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Abstract

Previous growth-rate studies covering 14 dinosaur taxa, as represented by 31 data sets, are critically examined and
reanalyzed by using improved statistical techniques. The examination reveals that some previously reported results cannot
be replicated by using the methods originally reported; results from new methods are in many cases different, in both the
quantitative rates and the qualitative nature of the growth, from results in the prior literature. Asymptotic growth curves,
which have been hypothesized to be ubiquitous, are shown to provide best fits for only four of the 14 taxa. Possible reasons
for non-asymptotic growth patterns are discussed; they include systematic errors in the age-estimation process and, more
likely, a bias toward younger ages among the specimens analyzed. Analysis of the data sets finds that only three taxa
include specimens that could be considered skeletally mature (i.e., having attained 90% of maximum body size predicted by
asymptotic curve fits), and eleven taxa are quite immature, with the largest specimen having attained less than 62% of
predicted asymptotic size. The three taxa that include skeletally mature specimens are included in the four taxa that are best
fit by asymptotic curves. The totality of results presented here suggests that previous estimates of both maximum dinosaur
growth rates and maximum dinosaur sizes have little statistical support. Suggestions for future research are presented.
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Introduction

Knowledge of the life histories of extinct species has increased

enormously in recent decades, advanced by bone histology [1–16]

and the measurement of ontogenetic growth rates for many species

[17–19]. Histological estimation of age depends primarily on

analysis of features known as lines of arrested growth (LAGs) [20],

which are seen in thin sections of fossilized bone [6]. Strong

evidence from extant amphibians, reptiles, birds and mammals

suggests that, in many dinosaur taxa, LAGs were deposited

annually while the animal was alive. Even in bones in which LAGs

are not visible, ‘‘polish lines’’ sometimes appear, and Sander has

argued [21] that these also represent markers for annual growth.

Although the inference that each LAG represents one year of

growth is still a subject of debate [22] and the number and

distribution of LAGs varies in some specimens from one bone to

another or is obscured by inter-element remodeling [10,11,13–

15,21–23], the analysis presented here adopts the common

assumption in paleobiology that LAGs and polish lines are indeed

annual markers.

Many of the other assumptions on which studies of dinosaur

growth have routinely depended are more questionable, however,

as are some of the statistical methodologies used. Insufficient

attention has been given to problematic issues in estimating the

ages and masses that dinosaurs achieved during their lives, in

fitting growth curves to the data sets available, and in interpreting

the results of curve fits.

Two distinct analytical approaches, the whole-bone method and

the longitudinal method, have been used to gather age/size data

sets, from which biological growth parameters can be calculated.

Each approach involves similar steps – age estimation, mass

estimation and growth curve fitting – but they differ in their details

between approaches, and between studies. Both approaches

require careful handling of the uncertainties involved in the

estimation of ages and masses, and of the assumptions and

statistical methods used to fit growth curves to observed and

derived data.

Whole-bone Method
Chinsamy-Turan [6] appears to have been the first to use the

‘‘whole-bone’’ method to fit growth curves for dinosaurs by using

the linear dimension of a whole bone as the size metric and a

count of LAGs in a bone to estimate age at time of death. Erickson

and Tumanova [24] extended the method to estimate the mass of

an animal from the length of a long bone, and the approach was

extended further in later studies [16–18,24–29]. The method has

been applied to 11 dinosaur taxa by Erickson and coworkers and

to three additional taxa by Bybee et al., Lehman, and Lee and

Werning (Table 1). Werning [30] and Lee and Werning [31]

applied a variation of the whole-bone method to the ornithopod

Tenontosaurus (without the developmental mass extrapolation

(DME) step, discussed below), although bone dimensions have

not been published. Bybee et al. [32] presented data that can be

used for the method.

Although details of the whole-bone method vary slightly in the

literature, it generally includes two or more of the following steps:

(1) Estimate ages. LAGs are counted by microscopic exam-

ination of thin sections of bone, typically cut from the femur

but sometimes from other bones. Age at the time of death is

then estimated by adjusting or supplementing the raw LAG

count:
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a. missing LAGs are estimated or ‘‘retrocalculated’’ by using one

of several techniques [24,25,27,32];

b. once ages have been estimated for several specimens, linear

regression is used to fit a line relating bone dimension to age

[18]. The regression results are then used to estimate the ages

of any specimens for which LAGs could not be counted

directly.

(2) Estimate masses. Two previous studies [31,33] used the

formula of Anderson et al. [34] that relates the body mass to

the circumference of the limb bones with a scaling exponent

of 2.73 (see Discussion). Other studies that estimate masses,

however, have typically reported using DME [24], which

typically involves two steps:

a. the length lmax and midpoint circumference of the longest

femur available for the study are recorded, and the technique

of Anderson et al. [34] or some other method is then used to

estimate the mass mmax of the specimen;

b. ‘‘extrapolation’’ (sic; it is actually interpolation) of an estimated

mass for each of the specimens is done by using the length l of

the specimen femur in the equation, with a scaling exponent

of 3 (see Discussion).

(3) Fit a growth curve. An asymptotic growth curve–

frequently a logistic, Gompertz or von Bertalanffy curve–is

fit to the age–mass data from multiple specimens and the

parameters of the fit curve are used to derive the growth rate

and other parameters of biological interest (such as the

maximum asymptotic size for the taxon).

Longitudinal Method
The longitudinal method for growth determination was first

published by Woodward [35] in studies of Apatosaurus excelsus and

Alamosaurus sanjuanensis. The method was subsequently applied by

Bybee et al. [32] to study Allosaurus fragilis; by Lee [36] in papers on

several taxa; by Lehman and Woodward [37] in work on the

sauropod Janenschia robustus and an unidentified sauropod from

Northampton, UK; and by Cooper et al. [38] in studies of

Hypacrosaurus stebingeri. Lehman [33] applied a variation of the

method in a paper on Saurornitholestes. Table 1 summarizes the use

of the longitudinal method in the studies referenced above.

The longitudinal method was also used by Lee [36] and by

Wings et al. [39] in a study of the sauropod Mamenchisaurus;

although data and growth parameters were not included in that

report, they are in preparation (Wings personal communication

2013). Two relatively recent studies by Erickson et al. [26,29]

appear to use the longitudinal method, but the papers do not

specify the steps used in the analyses and do not include sufficient

data to enable reconstruction or replication of the method used.

Fig. 1 illustrates the application of the longitudinal process to the

Allosaurus humerus data from multiple specimens spanning a wide

range of sizes by Bybee et al. [32]. In the whole-bone method, the

age of each specimen is determined by retrocalculation rather than

alignment, and each specimen would be represented only by its

oldest (right most) data point.

The longitudinal method typically involves four steps:

(1) Measuring LAGs. LAGs are not merely counted, but also

measured:

a. a LAG is traced on digital micrograph, and its circumference

is measured;

b. alternatively, the radial distance from one LAG to the next, or

from the center of the bone to the LAG, is measured.

Multiple measurements can be compiled for a single specimen

to yield a time series of ages and LAG sizes–a growth history–for

that specimen, much like the data sets available in longitudinal

studies in medicine or social science.

(2) Correlating multiple time series. In cases where

multiple LAG time series have been obtained from the

corresponding bone in different specimens, a composite time

series can be constructed to span a wider range of sizes and

ages. To make the composite, time series are matched by

adding a time offset:

Table 1. Dinosaur growth rate studies.

