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Abstract

Estimation of pest density is a basic requirement for integrated pest management in agriculture and forestry, and efficiency
in density estimation is a common goal. Sequential sampling techniques promise efficient sampling, but their application
can involve cumbersome mathematics and/or intensive warm-up sampling when pests have complex within- or between-
site distributions. We provide tools for assessing the efficiency of sequential sampling and of alternative, simpler sampling
plans, using computer simulation with ‘‘pre-sampling’’ data. We illustrate our approach using data for balsam gall midge
(Paradiplosis tumifex) attack in Christmas tree farms. Paradiplosis tumifex proved recalcitrant to sequential sampling
techniques. Midge distributions could not be fit by a common negative binomial distribution across sites. Local
parameterization, using warm-up samples to estimate the clumping parameter k for each site, performed poorly: k
estimates were unreliable even for samples of n,100 trees. These methods were further confounded by significant within-
site spatial autocorrelation. Much simpler sampling schemes, involving random or belt-transect sampling to preset sample
sizes, were effective and efficient for P. tumifex. Sampling via belt transects (through the longest dimension of a stand) was
the most efficient, with sample means converging on true mean density for sample sizes of n,25–40 trees. Pre-sampling
and simulation techniques provide a simple method for assessing sampling strategies for estimating insect infestation. We
suspect that many pests will resemble P. tumifex in challenging the assumptions of sequential sampling methods. Our
software will allow practitioners to optimize sampling strategies before they are brought to real-world applications, while
potentially avoiding the need for the cumbersome calculations required for sequential sampling methods.
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Introduction

Insects and other pests are responsible for enormous financial

and production losses in agriculture and forestry. However, pest

control can be expensive and often engenders concern over

environmental impacts. A central goal of modern integrated pest

management is to deploy pest-control interventions as efficiently as

possible, in order to reduce crop damage at minimum cost and

with minimum collateral damage to the environment.

Perhaps the most basic requirement for any pest management

program is the availability of a sampling method for assessing the

level of infestation (either estimating mean pest density, or judging

whether density exceeds a threshold beyond which intervention is

deemed necessary). For simplicity, in this paper, we use vocabulary

associated with insect pests, although our discussion is equally

applicable to other types of pest. Estimating insect densities in the

field is far from a simple task, and it involves decisions about when

to sample during host or insect phenology (e.g., [1]), what to

sample (quadrat, whole plant, appropriate organ, or representative

module; e.g., [2]), and which and how many plants, or other

sampling units, to sample from the large number available at a site.

This last decision in particular has spawned an enormous

literature [3], with thousands of idiosyncratic recommendations

for different systems but with a simple underlying truth: in general,

more accurate estimation is achieved by including more samples

and selecting them in more sophisticated ways; but doing so

requires more time, money and labour. Achieving the most

accurate estimates from the smallest investment of effort can

involve ingenuity in field technique (e.g., [4]), but great returns can

also come from the development of statistical methods for

handling sampling data and for evaluating the efficiency of

alternative sampling designs (e.g., [5–7]).

One important technique for efficient estimation is sequential

sampling, which is widely applied in agriculture and forestry [8].

In sequential sampling, samples are added to a data set one by

one, with a check after each addition to determine whether the

data set yet allows sufficiently strong inference about infestation.

This approach promises large savings in sampling effort because it

can identify (in real time) the point when further sampling would

return too little additional information to merit its cost. These

savings in effort carry, however, a potential cost: decisions about

when sampling can stop are based on calculations that assume

considerable information about the distribution of insects across

sampling units.
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Parameterization requirements for sequential sampling
The key to a sequential sampling scheme (whether designed for

estimating density or evaluating density against a threshold) is a

‘‘stopping rule’’ that formalizes the decision to continue or stop

sampling after each new sample is taken. For estimating density,

the stopping rule takes the form ‘‘stop sampling if a confidence

interval around the estimate is narrower than X’’. For decisions

about density thresholds, the stopping rule takes a slightly more

complex form: ‘‘stop sampling if the cumulative insect count for n

samples is above f1(n) or below f2(n)’’. The functions f1(n) and f2(n)

are specified such that a count above f1 indicates confidence that

the true density exceeds the density threshold, a count below f2
indicates confidence that the true density is below the density

threshold, and any other count indicates inability to decide.

