitored in

real time through the subject’s Etymotic ER3-A ear inserts.

Next, in the Playback condition, subjects were instructed to

listen as their recorded speech was played back through their

earphones.

Acoustic calibration and standard stimulus generation
Before beginning EEG and speech recording, the researchers

observed the participant producing practice utterances and guided

the participant to speak a typical speaking intensity. Using a hand-

held sound level meter held ,5 cm from the participant’s mouth,

the researchers ensured that the ‘‘ah’’ vocalizations were between

75–85 dB SPL. Talk and Playback conditions outputted the

speaker’s utterances at the same intensity, which was calibrated

with a 1000 Hz tone generated by a Quest QC calibrator played

through the earphones.

Each participant’s Talk condition speech was digitized at

44.1 kHz and saved as a .wav file, which was played back during

the Playback condition. Additionally, the speech file was processed

with an automatic speech onset-finding algorithm (see Ford et al.

[34] for further details) [34]. The onsets were saved as triggers,

which were later used for ERP analysis (see below).

Data acquisition and pre-processing
See Ford et al. (2010) and Perez et al. (2011) for details about

EEG collection and initial processing [34,36].
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Epochs were based on the automated vocalization onset-finding

algorithm, which were additionally fine-tuned manually. Further

processing occurred after epochs were binned based on speech

features (see next section) but will be described here. The

processed data, after binning, underwent trimmed-mean averag-

ing. This approach eliminates the highest 25% and lowest 25% of

values at each time point, averaging together the remaining 50%

of values for each point into an ERP average [46].

Temporal Varimax-rotated principal component factor analysis

identified noise components that did not contribute to the event-

related potential. Components were excluded from back-projected

ERPs if they accounted for ,1% of the signal variance (,66%

remaining). ERPs were baseline-corrected relative to the ERP

signal from 600 ms to 500 ms before stimulus onset. For our

purposes, N1 was defined as the average of the ERP between 80–

110 ms. Using static area boundaries as opposed to peak-specific

boundaries allows for a more robust area measurement by

ignoring the potential contribution of noise to the component

peak [47].

Speech analysis
Each subject’s speech data were saved as a .wav file at full

acquisition sample rate and imported into MATLAB 7.9 (Math-

Works, 2009). ‘‘Ah’’ onset time, as described above, was picked

automatically and fine-tuned manually by the experimenters.

Offset was determined to be the time point when the absolute

value of the ‘‘ah’’ time waveform decreased to below 150% of the

mean of the pre-speech window (250 ms to 0 ms).

In order to measure segmental phonetic variations in ‘‘ah’’

utterances, we measured the formants of each ‘‘ah’’ using linear

predictive coding (LPC) via the open source Praat phonetic

analysis software (www.fon.hum.uva.nl/praat/). LPC uses the

source-and-filter model of speech production to estimate formants

by capturing periodicities in the waveform created by formant

resonances [48]. The program was set to find five formants (10th

order LPC filter) with a maximum formant frequency of 5000 Hz

for males and 5500 Hz for females, corresponding to sampling

frequencies of 10,000 Hz and 11,000 Hz, respectively. 50 Hz pre-

emphasis doubled the signal amplitude for every doubling of the

frequency above 50 Hz, compensating for decreasing intensity at

higher frequencies by creating a flatter spectrum for analysis.

Formants were estimated in 5 ms analysis windows, comparable to

a 5 ms Hamming window; however, Praat uses a Gaussian-like

window with values below 4% outside the central 5 ms window,

producing an actual Gaussian window of 10 ms. As American

English vowels contrast across the first two formants (F1 and F2),

we used F1 and F2 to find the average value of each formant

across the entire utterance.

Our first step in the estimation of the Euclidean distance

between the target ‘‘ah’’ trials and the other ‘‘ah’’ trials was to

convert the formant frequencies from Hertz to the logarithmic-

based mel psychoacoustic measure of frequency, which is a better

model of the auditory perceptual system than the linear Hertz

measure. We used the equation m = k*log(1+(h/700)), where k is a

constant (here, 2595), h is the frequency in Hertz, and m is the

corresponding mel frequency [49,50].

Next, with the mel values of F1 and F2, we were able to

compute the Euclidean distance of each utterance from the

previous utterance (dEuc
t). Thus, for each subject and for each trial t

after the first trial, dEuc
t = sqrt((F1t2F1t21)2+(F2t2F2t21)2).

Finally, single trials were sorted into tertiles according to the

Euclidean distance between the target ‘‘ah’’ and the immediately

preceding ‘‘ah’’. The top third of the ordered ‘‘ah’’ trials were

most similar to the target and are termed ‘‘Near’’ trials. The

bottom third of the ‘‘ah’’ trials corresponded to the least similar to

the target and are termed ‘‘Far’’ trials. The ‘‘Middle’’ tertile is the

third of the trials in between the ‘‘Near’’ and ‘‘Far’’ trials. Average

ERPs were constructed for the Near, Middle, and Far trials that

immediately followed the target ‘‘ah.’’

A similar process was used to compare a trial to the median of

all trials. First, the F1 median and F2 median were computed

across all utterances for each subject. Next, we calculated the

Euclidean distance from each trial to the median utterance. Using

these Euclidean distance values, we sorted each utterance into

tertiles (Near, Middle, and Far).

In addition to comparing an utterance to its most recent

neighbor (lag1), we compared it to its second most recent neighbor

(lag2) and so on through lag5 via formant Euclidean distance. For

each lag x, trials were sorted into Near, Mid, and Far tertiles based

on their Euclidean distance from the x-most recent trial.

We computed pitch (or fundamental frequency, f0) for each

utterance with cepstral analysis, which uses the power spectrum of

the logarithmic power spectrum to find a peak corresponding to

pitch frequency [51]. The same trial-to-trial and distance-from-

median sorting methods were used as for formants above.

Statistical analysis
N1 amplitudes were measured from 15 frontal-central scalp sites

(F3, F1, Fz, F2, F4, FC3, FC1, FCz, FC2, FC4, C3, C1, Cz, C2,

C4 in the 10–20 standard system) and were subjected to a four-

way repeated-measures ANOVA for the factors of Condition

(Talk, Playback), Consistency (Near, Middle, and Far), and two

scalp distribution factors: Anterior-Posterior (labeled F, FC, or C)

and Lateral (far left labeled ‘‘3’’, left ‘‘1’’, midline ‘‘z’’, right ‘‘2’’,

far right ‘‘4’’).

We computed autocorrelation values for each subject in a

manner similar to Purcell and Munhall (2006) but using the two-

formant Euclidean length value instead of just the first formant

[42]. We first found the change in Euclidean length (lEuc) from one

trial to the next, where for trial t, lEuc(t) = sqrt(F1(t)2+F2(t)2). We

subtracted the formant Euclidean length of trial t+1 from that of

trial t, then subtracted the mean Euclidean length across all trials,

such that for each trial, the change in Euclidean length of trial t to

the next trial is D(t) = (lEuc(t)2lEuc(t+1))2mean(lEuc
all). The autocor-

relation values are then found for time lags zero through eleven.

The correlation values are then Fisher r-to-z transformed to

normalize their distribution for parametric statistical tests. Because

lag-zero Fisher-transformed autocorrelations are infinite, analysis

of variance with simple contrasts included lags one through eleven.
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