Taxon Steps Reference
Prior
study

Albertosaurus sarcophagus W/1a,1b, 2, 3 [25]

Albertosaurus sarcophagus W/1a,1b, 2, 3 [17] [25]

Apatosaurus excelsus* W/1a, 1b, 2, 3 [20] [98]

Daspletosaurus torosus* W/1a,1b, 2, 3 [25]

Gorgosaurus libratus W/1a,1b, 2, 3 [25]

Maiasaura peeblesorum* W/2,3 [20] [11]

Massospondylus carinatus W/3 [20] [6]

Psittacosaurus lujiatunensis W/1a, 1b, 1c, 2, 3 [18]

Psittacosaurus mongoliensis W/1a, 1b, 2, 3 [24]

Psittacosaurus mongoliensis W/1a, 1b, 2, 3 [32] [24]

Shuvuuia deserti* W/2, 3 [20] [117]

Syntarsus rhodesiensis W/3 [20] [5]

Tyrannosaurus rex W/1a,1b, 2, 3 [25]

Tyrannosaurus rex W/1a,1b, 2, 3 [17] [25]

Allosaurus fragilis W/1a, 2b, 3a, 3b, 4c [20]

Saurornitholestes W/2, 3 [33] [3]

Tenontosaurus* W/2,3 [31] [30]

Apatosaurus excelsus L/1b, 2a, 3a,3b, 4c [35] [98]

Alamosaurus sanjuanensis L/1b, 3a,3b, 4c [35]

Allosaurus fragilis L/1a, 2b, 3b, 4c [32]

Allosaurus fragilis L/1a, 2b, 3b, 4c [31] [32]

Hypacrosaurus stebingeri L/1a, 4a [38]

Northampton sauropod L/1a, 3a,3b, 4c [37] [3]

Citipati osmolskae* L/1?, 2, 3b, 4c [25]

Deinonychus antirrhopus* L/1?, 2, 3b, 4c [25]

Oviraptor philoceratops* L/1?, 2, 3b, 4c [25]

Pachyrhinosaurus sp.* L/1?, 2, 3b, 4c [29]

Troodon formosus* L/1?, 2, 3b, 4c [25] [7]

Troodontidae nov. sp.* L/1?, 2, 3b, 4c [25]

Mamenchisaurus sp.* not reported [37]

Steps indicate the method performed in the referenced studies and refer to the
steps in the whole-bone (W) and longitudinal (L) methods described in the text.
In some cases, age estimation (step 1) or mass estimation (step 2) was
performed in a prior study, as indicated in the rightmost column.
*Cases in which the published data or details about the analytic method used
are insufficient to replicate the work.
doi:10.1371/journal.pone.0081917.t001
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a. digital micrographs are overlaid and scaled to matching sizes;

b. alternatively, graphs of the time series are aligned, generally as

judged by sight, by adjusting the offset.

(3) Estimating masses or scaling LAG sizes. Raw LAG

series measurements are usually rescaled or processed before

further analysis:

a. mass is estimated by using DME or another scaling relation-

ship of bone dimension to body mass;

b. alternatively, the LAG size measurements are rescaled linearly

relative to either the outermost LAG (if the data set comprises

a single specimen), to the largest dimension known for the

specimens within the study, or to the largest dimension known

for the taxon as a whole.

(4) Fitting a growth curve. A growth curve is fit to the

rescaled data and biological parameters are then derived from

the fit curve and its parameters. The fit is made either:

a. directly to the time series of LAG dimensions;

b. to the body mass estimated in step (3a) above; or

c. to the fraction of largest dimension as obtained in step (3b)

above.

Objectives
I conducted a systematic reanalysis of prior studies of the growth

of 14 dinosaur taxa, based on both the whole-bone and

longitudinal method, with a particular focus on identifying and

correcting underlying assumptions that may be unjustified or

statistical methodologies that increase expected errors. I attempted

to replicate the derivation of previously published growth curves

and, in cases where replication failed, possible reasons for the

disparity were examined. An improved statistical approach was

used to obtain new estimates of skeletal growth rates for the 14

taxa and to determine whether statistical support was strongest for

asymptotic growth or some other growth pattern. The resulting

growth rates were compared to prior analysis. Monte Carlo and

bootstrap error analysis was performed to estimate sensitivity of

these results to population sampling and errors in age estimation

or growth variation.

Methods

An extensive review of the literature on dinosaur growth

identified 31 data sets of sufficient detail for reanalysis, covering 14

taxa of dinosaurs (Table 2). Each data set was recorded from a

single prior study except for Tyrannosaurus 2, which combines

specimen data from three reports [25,40,41]. Note that Syntarsus

rhodesiensis was renamed Megapnosaurus rhodesiensis subsequent to the

referenced prior growth studies [42]. Here I will refer to the taxon

as Syntarsus for consistency with prior work.

In data sets comprising longitudinal measurements on multiple

specimens, least-squares optimization was used to minimize the

difference between every pair of series in the regions of overlap

(Fig. 1C). This computational matching process, which is more

objective than aligning the offsets by sight, does not fully specify

the age unless the smallest specimen is known to be a neonate. In

all other cases, retrocalculation is required to set the youngest age.

The offsets derived by the least-squares method are, in general,

non-integer values (i.e., this method does not assume that each

specimen had the same birthday).

Seventy seven growth functions (Table S1 and Table S2) were

fit to the 31 data sets by using nonlinear least-squares regression

functions in commercial mathematical software (Mathematica

9.01, Wolfram Research). Fifteen of the 77 functions used are

increasing functions; the remaining 62 are asymptotic (48

sigmoidal and 14 attenuating). Sigmoidal curves are illustrated in

schematic form in Fig. 2. Sigmoidal growth includes three phases:

an initial exponential phase, a phase in which growth is

approximately linear with time, and finally, an asymptotic phase.

Two, three and four-parameter models were included in the

analysis. Bone dimension was used as the independent variable in

Figure 1. Longitudinal time series for Allosaurus fragilis humeri.
A, the raw time series from Bybee et al. [32]. Each series starts at a time
offset of Si~0. B, the result of applying offsets Si as assigned in [32]
based on matching the curves by eye. C, the result of calculating Si by a
least-squares matching algorithm that uses non-integer offsets.
doi:10.1371/journal.pone.0081917.g001
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performing the regressions. Text S7 presents additional details

about the fitting methods used. Biological parameters of interest,

such as growth rate and maximum asymptotic size, were then

derived from the parameters of the best fit growth curves.

Age–mass data sets were also collected from prior studies (Table

S7). In several cases, digital scans of published figures were used

with image-processing functions to verify the data sets and graphs.

These data sets were used to attempt to replicate the original

analyses (Table 3). As in the original studies, time was used as the

independent variable for the replication regressions.

For each regression performed, the quality of fit was evaluated

by calculating the relative corrected Akaike information criterion,

DAICc [43], and AICc using the same software responsible for the

curve fitting. For each data set, those regressions yielding

DAICc ~ 0 were selected as best fits, and those having

DAICcƒ2 were interpreted as having strong statistical support.

Because DAICc ~? when the number of data points available is

insufficient to support the number of parameters used in the

model, this method prevents the selection of models that overfit

the data.

To quantify the impact of the choice of independent variable, a

Monte Carlo simulation was performed. The simulation drew 500

sets of data from the logistic equation (Text S2 and Fig. S8). Each

synthetic data set sampled 20 points from a logistic curve having

homoscedastic errors in age estimation, consistent with published

estimates for dinosaur growth (Text S2). A homoscedastic error

model assumes age estimation errors of equal magnitude,

independent of age. Another 500 data sets were created from a

logistic curve having heteroscedastic errors, where the error is

assumed to be a percentage of the age. The maximum asymptotic

value was estimated for each data set by using two alternative

regression approaches: age as the independent variable, and age as

the dependent variable.

Table 2. Dinosaur growth data sets used for model fitting.