Specification of these stopping rules depends on the ability to fit

insect densities to known distributions with well-estimated

parameters [3,8]. Sequential sampling methods can take one of

two approaches (single or local parameterization) depending on

the level of local detail to be incorporated. The most common

approach, single-parameterization sequential sampling, proceeds

by assuming that the distribution of insect densities across sampled

plants has an unknown and spatially variable mean (m) but

otherwise can be fit everywhere by a single set of parameters. For

example, an insect’s densities might be well represented every-

where by a normal distribution with a common s2 (variance), or

by a negative binomial distribution with a common k (clumping

parameter). Once these parameters are known, they can be used to

generate a universal stopping rule to be applied to the estimation

of m in all studied populations (‘‘Wald’s procedure’’; [3,9,10]).

Alternatively, with data from enough sites, among-site variation in

insect distributions can itself be parameterized, for instance by

fitting a power law [11] to describe the relationship between local

mean and variance. This parameterization can then be used to

calculate a stopping rule incorporating local variation, albeit at the

cost of some added complexity [12,13].

Single-parameterization methods offer practical assessment

tools that demand only moderate mathematical ability of

practitioners in the field. Unfortunately, though, the assumption

that a single parameterization can be applied to every population

of a given insect is frequently violated. Instead, it is common for

not just mean density but also the form of an insect’s density

distribution to shift in space (e.g., [14,15]), in time (e.g., [16]), or in

response to changes in the resource landscape (e.g., [17]). In

principle, this problem can be overcome by local-parameterization

sequential sampling: the application of Wald’s procedure, but with

a preliminary step in which distributional parameters such as s2 or

k are estimated separately for each local site. The most

straightforward method involves taking, at each site, a warm-up

sample of n0 plants to estimate local k (or other appropriate

parameter(s)); this parameter estimate is used in turn to calculate a

stopping rule for density estimation specific to that site. Data for

the warm-up sample can be re-used as the first n0 plants in

sequential sampling, or with a more sophisticated approach, the

parameterization step can be integrated with sequential sampling

so that parameter estimates are refined as sampling proceeds

[13,18]. Local-parameterization procedures can accommodate

variation in insect distribution across sites, but at the cost of using

complex stopping rules that cannot be specified in advance of

sampling a site.

Assessing the likely performance of sequential sampling
and alternatives

The high efficiency promised by sequential sampling may not

always be realized. Parameterization may fail outright (for

instance, if distributional parameters vary even within sites),

within-site spatial autocorrelation may make even local parame-

terization misleading [19], or the warm-up sampling effort needed

to parameterize distributions may be prohibitive. The latter

problem is especially likely to arise for insects with aggregated

distributions, because stopping rules depend on aggregation

parameters (for instance, the negative-binomial k) that can be

very difficult to estimate from field data [20–22]. Ironically, in the

pest-control context, k is generally only a nuisance parameter: its

value is needed for sequential sampling, but it is not intrinsically

important to decisions about intervention. These decisions are

usually based instead on mean insect density, and means are much

more easily estimable. As a result, it is possible for the warm-up

sampling effort necessary in advance of sequential sampling to

exceed the effort necessary for decision making itself.

In this paper, we develop new tools for assessing the feasibility of

sequential sampling for a particular pest system, and furthermore,

for assessing the performance of alternative sampling strategies for

insect pests. Use of these tools will allow the deployment of

sequential sampling when it can deliver savings in overall sampling

effort, while recognizing cases where alternatives outperform

sequential sampling: for instance, when adequate estimates of

mean density can be made with sample sizes too small for good

estimates of nuisance parameters like k. Our methods take

advantage of computer simulation, given the availability of pilot

density data for a set of sites sufficient to be representative of both

within-site and among-site variation in insect distribution. We will

refer to these pilot data as a pre-sample (to distinguish the pre-

sample, taken once, from warm-up samples taken for every site

where density is to be estimated, as in local-parameterization

sequential sampling). Of course, the requirement for a pre-sample

means that we cannot entirely escape the need for sampling in

advance of density estimation. However, there are at least three

potential advantages to performing a single bout of pre-sampling

rather than taking warm-up samples every time estimation is

desired. First, investment in pre-sampling effort may reduce total

effort in the long term, if we learn that we can avoid ongoing

warm-up sampling for a given system. Second, pre-sampling, and

the analysis of data from the pre-sample, can be conducted by

specialized personnel, allowing practitioners such as farmers or

woodlot owners to follow simpler sampling procedures with a

lower computational burden. Third, pre-sampling data can be

used to consider a wide range of alternative sampling schemes: in

addition to determining efficient sample sizes, we can assess the

efficiency of different estimation procedures and different ways to

select sampling units, such as random vs. transect sampling.