Data set name Taxon Bone Dimension N M Type Reference

Albertosaurus Albertosaurus sarcophagus femur length 5 5 W [25]

Daspletosaurus Daspletosaurus torosus femur length 3 3 W [25]

Gorgosaurus Gorgosaurus libratus femur length 5 5 W [25]

Massospondylus Massospondylus carinatus femur length 14 14 W [20]

Psittacosaurus l1 Psittacosaurus lujiatunensis femur length 39 39 W [18]

Psittacosaurus l2 Psittacosaurus lujiatunensis femur length 80 80 W [18]

Psittacosaurus l3 Psittacosaurus lujiatunensis femur length 80 80 W [18]

Psittacosaurus l4 Psittacosaurus lujiatunensis femur length 80 80 W [18]

Psittacosaurus m1 Psittacosaurus mongoliensis femur length 7 7 W [24]

Syntarsus Syntarsus rhodesiensis femur length 10 10 W [5,118]

Tyrannosaurus 1 Tyrannosaurus rex femur length 7 7 W [25]

Tyrannosaurus 2 Tyrannosaurus rex femur length 9 9 W [25,40,41]

Saurornitholestes Saurornitholestes femur length 9 9 W [33]

Allosaurus hl Allosaurus fragilis humerus length 6 6 W [32]

Allosaurus ul Allosaurus fragilis ulna length 5 5 W [32]

Allosaurus fl Allosaurus fragilis femur length 6 6 W [32]

Apatosaurus Apatosaurus excelsus pubis radial 13 2 L [35]

Alamosaurus Alamosaurus sanjuanensis humerus radial 9 1 L [35]

Northampton Northampton sauropod pubis radial 21 1 L [37]

Janenschia Janenschia robustus femur radial 16 1 L [37]

Allosaurus fc1 Allosaurus fragilis femur circumference 38 6 L [32]

Allosaurus fc2 Allosaurus fragilis femur circumference 38 6 L [32]

Allosaurus fc3 Allosaurus fragilis femur circumference 19 3 L [32]

Allosaurus fc4 Allosaurus fragilis femur circumference 19 3 L [32]

Allosaurus hc1 Allosaurus fragilis humerus circumference 35 5 L [32]

Allosaurus hc2 Allosaurus fragilis humerus circumference 35 5 L [32]

Allosaurus tc1 Allosaurus fragilis tibia circumference 20 3 L [32]

Allosaurus tc2 Allosaurus fragilis tibia circumference 20 3 L [32]

Allosaurus uc1 Allosaurus fragilis ulna circumference 30 5 L [32]

Allosaurus uc2 Allosaurus fragilis ulna circumference 30 5 L [32]

Hypacrosaurus fc Hypacrosaurus stebingeri femur circumference 7 1 L [38]

Hypacrosaurus tc Hypacrosaurus stebingeri tibia circumference 8 1 L [38]

N is the number of data points in the data set; M is the number of specimens from which the data were obtained. Type indicates the kind of data set: whole bone (W) or
longitudinal (L). See Table S6 for the data included in each set.
doi:10.1371/journal.pone.0081917.t002
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To quantify the impact of the choice of model, the 62

asymptotic curves in this study were fit to synthetic data drawn

from linear and cubic curves. Monte Carlo simulation was also

used to quantify the impacts of the choice of different asymptotic

models on data drawn from another asymptotic model. Asympto-

tic curves from Table S1 were fit to each of the 500 synthetic

logistic data sets and used to generate mean estimates of maximum

asymptotic size.

Bootstrap resampling [44] was used to estimate the sensitivity of

dinosaur growth rate studies to population sampling (Text S5).

Five hundred distinct samples were drawn at random from the

data set. A subset of models (both asymptotic and increasing) that

were a best fit to at least one dinosaur taxon were fit to each of the

500 random samples, and fits were then evaluated by calculating

DAICc.

To assess the effects of errors in age estimation, I performed

Monte Carlo simulations, each having 500 trials, on the

Tyrannosaurus 2 data set. Three simulations used

a~0:05, 0:10 and 0:15, corresponding to normally distributed

heteroscedastic age estimation errors of 5%, 10% and 15% of the

age. In another series of Monte Carlo experiments, age estimation

errors were modeled by homoscedastic errors which are normally

distributed with a standard deviation of 0.25, 0.5 and 1 year.

To assess specimen maturity, I determined the extent of the

region in which an asymptotic model is supported by data by

rescaling the bone dimension s for each data point to

ŝs ~
s{g 0ð Þ

g ?ð Þ{g 0ð Þ ,

where g 0ð Þ is the minimum value of the growth function and

g ?ð Þ is the asymptote. The rescaling yields sizes ŝs that fall

between 0% and 100%. Within any set of growth data, the largest

rescaled size, dsmaxsmax, indicates the degree of maturity attained by the

oldest specimen in the data set, as a percentage of the maximum

asymptotic size estimated from the model fit.

The bone dimension gmax at which the maximum growth rate

_ggmax occurs was similarly rescaled to a percentage:

ĝgmax ~
gmax{g 0ð Þ
g ?ð Þ{g 0ð Þ :

In order to avoid unsupported extrapolation, the growth rates

presented in Table 4 were evaluated only at data points. Although

Figure 2. Three phases of growth in a typical sigmoidal curve. A
sigmoidal curve (solid black line) typically includes an initial exponential
phase, an approximately linear phase (which contains the inflection
point at which the growth rate is maximal) and finally an asymptotic
phase, in which the curve approaches a constant asymptote a as t??.
In some cases, the initial exponential phase is so short as to be
imperceptible, but the linear and asymptotic regions are features of all
sigmoidal curves. Attenuating curves are similar but lack the initial
exponential phase, much like a sigmoidal curve that starts with its
inflection point at t~0.
doi:10.1371/journal.pone.0081917.g002

Table 3. Attempted replication of results from references [18,20,24,25] and [37].

Maximum asymptotic size, a (kg) Peak growth rate, _ggmax (kg/yr)

Taxon Ref. Reported Best fit Ratio Reported Best fit Ratio

Tyrannosaurus rex A 25 5556 5859 0.948 791 467 1.695*

Gorgosaurus libratus A 25 1239 1748561 0.001* 117 39286 0.003*

Albertosaurus sarcophagus A 25 1223 1229 0.995 131 126 1.040

Massospondylus carinatus A 20 281 4521733 0.000* 35.0 223477 0.000*

Syntarsus rhodesiensis A 20 18.8 19.0 0.991 10.5 5.60 1.876*

Psittacosaurus mongoliensis A 20 22.7 24.0 0.948 5.50 5.77 0.953

Psittacosaurus mongoliensis C 24 25.2 26.8 0.942 4.66 5.30 0.879*

Psittacosaurus lujiatunensis 1A 18 37.4 50.9 0.734* 5.14 5.25 0.979

Apatosaurus 37 25952 28618 0.907 519 538 0.964

Alamosaurus 37 32663 29326 1.114* 1089 1017 1.071

Janenschia 37 14029 16428 0.854* 624 658 0.948

Northampton 37 9000 9130 0.986 260 242 1.074

‘‘Reported’’ parameter values were derived from regression equations published in the cited references. In some cases this differs from parameters (particularly
maximum growth rate) quoted in the same papers–see Text S1. ‘‘Best fit’’ parameter values are the results from attempted replication by using the same data set,
growth function and methodology as the cited reference. Note that analysis of these data sets with the methods described in this paper gives different results in many
cases (see Table 4, Table 5 and Table S8). Two important biological parameters–maximum asymptotic size and peak growth rate–are shown here; see Text S1 and Table
S4 for further details.
*Cases in which the replicated (Best fit) results differ from reported results by 10% or more. Four of the 11 taxa have published results for both asymptotic size and
growth rate that can be replicated within that tolerance.
doi:10.1371/journal.pone.0081917.t003
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it is possible to calculate the maximum growth rate at the inflection

point in cases where sigmoidal models garner strong support, in

most cases the calculation is unwarranted because the estimated

inflection point is too far from data points to be sufficiently

constrained by the data.

Results

Comparison with Prior Analysis
Table 3 presents the results of my attempt to replicate the

published findings from previous studies of the growth of 26 of the

distinct taxa listed in Table 1. For 15 taxa, the published reports

did not include sufficient details (i.e. they were missing data, or

detailed analytical methods, or regression equations), so they could

not be verified directly. Replication was not attempted for one

taxon (Allosaurus) because its situation is complicated, as covered in

a section below.

Replication of the regression results to within +10% of the

reported values for a and _ggmax was possible for only four of the 11

taxa attempted. For the remaining seven taxa, least-squares

regression yielded best-fit regression parameters that are substan-

tially different from those reported, despite my using the same

growth functions and analytical methods specified in the original

studies (Table 3, Table S4, Table S5 and Table S10, Figs. S1–S7).

Where replication yielded substantial discrepancies, I used

image-processing software to overlay plots of the reported data

and regression curves onto digital scans of the original figures. In

the case of Syntarsus and Massospondylus [20], the figures plot data

points that differ markedly from their referenced sources [5,6]. In

the case of Tyrannosaurus and Gorgosaurus [25], the published

Table 4. Bone growth and growth rates for 31 data sets.

Data set Model Kind tm (yr) ym (cm) _ggmax (cm/yr) _ggmax/ym (%/yr)

Tyrannosaurus 1 Extreme Value 2 A 2 25.2 8.40 33.3%

Tyrannosaurus 2 Extreme Value 2 A 2 25.2 9.06 36.0%

Gorgosaurus Linear 2 I 18 91.6 3.59 3.9%

Albertosaurus Linear 2 I 24 89.5 3.16 3.5%

Saurornitholestes Rational 2z A 2 30 12.8 42.8%

Saurornitholestes Michaelis Menten 2 A 2 30 12.8 42.8%

Syntarsus Power 2 I 2 12.2 2.93 24.0%

Allosaurus fc1 Cubic 2 I 14 33.8 5.76 17.0%

Allosaurus fc2 Exponential 3 I 17.5 33.8 6.06 17.9%

Allosaurus fc3 Cubic 2b I 14 19 0.94 4.9%

Allosaurus fc4 Quadratic 2 I 11.8 33.8 4.38 13.0%

Allosaurus hc1 Persistence 3a I 20 17.8 1.39 7.8%

Allosaurus hc2 Persistence 3a I 22.0 17.8 1.37 7.7%

Allosaurus uc1 Persistence 3a I 17 12.5 0.92 7.3%

Allosaurus uc2 Persistence 3a I 16.7 12.5 0.96 7.7%

Allosaurus hl Cubic 2b I 19 38.7 2.16 5.6%

Allosaurus ul Exponential 2 I 16 24.5 1.44 5.9%

Allosaurus fl Cubic 2 I 13 87.2 11.4 13.0%

Allosaurus tc1 Quadratic 2b I 16 23.9 1.80 7.5%

Allosaurus tc2 Power 2 I 16 21.4 1.91 8.9%

Psittacosaurus m1 Quadratic 2b I 9 21 3.00 14.3%

Psittacosaurus l1 Persistence 3a I 0.5 3 3.16 105.3%

Psittacosaurus l2 Persistence 3a I 0.5 3.1 3.19 103.0%

Psittacosaurus l3 Persistence 3a I 0.5 3 3.09 103.1%

Psittacosaurus l4 Persistence 3a I 0.5 3.1 3.13 101.0%

Hypacrosaurus fc Extreme Value 2 A 7 33.6 2.65 7.9%

Hypacrosaurus tc Extreme Value 3b S 6 23.6 3.16 13.4%

Hypacrosaurus tc Extreme Value 3a S 6 23.6 3.16 13.4%

Apatosaurus Rational 2z A 5 4.64 0.79 17.1%

Apatosaurus Michaelis Menten 2 A 5 4.64 0.79 17.1%

Alamosaurus Linear 2 I 13 12.4 0.78 6.3%

Northampton Persistence 3a I 5 62 2.10 3.4%

Janenschia Power 3 I 5 26.5 2.32 8.7%

Massospondylus Linear 2 I 15 44.46 2.52 5.7%

Bone growth rates were estimated by best-fit models (those for which DAICc ~ 0). Growth rates are evaluated at the data point tm, ymð Þ at which the maximum
growth rate _ggmax occurs. The growth rate is expressed both directly (cm/yr) and as percentage of size per year. S: sigmoidal; I: increasing; A: attenuating.
doi:10.1371/journal.pone.0081917.t004
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regression equations do not provide the best fit to the data

provided. For both Tyrannosaurus and Psittacosaurus lujiatunensis [18],

the curves plotted in the figure of the original study match neither

the published regression equations nor the best-fit regression

equations that emerge from my calculations. Moreover, the data

points plotted in the figure for Psittacosaurus do not match the

published data set. My attempts to reconcile these discrepancies by

testing possible sources of error were unsuccessful.

In the case of a growth study of Alamosaurus, Apatosaurus,

Janenschia and the Northampton sauropod [37], my regression

results differed slightly from those reported. In that paper,

however, the authors do not present the equations as best fits

from regression, but rather as upper and lower bounds, and my

results confirm that the equations do indeed serve as approximate

bounds on the best fits.

A further replication issue is that calculation of the maximum

growth rate from the published regression equation could not be

replicated for any of the 10 taxa in [20,25]. The issue of

irreproducible results in prior studies is explored in more detail in

Text S1, Table S5 and Table S10 and Figs. S1–S7. In several

studies, the resulting maximum growth rates are then converted

from units of kg/year to grams/day to facilitate comparison to

each other and to data from extant animals [20,24,25].

Unfortunately, this conversion is done by dividing the annual

growth rate by the number of days in a Mesozoic year. This would

be correct if the length of a Mesozoic day was, in absolute time

units such as seconds, the same as a present era day. Instead, it is

the duration of a year that is constant across geologic history [45],

while the length of a day (and thus the number of days per year)

has varied due to changes in Earth’s rotation rate [46–49]. As a

result, the dinosaur daily growth rates as calculated are

inappropriate for comparison to rates from extant animals or to

each other if they are from different geologic periods. In addition,

there appear to be other issues with some of the daily growth rate

calculations, see Text S1.

Impact of Choice of Independent Variable
Those estimates made by using age as the independent variable

had a standard deviation that was 208% of the standard deviation

for estimates derived from the 500 regressions that used age as a

dependent variable for heteroscedastic errors and 409% for

homoscedastic errors. (Text S2 and Fig. S9). These results

demonstrate that the incorrect choice of independent variable

can result in highly error-prone estimates.

Impact of Choice of Model
Asymptotic curves contain phases that are increasing and nearly

linear. As a consequence, asymptotic curves can almost always be

fit to a finite number of data points sampled from linear, cubic or

other increasing curves sufficiently closely to obtain a value of R2

approaching unity [43,50]. This is illustrated by Fig. 3, which

shows logistic and Gompertz model fits to linear and cubic data.