We illustrate our approach with data for the balsam gall midge,

Paradiplosis tumifex Gagné (Diptera: Cecidomyiidae), an insect pest

of Christmas tree farms, using a data set from seven farms in New

Brunswick, Canada. We ask whether P. tumifex distributions are

homogeneous among sites (permitting single-parameterization

sequential sampling) or at least can be easily parameterized at

each site (permitting local-parameterization sequential sampling).

We show that neither condition is met and we therefore use a

simulation approach to assess alternative sampling strategies. We

demonstrate efficient methods for density estimation and threshold

decision making for New Brunswick P. tumifex and we provide

software with which our approach to assessing sampling strategies

can be applied to other systems.

Assessing Sampling Strategies for Insect Pests
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Methods

Study system: Balsam gall midge in Christmas tree stands
In eastern Canada, the sale of Christmas tree and wreath

products from Abies balsamea (L.) Mill. (balsam fir) is a multimillion

dollar industry, with trees shipped to markets throughout the

western hemisphere [23]. Among major pests of Christmas tree

crops is Paradiplosis tumifex (balsam gall midge), a univoltine, needle-

galling cecidomyiid that attacks balsam fir across the tree’s natural

range. Most needles galled by P. tumifex turn yellow and fall from

the tree in the year of attack, with defoliation most severe high in

the crown [2,24]. The natural history of P. tumifex is further

described by [25].

At low densities, P. tumifex is of little consequence for Christmas

tree farmers. However, populations can build rapidly (1–2 years) to

levels causing 80–90% defoliation of the upper crown (D.

Carleton, pers. obs.). Such substantial defoliation can significantly

reduce the tree’s photosynthetic capability and growth rate and

alter patterns of shoot development [26,27]. In marketable-size

trees, defoliation reduces aesthetic appeal and thus suitability and/

or value for sale. Although farmers vary in their tolerance for P.

tumifex damage, most would consider mid-crown infestation

around 1% (of needles galled) to be low, with 5% being moderate,

and 10% a high level of infestation clearly meriting intervention

(M. Wright, Nova Scotia Christmas Tree Farmers’ Association,

pers. comm.). Given the potential for financial loss from P. tumifex

attack, farmers would benefit not only from an efficient way to

assess infestation before they decide whether to deploy control

methods, but also from an efficient way to assess the level of

control achieved after intervention. The need for such techniques

will only become more acute, as regulatory changes aimed at

reducing pesticide use mean that new control strategies will need

to be developed and assessed: only one pesticide is currently

registered for P. tumifex in Canadian Christmas tree farms, and it is

listed for long-term phase-out under the Pesticide Management

Regulatory Act.

For several reasons, P. tumifex is a good case study with which to

illustrate our methods for assessing sampling strategies. First,

despite the pest’s importance, no practical monitoring program

has been available for P. tumifex. Giese & Benjamin’s [24]

recommended sampling schemes were labour-intensive and

impractical for application by growers. Only recently has a

functional sampling unit been determined at the tree level [2], and

no formal analysis has been available to guide site-level density

estimation or decision making with respect to pesticide-application

thresholds. Second, the development of comprehensive pest

management strategies for P. tumifex (and for other Christmas tree

pests) is further hampered by a high diversity of agricultural

practices in the industry. Farms can range in size from ,1 ha to

.100 ha and are derived from reclaimed agricultural fields, forest

clearcuts, and even disused military compounds. Farms can be

bordered by pastures, row crops, water, or forests. Seedlings for

tree stock can come from natural regeneration, sowing of

purchased seed stock, out-planting of seedlings or combinations

of the three. Pest management practices, including willingness to

use insecticidal sprays and methods used to assess pest density, are

highly variable among farmers. This diversity means that any

monitoring strategy must be robust enough to deal with substantial

variation in attributes of sites, crop, and farming techniques.

Finally, we suspected (based on previous observations) that P.

tumifex, like many other insects, would possess complex distribu-

tions that could make conventional sequential sampling inefficient

or ineffective.

Field sites and sampling methods
We surveyed P. tumifex infestation in seven Christmas tree farms

( = sites A, B, C, D, E, F, and G) in central New Brunswick from 11

July–1 August 2012. Permission for land use for the purpose of this

research was approved by the Christmas tree growers (see

Acknowledgements) on their private lands. Neither the land used

nor any insect species sampled was designated as protected, and as

such no permits were required. Ethics permission is not needed for

insect-related experimentation. We chose our sites because they

had known midge infestations and were close enough together for

convenient sampling, yet included owners who use a broad range

of agricultural practices. At each site, we sampled either 100 (sites

A and F) or 200 (remaining sites) trees depending on stand size,

selecting trees of marketable size (i.e., saleable within the next two

years) in a grid pattern at ,10 m spacing. Maps of sampled trees

for all sites are provided in Figure S1. Tree positions were

recorded using a Garmin 600cs and Garmin BaseCamp software

(version 3.2.2; Garmin International, Inc., Olathe, KS, USA) to

3 m accuracy. We converted GPS coordinates from degrees

latitude and longitude to north and east distances in metres from a

point near the centre of our study area (46uN, 66uW). We used

sampling methods prescribed by [2] to assess P. tumifex infestation.

Briefly, for each sampled tree, we collected terminal shoot clusters

from one south-facing, dominant mid-crown branch. We recorded

shoot length and number of galls for each shoot and estimated the

percentage of galled needles per shoot cluster. This estimate was

based on the total number of galls counted, divided by an estimate

of total number of needles from regressions of actual needle count

on shoot length for 100 mid-crown shoots from each site. Our

sampling produced a data set with P. tumifex density estimates for

100–200 mapped trees at each of seven sites, with two alternative

density measures (total gall count and percentage of needles

galled). We used this data set, for which we can easily calculate the

actual mean infestation, to assess the performance of alternative

sampling schemes that considered subsets of the full data.

Analyzing P. tumifex distributions
We began data analyses by assessing the fit of our P. tumifex data

to standard statistical distributions. Of our two measures of

infestation for each sampled tree, the number of galls (a count) is

simpler, but the percentage of galled needles (a continuous variate)

is of more direct importance to both host plants and farmers.

Separately for each site, and using our full sets of trees, we tested

the fit of each measure to normal distributions using the Shapiro-

Wilk test in R version 2.12.0 [28]. We fitted the gall count data to

negative binomial distributions (again, separately for each site)

using the ‘fitdistr’ function of R package ‘MASS’ and then tested

for goodness-of-fit using the ‘goodfit’ function of R package ‘vcd’.

We also rounded the percent galling data to the nearest 1%,

making a pseudo-count variable that we tested similarly for fit to

the negative binomial. Because fitting rounded percent galling to a

negative binomial gave by far the best fits, we used this measure

and distribution for all further analyses.

We then asked how well we could estimate k, the clumping

parameter of the negative binomial distribution, based on smaller

samples of infestation data. We used a script in R to draw,

randomly and with replacement, infestation data for n = 20, 50, or

100 trees from the larger data set for each site, and to estimate k

for each draw (again using the ‘fitdistr’ function). We made 100

such draws for each sample size at each site. We then plotted the k

estimates and calculated intervals containing the central 50% and

90% of the estimates; when these confidence intervals are narrow,

estimation is performing well.

Assessing Sampling Strategies for Insect Pests
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We tested for spatial autocorrelation in infestation rates within

each site using function ‘mantel.rtest’ of R package ‘ade4’. We

visualized spatial pattern via semivariograms using function

‘variog’ of package ‘geoR’ in R. All of our R scripts are provided

(Software S1).

Simulated sampling
The distributional complexity revealed by the foregoing

analyses motivated us to explore alternative approaches to

estimating P. tumifex infestation. We simulated sampling using

several different rules for ordered drawing of trees from the larger

data set for each site: (1) random sampling; (2) ordered sampling

by collection number; and (3) ordered sampling by belt transects.

For random sampling, we executed 10,000 randomizations for

each site, whereas ordered samplings were deterministic. Simula-

tions were implemented using InfestSample version 1.10, written

by SBH in Microsoft Visual Basic.NET for Windows. This

software is available as a zipped executable (Software S2), as a

source-code text file (Software S3), as a zipped Visual Basic project

folder (Software S4), or from github.com (user stephenbheard).

Our random sampling procedure drew trees with replacement

from the larger data set for each site (Figure S2A). We sampled

with replacement because our original field sampling included

only trees .10 m from their closest sampled neighbours, rather

than all trees present, and so our ‘‘full’’ data set is in turn a sample

from a larger statistical population of trees. Random sampling is

motivated by the usual expectation that it should provide unbiased

estimates of population parameters.