Fits of the 62 asymptotic growth curves in this study to the same

linear data all yield R2
§0:97; fits to the cubic data from Fig. 3

yield R2
§0:85 in all but four cases (Table S3). The resulting

model fits produce estimated maximum asymptotic sizes that

range (in the linear case) from 2.9 to more than 8.4661055 (Table

S3 and Text S4). Since there is no maximum asymptotic size for

the linear data set, these are mathematical artifacts caused by

using the wrong model to fit the linear data.

A Monte Carlo simulation comparing fits of asymptotic models

revealed that their standard deviations varied widely (Text S3 and

Fig. S9). The choice of model clearly matters a great deal to the

final results. But the right choice cannot be known a priori, so it is

important to test many models and to use an objective criterion,

such as AICc, to select the best-performing model.

Impact of Error Analysis
The 95% confidence band is a standard statistical error analysis

technique that graphically shows the limitations of predicting

future values from small data sets. Fig. 4 illustrates my attempted

Figure 3. Logistic and Gompertz curve fits to synthetically
generated cubic and linear data sets. Sample plots show logistic
and Gompertz curve fits (solid curves) to a synthetically generated cubic
data set (A, B) and linear data set (C, D), shown as dashed lines. Note
that a, the asymptotic value of the best-fit curves as t??, differs
substantially between the logistic and Gompertz fits, despite R2 values
near 1 in each case.
doi:10.1371/journal.pone.0081917.g003
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replication (see Text S1 and Fig. S7) of the model fit for P.

lujiatunensis from [18] (maximum asymptotic size a ~ 88:5 kg and

b ~ 0:34) along with the 95% confidence band (CB) for the model

fit.

The oldest specimen in the data set is age 11, and the size of that

specimen is just 31% of a, as estimated by this model. This ratio

serves as an internal consistency check on the model fit and its

likely accuracy–it tells us that the predicted maximum asymptotic

size occurs far from the data, at more than twice the age of the

oldest specimen. As a result, the CB closely follows the data points,

but as the curve leaves the region it broadens substantially,

ultimately spanning a factor of 3.7.

In this case, we know that the underlying osteology data set was

explicitly shown to be linear [18]; we should not expect this logistic

model to be valid in this case, any more than fitting to linear data

(cf. Fig. 3 and Table S3). Unfortunately, the utility of confidence

bands or intervals is limited by the fact that we do not know the

correct error model. The confidence band of Fig. 4 may be

conservative because it assumes a homoscedastic error model. If

instead the errors are heteroscedastic–as is discussed below–then

the CB could be even wider. A similar limitation occurs with

confidence intervals – as the bootstrap and Monte Carlo error

analyses show, it is very easy to find that even small amounts of

error can swamp the signal and lead to infinite confidence

intervals. Even with these limitations, it is instructive to perform

error analysis.

Best Fits and Growth Rate Estimates from the Reanalysis
Table 4 presents the best-fitting models and estimated

maximum growth rates for the 31 data sets; a subset of these

curves is illustrated in Fig. 5. Asymptotic models are best fits

(DAICc ~ 0) to all data sets for only four taxa: Tyrannosaurus,

Saurornitholestes, Hypacrosaurus and Apatosaurus. The best fits to the

remaining 10 taxa were obtained either from increasing functions

alone or from a mixture of asymptotic and increasing curves across

multiple data sets. Table S2 and Table S8 present results for all

models having strong statistical support (DAICcƒ2), as well as

best fitting Attenuating and Sigmoidal curves if none have

DAICcƒ2. Fig. S12 plots the best-fit curves for all of the taxa.

The estimates of _ggmax listed in Table 4 are model-dependent;

alternative estimates produced by fitting other models are given in

Table S4. Because all models must fit the same data points for final

sizes, different models all generate the same average growth rate

for a given data set.

When expressed in relative terms, the estimated growth rates

range from a low of 3.4% per year for the Northampton data set to

a high of 105% per year for the Psittacosaurus l1 data set. Although

the latter figure indicates an annual doubling in size, that pace of

growth seems reasonable when one considers that it occurs at the

hatchling stage when the femur length is just 3 cm.

Assessing Specimen Maturity
For the four taxa noted above that are best fit by asymptotic

curves, with dsmaxsmaxw60%, three of them (Tyrannosaurus, Saurornitho-

lestes and Hypacrosaurus) have dsmaxsmaxw90% indicating that the data

sets include specimens that at least approach skeletal maturity. But

for the remaining ten taxa, the oldest specimens available are less

than 62% of the asymptotic size predicted by their best-fitting

asymptotic models. This finding suggests that the specimens for

those taxa were skeletally immature at the time of death, and that

the asymptotic fits may suffer from insufficient data.

Fig. 6 shows the range of the rescaled sizes ŝs and the location of

ĝgmax for all data sets in this analysis for which an asymptotic fit

shows strong support (DAICcƒ2, see also Table S8). The breadth

of the range of sizes and the degree to which the span covers sizes

approaching 100% provide a basis for evaluating confidence in the

maximum size estimated by the model. For Tyrannosaurus, for

example, the fact that the sizes range from about 18% to 99% of

maximum size suggests that the best-fit asymptotic model is

applicable for most of the life span of this taxon and the predicted

maximum size is likely a reasonable estimate. We can similarly

draw confidence in the maximum sizes predicted by model fits for

Hypacrosaurus and Saurornitholestes because their data fall well within

the asymptotic region, and thus constrain the model there.

Because the two Hypacrosaurus data sets cover only the portion from

85% to 99% for the femur data set, and from 60% to 99% for the

tibia data set, however, the estimates they yield for maximum

growth rate or other metrics that occur early in the lifespan are not

well constrained. Psittacosaurus mongoliensis has been omitted from

Fig. 6, because its largest specimen is only 0.6% of the very large

predicted asymptotic size, so its bars would not be visible on the

chart. Some Allosaurus bone data sets have an asymptotic model

with strong support, but its special situation will be discussed

below.

In the case of Psittacosaurus l1 through l4, there were no

asymptotic models with strong support. Nevertheless, the largest

specimens are at most a mere 15% of the predicted maximum

adult size from the best fitting asymptotic models. The best

interpretation of this result is that we should have little confidence

in the estimate of maximum size produced by the asymptotic

models in these cases, both because those models require a large

degree of extrapolation (i.e., from 15% to 100%) to estimate an

asymptote, and because they do not fit the data as well as

increasing curves do.

Fig. 6 shows that most of the dinosaur data sets similarly span a

small part of the apparent size range for the taxon–for eleven sets,

data are missing altogether for the later growth stages–and that

even among those taxa for which an asymptotic model does garner

strong support, most of the specimens (including some of the

largest specimens) were skeletally immature at the time of death.

Underrepresentation of fully grown specimens in the data sets

could explain why increasing growth functions are a better fit than

asymptotic models for so many taxa. Other possible explanations

are discussed below.

Figure 4. Logistic fit to P. lujiatunensis age–mass data points.
The 95% confidence band for the logistic curve is shown in gray.
Despite a large number of data points (82), the data poorly constrain
the asymptotic portion of the curve because they represent mostly
young specimens. By age 30, the curve has reached 88.2, which is nearly
the maximum asymptotic size for this curve fit of 88.47. The fit shown
here is based on an attempted replication of the results in [18]–see Text
S1.
doi:10.1371/journal.pone.0081917.g004
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The Effects of Population Sampling
In 26.8% of the 500 bootstrap trials of the Tyrannosaurus 2 data

set, an increasing curve was the best fit to the resampled data; in

contrast, only asymptotic curves obtained strong statistical support

when fit to the original data set. The reason is clear from

examination of the data sets: the original data include only one

very old specimen (age 28) and one very young specimen (age 2). If

either or both of these data points are missing from a bootstrap

trial, the data points in the middle may be best fit by a non-

asymptotic function.