Ordered sampling by collection number included trees in the

same order as they were encountered in our original field

sampling. In each case, this meant a back-and-forth raster starting

at one corner of the stand, sampling along an edge, moving 10 m

deeper into the stand and returning parallel to the edge, and so on

until the entire stand had been sampled (Figure S2B). This scheme

is motivated by the expectation that future sampling crews might

choose to visit trees across the stand in a convenient order, as did

our original field crews. We also considered backward sampling by

collection number, which simply reverses the first order.

Ordered sampling by belt transect included trees as encoun-

tered along a series of parallel belt transects through the stand

(Figure S2C). The simulation software permits user selection of

start and end points for one or two transect sets. Two transect sets

may be used for sites that include sub-site structure: for instance,

our sites A and C each comprised a larger and a smaller stand

separated by some distance (Figure S1), and we used two transect

sets for each site. For each transect set, sampling includes trees

from the overall site sample that fall within a belt transect of width

w laid out between the specified start and end points. Trees are

added to the sample in the order they are encountered along the

transect. Following completion of the first transect, a second and

third transect are added to the transect set using a ‘‘jitter’’ of length

j: the second transect is parallel to the first but with its centre j

metres to the left, and the third is j metres to the right. When there

are two transect sets, they are interleaved such that set A’s first

transect is followed by set B’s first transect. For our sites, we

specified start and end points corresponding to trees marking

opposite ends of the stand in its longest dimension. We used

transects of width w = 10 m, with jitters of j = 20 (sites A, F), 30

(sites C, D, E, G), or 40 (site B) m, setting j to spread the transects

out across the breadth of the stand. We also considered sampling

along the transects in reverse order. Belt transect sampling was

motivated by the notion that such transects provide relatively easy

field sampling while tending to cut across within-site spatial

variation in the density being estimated.

For each simulated sampling approach, we added trees one at a

time to the sample (n = 1, 2…..N, where there are N = 100 or 200

trees in the full site sample). For each n, we estimated site mean

infestation and calculated the absolute deviation of that estimate

from the ‘‘true’’ mean (that estimated from the complete site

sample). For random sampling, for each n, we also calculated 95%

confidence intervals around the mean estimate and percent correct

decision rates for comparisons of the estimated infestation with

threshold infestations of 1, 3, 5, 7, and 10%. A decision is correct

for the 5% threshold (say) if the estimated infestation for n trees

and the true infestation are both above or both below 5%, and it is

incorrect otherwise. For ordered sampling approaches, which are

deterministic, confidence limits and correct decision rates are not

defined.

Results

Pre-sampling
Our seven sampled Christmas tree farms experienced P. tumifex

attack ranging from 1% to 7% of needles galled in the mid-crown

(Table 1). Because attack and defoliation are more severe in the

upper crown than in the more easily sampled mid-crown, this

range of attack rates includes moderately severe infestations that

would provoke pesticide intervention from most farmers. These

estimates are exact when applied to the N = 100 or 200 trees in our

pre-sample, but have uncertainty if viewed as bootstrap estimates

of infestation for the entire farm. We calculated precision as half

the width of the 95% confidence envelope divided by the

estimated infestation (Table 1). Precision ranged from 612% to

623% (for the farms with smaller N), which we consider

acceptable performance for our pre-samples in estimating whole-

farm infestation. However, for simplicity, in what follows we will

refer to the pre-sample estimates as ‘‘true infestation’’, and

consider the performance of smaller samples in estimating

infestation for the larger pre-sample.

Analyzing P. tumifex distributions
Both raw gall counts and percentages of galled needles showed

highly right-skewed distributions, and neither could be credibly fit

to normal distributions (results not shown). Attempts to fit raw gall

counts to a negative binomial distribution also failed (Table 1).

However, percentages of needles galled (rounded to the nearest

1% for analysis as pseudo-counts) fit negative binomial distribu-

tions well (Fig. 1, Fig. S3, Table 1): sites C and D showed

significant but modest deviations from the theoretical distribution,

whereas all other sites showed excellent fits.

Estimates of the negative binomial clumping parameter, k,

based on reasonably sized subsamples of trees proved very poor.

At site A, estimates based on subsamples of n = 20 ranged 11-fold,

and even subsamples of n = 100 produced estimates ranging nearly

three-fold (Fig. 2). Estimation performed worse at all other sites

(Fig. 2, Fig. S4), and particularly poorly at the lower-density sites

E, F, and G. The best of the low-density sites, site G, yielded k

estimates for subsamples of n = 20 that ranged 400-fold. However,

for some samples at sites E, F, and G, we were not able to fit

negative binomial distributions at all; these samples had to be

omitted from our analyses. Therefore, parameter estimation for

low-density sites was actually even more difficult than suggested by

the results reported here.