Bootstrap sampling can be used in certain cases to calculate

confidence intervals on parameters of interest such as g ?ð Þ, at

least with respect to population sampling errors. Unfortunately,

that approach does not work in this case because some of the best

fits are by increasing functions, for which g ?ð Þ is infinite. This

method could be used to create error estimates and confidence

intervals for sizes and ages which fit within the range of the data

points, but those would still be very large.

This example shows that population sampling will continue to

be a problematic issue for dinosaur growth rate studies until the

data sets include a sufficient number of points in all parts of the life

cycle to enable stable statistical results. This limits the statistical

power of estimates, including those in this paper.

The Effects of Errors in Age Estimation
A Monte Carlo simulation using normally distributed hetero-

scedastic errors in age added to the Tyrannosaurus 2 data set found

that, whereas only asymptotic curves had strong statistical support

when fit to the unadjusted data set, the best-fit model was an

increasing function in 1% of the trials when 5% error was added to

the age estimates. At 10% error, the proportion rose to 12.6%, and

it increased further to 19.8% when 15% random error was added

to the data. This is in good agreement with the result found for

Monte Carlo simulation on the effects of error on a synthetic data

set (see Figure S10 and Text S5).

This result suggests that even relatively small amounts of age

estimation error can alter the pattern in the data so much that an

asymptotic curve no longer offers the best fit. As with the bootstrap

results discussed above, this is almost certainly because the

asymptotic nature of the data set depends crucially on a few data

points; if the error on those particular points is great, the

correlation to asymptotic growth suffers disproportionately.

Figure 5. Best-fit growth curves for selected dinosaur taxa. Curves are the results of non-linear regressions in which bone dimension was
used as the independent variable and age as the dependent variable. In each case, the curve shown provided the best fit to the data (DAICc ~ 0)
among 77 alternative models. See Table S8 for fit parameters and Fig. S12 for plots of best-fit curves for other taxa. The shaded area is the 95%
confidence band, assuming homoscedastic, normally distributed errors.
doi:10.1371/journal.pone.0081917.g005
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Discussion

Each of the steps in the whole bone, or longitudinal approach to

growth analysis involves assumptions and choices in the method of

analysis – some of which are explicitly stated, others appear

implicitly. The success or failure of the overall growth analysis

depends crucially on these assumptions and choices.

Issues with Age Estimation
LAG counts involve at least two kinds of uncertainty:

inconsistent counts and missing LAGs. Counts sometimes vary

among bones taken from the same specimen, and even among

multiple thin sections cut from the same bone [10,51–53]. In

addition, LAGs may be missing as a result of bone remodeling,

particularly remodeling that occurs during enlargement of the

medullary region in the bone cortex [10,15].

In the whole-bone method, retrocalculation (step 1a) is some-

times used in an attempt to reduce both kinds of uncertainty. The

most common approach identifies the smallest distance between

LAGs found in smaller specimens, and then uses this single value

to estimate LAGs missing from the bones of larger specimens

[5,6,20,24]. As Fig. 1 illustrates, however, the minimum LAG

distance can vary among specimens. The whole-bone method

lacks the additional data required to reconcile inconsistent LAG

counts or thicknesses.

Retrocalculation has also been performed by physical super-

position of thin sections [18] rather than by calculation. Important

details of the retrocalculation method used–such as how to

reconcile conflicting data from multiple specimens–are omitted or

poorly documented in most papers, as are intermediate data

required to replicate the calculations [10,20,24,25], although some

studies [11,40] have reported such data.

In the longitudinal method, the correlation of time series (step 2)

is able, in principle, to provide more robust results when LAG

counts are inconsistent or missing because it can combine times

series from multiple specimens to provide coverage of the entire

growth range. Fig. 1 illustrates the application of this process to the

Allosaurus humerus data from multiple specimens spanning a wide

range of sizes by Bybee et al. [32]. Their approach is to add age

offsets, specified as an integer number of years, to each time series

to align the curves by sight. Woodward [35] and Lehman and

Woodward [37] similarly analyzed data on two specimens, while

Lee [36] applied the method to several taxa. However, most

longitudinal studies have examined only single specimens, which

limit estimations of the absolute ages to educated guesswork.

Issues with Mass Estimation
Osteology is the source of all data on dinosaur growth, and

questions about maximum asymptotic size (if any) and other

biological characteristics can and should be answered directly from

observations of bones. If estimated masses are needed, they would

best be calculated only after statistical analysis has been performed

on the osteological growth data. Performing mass estimation as an

intermediate step prior to fitting a growth curve unnecessarily risks

introducing error, which could confound the statistical analysis

challenges already present in the osteology. Nevertheless, many

dinosaur growth studies have estimated body mass from bone

dimensions as an intermediate step. Three methods are in use for

mass estimation. Each involves uncertainties or issues that remain

contentious.

The Anderson method. The most widely used method was

described by Anderson et al. [34], who expanded on an idea

proposed by Alexander et al. [54,55] that body mass correlates

with the mechanical strength of long bones, which is in turn a

function of bone circumference. Anderson et al. calibrated this

relation by using an empirical regression on extant quadrupedal

mammals ranging in weight from 47 g to 6,000 kg. The resulting

formula for bipeds is

m ~ 0:16 c2:73
femur,

and for quadrupeds the formula is

m ~ 0:078 cfemurzchumerusð Þ2:73
,

where cfemur and chumerus are the circumference of the respective

bones in mm, and the mass, m, is in grams.

A recent study [56] of 200 mammal and 47 non-avian reptile

species found substantial empirical support for the Anderson et al.

method with a slightly different exponent (2.749 rather than 2.73).

The relevance of the Anderson method to dinosaurs and its

performance as a mass estimator is a vigorous research area and is

the subject of much past and ongoing work [57–67].

Developmental mass extrapolation. DME was introduced

by Erickson and Tumanova [24] on the rationale that the method

of Anderson et al. is suitable for estimating the mass of an adult

dinosaur, but cannot be used for juveniles. Erickson and

Tumanova offered no criteria for determining the age or degree

of maturity of specimen for which the Anderson method is

applicable, however, nor have they or others provided reason to

believe that, a priori, the Anderson method is any more or less

suitable for juveniles than for adults.

As practiced, DME requires the assumption that total body

mass scales isometrically in bone dimension (at least for the bones

measured), from neonate to maximum adult size [24]. Indeed, a

more descriptive term for the method would be isometric

interpolation. Isometric scaling implies that the body mass, m,

scales as m~b l3, where l is a linear bone dimension (length,

radius, or circumference), and b is a constant that has the same

units as density. Typically, the bone dimension used in DME is

femur length, but if the assumption of isometric growth holds true,

then any linear bone dimension should have the same correlation,

although the value of b may differ. To use DME, one first selects

the specimen with the longest femur length lmax, and makes a mass

estimate for that specimen mmax via Anderson or some other

method. Given that, the mass for other femur lengths l, between

0vlƒlmax, is given by

Figure 6. Ranges of bone sizes reported in asymptotic models. Each horizontal bar shows the range of values in the data set, expressed as a
percentage of the maximum bone size predicted by each asymptotic curve that strongly supports the data set. (For some data sets, the best-fitting
asymptotic curve may not fit as well as an increasing curve; see Table 4.) The best fitting asymptotic model is displayed at the top for each taxon. In
cases where a sigmoidal curve provides the best fit, a round dot indicates the rescaled size ĝgmax, at which the maximum growth rate occurs. Each
range shown depends on the model selected, because the curve fit determines the values of g 0ð Þ and g ?ð Þ that are used in rescaling. Note, for some
taxa, g ?ð Þ is so large that horizontal bars showing the range in values of the data set are imperceptible, and therefore have been omitted, as for
Psittacosaurus mongoliensis. Data for these taxa can be found by comparing Table S6 and Table S8.
doi:10.1371/journal.pone.0081917.g006
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mDME ~ mmax
l

lmax

� �3

:

In the case of isometric growth, DME yields estimates for mass

for the ontogenetic series that are smaller than those generated by

the Anderson formula, by the ratio

mDME

mAnderson
~

cfemur

cfemur max

� �0:27

where cfemur max is the circumference of the longest femur (i.e., the

bone used to measure lmax in step 2b of the whole-bone method).