We detected significant within-site spatial autocorrelation at

four of our seven sites (Table 2), although correlations between

geographic and infestation distances were modest (all Mantel

r,0.13). Spatial autocorrelation remained at relatively large lag

distances (Fig. 3), typically on the order of half the longest

Assessing Sampling Strategies for Insect Pests
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dimension of the site. There may have been further or stronger

autocorrelation on very short spatial scales (,10 m), but our field

sampling regime deliberately avoided sampling neighbours at

those scales.

Simulated sampling
Random sampling produced, as expected, infestation estimates

that approached the true mean with increasing n (Fig. 4, top

panels). For all sites, the confidence intervals narrow rapidly, and

95% certainty of estimation to within 650% of the true infestation

rate is possible for n = 25 or smaller. When the goal is inference

about infestation relative to a threshold, random sampling allowed

correct decision rates in excess of 90% for quite small n, on the

order of 25–40 trees (Fig. 4, bottom panels) with very few

exceptions. Making correct decisions is, of course, difficult when

the decision threshold is very close to the true infestation rate: for

example, for the 7% threshold at site C (true infestation, 7.02%).

Expected errors in infestation estimates for random sampling

decrease rapidly with n (Fig. 5, heavy solid and dashed lines).

Interestingly, sampling ordered by collection number performed

comparably to random sampling (Fig. 5, dotted lines): with the

exception of site A, estimation error was usually below the 95th

percentile for random sampling and very often below the average

for random sampling. Transect sampling performed even better

(Fig. 5, light solid lines): estimation error never exceeded the 95th

percentile for random sampling and was below the average for

random sampling more often than above, even for small n.

Reversing the direction of sampling by collection number or along

transects produced results that differed in detail but not in overall

interpretation (results not shown).

Discussion

Implications for P. tumifex biology
Our sampling data indicate that both within- and between-site

distributions of P. tumifex are complex. Within sites, we were not

able to fit raw gall counts to any simple distribution, most likely

because the shoots we sampled varied in size, and P. tumifex attack

is influenced by shoot length [2]. Rather than exploring

distributions with additional parameters to allow direct modeling

of this dependence, we calculated infestation as the percentage of

galled needles, which is a measure of direct importance to host

trees and to farmers. After rounding, this measure was well

described by negative binomial distributions (that is, infestation

shows noticeable clumpiness across trees). However, we found

nearly four-fold variation among sites in estimated values of the

Table 1. Negative-binomial fits for gall counts and for (rounded) percentage of needles galled.

Site N Mean gall count Estimated k x2 df P
Mean %
galling

Precision of
estimate Estimated k x2 df P

A 100 38.2 0.511 152 54 ,10210 3.80 623% 0.763 15.9 14 0.32

B 200 43.0 0.888 197 84 ,10210 4.95 612% 1.46 22.6 18 0.21

C 200 77.6 1.07 270 115 ,10213 7.02 613% 1.44 44.2 26 0.014

D 200 54.2 0.773 241 97 ,10213 4.53 615% 1.15 33.8 19 0.020

E 200 11.0 0.595 85.9 39 261025 1.04 617% 1.37 7.35 6 0.29

F 100 11.8 0.686 63.9 32 761024 1.12 622% 2.72 4.55 4 0.34

G 200 17.4 0.510 142 50 ,1029 1.80 619% 0.73 16.2 12 0.18

Entries for x2, df, and P are for likelihood-ratio goodness-of-fits tests. For % galling, ‘‘precision’’ is half the width of the 95% confidence envelope divided by the
estimated infestation (see Figure S5).
doi:10.1371/journal.pone.0082618.t001

Figure 1. Negative binomial fits for percentage of needles
galled, sites B and C. Site B is typical of sites with acceptable fits,
whereas Site C is the worst-fitting site. Fits for all seven sites appear in
Figure S3.
doi:10.1371/journal.pone.0082618.g001
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clumping parameter k. In other words, P. tumifex distributions

within sites, and therefore patterns in P. tumifex damage, vary

significantly among sites. The mechanisms underlying this variation

may be difficult to identify in the context of Christmas tree farms

given great variation among farms in size, shape, landscape

context, and so on. We are currently examining the ecology of P.

tumifex’s movement and activity patterns in an attempt to

understand within-stand dispersal and how it shapes spatial and

temporal patterns in damage to the host trees.