Most allometric correlations for determining body mass are

verified by extensive comparisons to extant animals

[34,56,57,61,65–72]. Despite an extensive search of the literature,

I was unable to identify any published work that assesses the

performance of DME by applying it to ontogenetic series for

extant animals.

In three articles [20,24,25], Erickson and coworkers cite studies

of the alligator Alligator mississippiensis and the California gull Larus

californicus, as well as a 1947 study of Homo sapiens. These studies did

not apply DME but instead showed support for more general

isometric growth during ontogeny. The relevance of humans as a

test case for dinosaurs is unclear. More recent studies [73–77] find

that human growth during childhood is not isometric, and in

particular, is not isometric in femur length [70].

The question of whether dinosaurs grew isometrically can be

investigated directly by studying bone dimensions in an ontoge-

netic sequence. Bybee et al. [32] showed that growth was not

isometric for Allosaurus; each of the principle bones under study

grew at a different rate. I tested this question in my reanalysis of

the Allosaurus data. Kilbourne and Makovicky [78] examined

allometry among bones in many genera of dinosaurs and

concluded that, although a number of taxa did exhibit isometric

growth, the large theropods in their study did not. This finding

raises questions about the application of DME to the theropods in

the studies listed in Table 1.

Laser scanning of skeletons. A third, emerging approach

to estimating mass uses laser scanning of skeletons as a basis for 3-

D computer reconstructions of soft tissue [58,79–81]. Hutchinson

et al. [41] applied this method to an ontogenetic series of

Tyrannosaurus rex specimens. Their results show that the growth

of T. rex was not isometric: body mass m scaled with bone

dimension l as m~b l4:5 or m~b l5:3 for the specimens in their

study and thus is not well modeled by DME. Body masses for the

youngest specimens, as estimated by DME, are 150% to 300% of

the estimates derived by laser scanning (see Text S6, Table S9, and

Fig. S11).

Issues with Fitting Growth Models
The growth of dinosaurs is modeled mathematically, as in other

areas of biology, by a function y ~ g tð Þ, where t is age and y is a

body size parameter, such as length or mass. Many functions have

been used to describe biological growth (see Table S1), including

increasing curves that grow without limit (i.e., g ?ð Þ~?)–such as

linear, quadratic, cubic, exponential and power law curves–and

asymptotic curves that approach the horizontal asymptotic value a
as t becomes large, i.e., a ~ g ?ð Þ~ limt??g tð Þ.

Dinosaur growth studies have most often used logistic,

Gompertz and von Bertalanffy curves, all of which are sigmoidal

(S-shaped) curves. Sigmoidal curves have an inflection point in the

linear phase at age tinf where
d2

dt2
g tinfð Þ~ 0 and the growth rate

achieves a maximum value
d

dt
g tinfð Þ~ _ggmax. Some dinosaur

growth studies have used attenuating curves, such as the negative

exponential (also known as monomolecular) curve

g tð Þ~ a 1{e{bt
� �

. Attenuating curves include linear and asymp-

totic phases but lack an inflection point or an initial exponential

phase.

A review of the literature revealed two broad classes of

problematic issues in the ways that mathematical models have

been applied in dinosaur growth rate studies: four conceptual

issues having to do with unproven or incorrect assumptions that

underlie many dinosaur growth studies and affect the interpreta-

tion of growth models, and five issues concerning the use of

inappropriate statistical methods in the analyses of the models.

Each of these issues is discussed at length here so that these

problems may be addressed and avoided in future work.

Assumption 1–Determinate growth and sigmoidal growth

curves. Most previous studies assume that dinosaurs (or all

vertebrates, according to some authors) exhibit determinate

growth, and moreover that individual specimens must thus have

followed sigmoidal growth trajectories. This assumption is often

stated directly (see e.g. [20,24–26]).

The term ‘‘determinate’’ growth has been applied widely, but

often very loosely, in biology. Sebens [82], in a comprehensive

review of biological growth patterns, defines four types of

determinate growth. Type 1, the growth pattern that is implicitly

assumed by most studies of dinosaurs, is genetically predeter-

mined, with the result that all individuals in the species share a

common growth curve that is asymptotic (but not necessarily

sigmoidal). Type 2 determinate growth also follows an asymptotic

curve at the individual level, but the maximum size and growth

rate may differ from one habitat to another for a given species,

even when genetic changes are absent. In aggregate data on

multiple specimens, this variance in growth appears statistically as

error in the age estimate. In such cases, the aggregate data may

sometimes be fit best by an increasing function rather than by an

asymptotic curve, as is easily demonstrated with Monte Carlo

simulation (see below and Text S5). If type 2 determinate growth

applies to dinosaurs, then we should expect that a data set

including individuals from different habitats and different time

periods may or may not show asymptotic growth.

In type 3 determinate growth, mortality rates vary by habitat

but are sufficiently high that few or no individuals reach an

asymptotic size. Except in permissive ecosystems (for example, in

captivity), individuals continue growing, perhaps at decreasing

rates, until death. Sebens points out that growth curves in type 3

determinate growth may not be asymptotic, even at the individual

level. Type 4 determinate growth combines the properties of types

2 and 3, with high mortality and variation at the habitat or

individual level. Again, the growth trajectories need not follow an

asymptotic curve.

Some dinosaur specimens [25] exhibit an external fundamental

system (EFS), a tightly spaced set of LAGs that is thought to mark

the cessation of further growth [8–12,15]. The existence of an EFS

implies that the specimen stopped growing, either because the

individual reached skeletal maturity or as a result of disease or

habitat-specific reasons, as can occur in type 1 indeterminate

growth within Sebens’ taxonomy. The cessation of growth, even if

it is a result of skeletal maturity, does not by itself provide

conclusive evidence of whether the animal experienced type 1, 2

or 4 determinate growth, or whether the growth curve was

asymptotic.
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Longitudinal studies of the growth of individual specimens offer

some examples of growth cessation. The Hypacrosaurus data set

studied here corresponds to a single individual that apparently

reached skeletal maturity, and the slowing of growth observed in

the data set is well fit by asymptotic curves. Yet we lack the

information needed to determine which of the several possible

types of determinate growth was at work. Nor does a result for a

single hypacrosaur specimen imply that all dinosaurs grew as it

did.

An analogous situation is posed by growth studies of Alligator

mississippiensis: a large-scale (,2000 data point) growth study [83]

of wild specimens in the Florida Everglades found strong statistical

evidence of an increasing growth curve, which the authors

interpreted as evidence of indeterminate growth, consistent with

other crocodilian growth studies [84–86]. Despite this, a recent

histological study [87] found the presence of EFS in several captive

A. mississippiensis, indicating that, at least in those specimens living

in permissive environments, cessation of growth occurred well

before death, which is generally interpreted as evidence of

determinate growth.