Sampling strategies for P. tumifex
Our P. tumifex data proved quite recalcitrant to the application

of parametric sequential sampling. Although we were able to fit

rounded percentage galling data to the negative binomial

distribution, the strong variation in k among sites means that

single-parameterization sequential sampling would be misleading

for P. tumifex. Local-parameterization methods could accommo-

date variation in k, but we found that very large warm-up samples

would be needed for accurate estimation of local k, defeating the

efficient-sampling purpose of sequential sampling. That we

encountered this problem is not surprising, given the difficulty of

estimating k for negative binomial distributions (especially when

the mean is small; [20–22]. To make the situation even worse, the

presence of modest but significant spatial autocorrelation at several

of our sites should cast doubt on even local-parameterization

strategies for P. tumifex [19].

Fortunately, our simulations showed that simpler approaches to

sampling provide adequate density estimates for P. tumifex without

requiring large sample sizes. In fact, adequate estimation was

possible at all our sites with samples considerably smaller than the

warm-up samples that would have been needed for local-

parameterization sequential sampling. Furthermore, we were able

to evaluate efficiency for alternative ways of selecting trees to be

sampled. We found that sampling trees in the convenient order

used by field crews was about as good as random sampling, and

sampling trees via belt transects was actually better. This is good

news, because random sampling can be cumbersome to imple-

ment in the field and therefore carries additional costs. Belt

transects offer relatively easy fieldwork, and probably perform well

at density estimation because they cut across the kind of spatial

variation in attack revealed by our autocorrelation analyses.

Figure 2. Variation in estimation of negative-binomial k at sites A and G, based on subsampling. Horizontal line indicates the true value
of k (estimated using the full data set). Boxes show central 50%, and whiskers central 90%, of estimates. Plots for all seven sites appear in Figure S4.
doi:10.1371/journal.pone.0082618.g002
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We can offer a very simple recommendation for Christmas tree

farmers in Atlantic Canada. Paradiplosis tumifex infestation can be

assessed to reasonable accuracy by sampling trees in 10 m wide

belt transects, placed along a major axis of the farm, and long

enough to include 25–40 trees spaced at least 10 m apart. (In our

farms, this was enough trees for the transect to span most or all of

the long axis of the farm. In a larger farm, it would seem sensible

either to include more trees, or more likely, to assess infestation

and deploy intervention separately for two or more plots within

the farm.) Where decision making against thresholds is desired,

similar sample sizes provide excellent accuracy except where

estimated densities are very close to the decision threshold. This

situation is easily recognized and can be dealt with by deciding on

intervention at estimated infestations slightly lower than the true

threshold. This recommended approach was robust to the

considerable variation in stand characteristics and agricultural

practices across our seven study farms. More sophisticated

sampling schemes that formalize estimation by fully parameteriz-

ing P. tumifex distributions would require substantially more effort,

while returning little improvement in results.

Lessons and tools for assessing sampling strategies
There is an enormous amount of literature on the design of

sampling strategies for the estimation of population densities in

nature. Its existence is good evidence that sampling well is difficult

- and being confident that you are sampling well is no less so.

Although more accurate estimates usually come from larger

sample sizes and more sophisticated sampling, this rule is not

inescapable. As a result, tools that allow practitioners to increase

Figure 3. Spatial structure in P. tumifex infestation at sites with significant spatial autocorrelation.
doi:10.1371/journal.pone.0082618.g003

Table 2. Tests for within-site spatial autocorrelation in P.
tumifex infestation.

Site Mantel correlation P

A 0.125 0.0088

B 0.0389 0.071

C 0.00280 0.45

D 0.0135 0.31

E 0.0683 0.0096

F 0.113 0.0055

G 0.0709 0.026

doi:10.1371/journal.pone.0082618.t002
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efficiency and to assess sampling strategies in advance of large-

scale field work will always be valuable.

Our work with P. tumifex demonstrates one valuable approach to

sampling design. By investing in some pre-sampling and using

simulation techniques, we were able to assess the performance of

alternative sampling strategies. For P. tumifex, sequential sampling

was outperformed by simpler approaches that nonetheless appear

robust to among-site variation in insect distribution. Sequential

sampling is appealing because it promises very high sampling

efficiency, but it demands that the statistical distribution from

which infestation rates are sampled have parameters that are

either known or easily estimated. For P. tumifex, these demands

were not met, and therefore sequential sampling would have

required increased, not decreased, investment in sampling effort.

We suspect that P. tumifex is not exceptional in this regard.

Of course, the specific sampling scheme we recommend for P.

tumifex in Atlantic Canada may not perform well in other systems.

However, the methods we illustrate and the new software tools we

provide can easily be applied to other systems. Implementing our

approach requires only a pre-sampling dataset of reasonable size.

This dataset should include infestation data for n sampling units at

each of s sites. Both the unit for measuring infestation (% attack,

number of insects, etc.) and the identity of the sampling unit (plant,

quadrat, etc.) can be chosen as appropriate for the particular

system. The dataset should also include (x, y) co-ordinate data for

each sampling unit (lacking such data, random sampling can be

evaluated but not transect or ordered sampling). The pre-sample

size n should be large enough that plots like Figure 4 either attain

good sampling performance or reach feasibility limits for ongoing

sampling. The number of sites s should be large enough to be

reasonably representative of sites for which ongoing sampling

might be desired. A sample dataset (for one site) is included as

Dataset S1, and the sequence of analyses is summarized in Figure

S6. Following this sequence should make it straightforward for

practitioners to establish whether, in any given system, sequential

sampling can be applied via single or local parameterization,

whether simpler sampling regimes can provide more efficient

estimation, and what spatial approach to the selection of sampling

units should be preferred. A useful direction for future research

would be to extend our software to other candidate sampling

schemes, such as stratified sampling.

Pre-sampling and simulation methods offer the chance to

compare and optimize potential sampling strategies before they

are brought to real-world applications. Our method is not the first

of this type. For example, geostatistical analyses have been used to

identify optimum sample sizes for pheromone trap monitoring [7],

Figure 4. Performance of random sampling for estimating mean P. tumifex density (top panels) and decision making against
infestation thresholds (bottom panels) at representative sites C and G. Dashed lines show two representative randomizations; 95% of the
10,000 randomizations lie between the solid lines. Confidence envelopes still have finite width at n = 200 (the size of the total site sample) because
sampling is conducted with replacement. Plots for all seven sites appear in Figure S5.
doi:10.1371/journal.pone.0082618.g004
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and software is available for assessing distance sampling designs

[6]. More generally, the development of simulation-based methods

for assessing sampling strategies mirrors the burgeoning use of

simulation and randomization-based methods in inferential

statistics (e.g., [29,30]), phylogenetic inference (e.g., [31,32]),

macroevolution (e.g., [33,34]), and many other fields. In all these

applications, the availability of computational power has allowed

the relaxation of restrictive assumptions necessary for older

parametric approaches – often leading to gains in the efficiency

of data use, as we found for sampling P. tumifex.

Supporting Information

Figure S1 Site maps. Open circles denote trees included in the

full site samples; solid dots mark trees included in sampling by belt

transects. Lines mark centres of the first belt transects in each

transect set, and arrows mark transect start points.

(PDF)

Figure S2 Sampling schemes, illustrated for Site G. (A)

Transect sampling (line indicates first transect; filled dots to each

side are the jittered transects). (B) Random sampling; dots show

first 25 (and arrow first 5) trees chosen in an arbitrary

randomization. (C) Ordered sampling (first 20 trees chosen; raster

continues for larger samples).

(PDF)

Figure S3 Negative binomial fits for (rounded) percent
needles galled, for all sites.

(PDF)

Figure S4 Estimation of negative-binomial k for all
sites. Horizontal line indicates the true value of k (estimated using

the full dataset). Boxes show central 50%, and whiskers central

90%, of estimates.

(PDF)

Figure S5 Performance of random sampling for esti-
mating mean P. tumifex density (top panels) and
decision-making against infestation thresholds (bottom
panels) at all sites. Dashed lines show two representative

randomizations; 95% of the 10,000 randomizations lie between

the solid lines. Confidence envelopes still have finite width at

n = 200 (the size of the total site sample) because sampling is

conducted with replacement.

(PDF)

Figure S6 Summary of our analytical approach. Italics

refer to R scripts and software available as Software S1, S2, S3, S4.

(PDF)

Dataset S1 Sample dataset (for our site G).

(CSV)

Software S1 R scripts used in our analysis.

(TXT)

Software S2 Zipped executable version of software
InfestSample version 1.10.

(ZIP)

Software S3 Text-file source code of software Infes-
tSample version 1.10.

(TXT)

Figure 5. Estimation errors for P. tumifex infestation as a
function of number of sampled trees.
doi:10.1371/journal.pone.0082618.g005
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Software S4 Zipped version of Visual Studio project
folder for software InfestSample version 1.10.
(ZIP)
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