Although a full analysis of growth in A. mississippiensis is beyond

the scope of the present study, Sebens’ growth framework offers

several possible resolutions to the apparent contradiction: the

Everglades habitat may not allow specimens there to reach skeletal

maturity (i.e., type 3 or type 4 determinate growth may apply), or

growth may be asymptotic but highly plastic (type 1 indeterminate

growth). Further work is necessary to resolve this, but it

demonstrates clearly that observation of an EFS does not

necessarily imply that an asymptotic growth curve will fit growth

data. Since this occurs for a well-studied extant animal, we cannot

assume the situation will be better when interpreting the much

smaller and less-controlled dinosaur data sets.

Finally, a substantial body of literature holds that many

vertebrates undergo indeterminate growth [82,88–91], including

crocodiles [92–99], which are close dinosaur relatives and form

one significant out-group in the extant phylogenetic bracket

method [100]. It is thus far from proven that all vertebrates have

determinate growth or sigmoidal growth curves. For these reasons

and because dinosaurs are a large and diverse group, the

hypothesis that some may have had indeterminate growth is

worth testing.

Assumption 2–finite population samples. Many studies

implicitly assume that growth data follows sigmoidal growth curves

even when the overall population is sampled by a relatively small

number of data points, and that therefore exclusively sigmoidal

models should be fit to growth data. This assumption is refuted by

the simple mathematical consequence of finite sampling. A finite

data set sampled from a population may be best fit by a non-

asymptotic curve–even if individual dinosaur specimens followed

sigmoidal growth trajectories. This is easily demonstrated by

Monte Carlo simulation (see Text S5). This is exacerbated by the

presence of statistical noise in the data, which can swamp the

signal, and cause the best fit to be an increasing function.

Assumption 3–data set sufficiency. A third unjustified

assumption implicit in many dinosaur studies is that all data sets–

even those that are restricted in the range of ages represented–are

suitable for estimating the basic parameters of growth, including

the maximum asymptotic size g ?ð Þ. It is well known that fits to

sigmoidal models yield meaningful parameters only if the data set

being fit includes points that span the three distinct phases of the

sigmoid curve (or the two phases of attenuating asymptotic curves)

[101–103]. I used several methods to test whether the data sets

representing 14 dinosaur taxa were suitable for sigmoidal fits.

Attempting to fit an asymptotic model to insufficient data can

yield results that are erroneous or even nonsensical, as illustrated

in Fig. 3 and by Table S3 and Table S4. These wide-ranging

estimates are artifacts of the mathematical models used; they offer

no meaningful interpretation of the ‘‘asymptotic size’’ because the

data were drawn from a line or cubic that have no asymptote.

Although these fits work properly in the vicinity of the data points,

they clearly are not suitable for extrapolation far from them

[43,94,96,101–103]–but it is in that distant region that the

asymptotic behavior occurs.

It may be that dinosaur growth data are biased by high

mortality at both ends of the age spectrum in ways that undermine

model fits. Juvenile dinosaur fossils are rare, as has long been

noted [104], perhaps as a result of juveniles being consumed whole

by predators or scavengers [92], taphonomic effects [17], or

geographic clustering of nesting sites.

Dinosaur survivorship curves have only recently been studied

[27,28] and must overcome some substantial statistical issues [19],

but the results so far indicate an exponential decrease in

survivorship for the oldest individuals, as is found for many extant

animals [101]. As an example, the life table for Psittacosaurus

lujiatunensis assembled by Erickson et al. [18] shows 97.4%

mortality by age 12, at which point the specimens are only 30%

of the maximum size estimated by fitting the model used in the

original study [18] (see Text S1 and Table S4 and Table S5).

Examination of extant bird colonies showed that they produce

specimens from age zero to about half adult size, but rarely any of

full size [93], and this may be a good model for dinosaur nesting

colonies. If high mortality is typical, then small samples are likely

to contain few, if any, fully mature specimens.

Assumption 4–the prediction fallacy. Many dinosaur

growth studies produce a mathematical model that is based on

one or more of the assumptions above and least-squares

regression. The resulting curve is then used to estimate a

maximum asymptotic size, maximum growth rate, or other

parameters–in effect, to predict the growth history of the species

over its full lifespan, even when few or no data points lie near the

relevant portion of the growth curve.

No principle of statistical inference supports this practice. Least-

squares regression and related statistical techniques minimize the

difference between a model and the data points [94,102,103]; they

thus evaluate the model only at the data points, and it is only near

those points that the resulting fit can be useful and valid. Taking a

portion of the curve that is far from the data points seriously as a

prediction is widely considered to be unsupported extrapolation

[43,94,96,101–103]. A specific example of this fallacy is to assume

that the parameter a can always be interpreted as a good statistical

estimate for g ?ð Þ, the asymptotic growth size. While parameter a

always exists for a fit to any data set, not every data set has

sufficient points in the asymptotic region that one is justified in

interpreting a as a valid prediction for where growth will lead.

That is the situation with the fits to linear or cubic data sets

discussed above – the asymptotic fits are good in the vicinity of the

finite data set, but not valid far away.

The best statistical practice is to use the model that best fits the

data points, as measured by objective model selection methods

[43,94,96,101–103], rather than rely on one’s expectations for the

behavior of growth trajectories. In this study, I used a formal

model selection criterion, the corrected Akaike information

criterion AICcð Þ [43], to determine the best fits to data sets

among a wide range of plausible models.
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Statistical Issues
Beyond these conceptual problems, five kinds of methodological

issues appeared recurrently in the dinosaur growth rate studies I

reviewed. In a number of cases, these problems reflect serious

departures from accepted statistical methodology that could

greatly magnify errors and may undermine confidence in the

results of the studies, or even invalidate them altogether.

Inappropriate choice of variables. A bedrock assumption

in ordinary least-squares regression (also known as Model I

regression) is that the independent variable has no error; all error

to be minimized by the regression procedure occurs only in the

dependent variable [94]. Model II regression (or Deming

regression) distributes the error equally in independent and

dependent variables [94].

In dinosaur growth data sets, the bone dimensions are typically

measured accurately to within a millimeter (except when fractured

or incomplete), so they make a natural choice of independent

variable for conventional regression. Age, in contrast, is estimated

with considerably greater uncertainty, and for that reason it is the

natural choice for the dependent variable. Using size rather than

time as the independent variable has long been recommended in

studies of growth in extant animals [95].

Unfortunately, most prior dinosaur growth studies treat age as

the independent variable and use body size (either mass or bone

dimension, depending on the study) as the dependent variable.

This violation of the basic assumption of regression has the

potential to introduce serious errors and to magnify the effect of

any errors already present in the data.

Monte Carlo simulations show the severity of this wrong choice

of independent variable – the error in parameter estimation is

substantially larger. One previous dinosaur growth study [32] used

Model II regression of age against mass in order to accommodate

errors in both the mass and age estimates. An even better

approach, in cases where tightly controlled laboratory measure-

ments of bone dimension are available, is to avoid using mass

estimates altogether, as they have unknown error properties.

Overfitting. The statistical explanatory power of a curve fit

depends in part on a comparison of the number of model

parameters to the number of data points. As the number of

parameters approaches the data point count, explanatory power

diminishes rapidly, and the data set is said to be overfit [105–108].

Growth studies for many dinosaur taxa are constrained by very

small data sets (see Table 2 and Table S7). As a result, they require

models that have a concomitantly small number of parameters.

This requirement has not always been observed, however. Prior

studies of three dinosaur taxa–Shuvuuia, Maiasaura [20] and

Daspletosaurus [25]–employed four-parameter models to fit just

three data points. In studies of Apatosaurus [20] and Tyrannosaurus

[41], four-parameter models were fit to four data points. Such

practices violate accepted statistical norms and cannot be expected

to yield meaningful results.

AICc assigns an information theoretic likelihood of validity that

depends on n, the number of fit parameters, and m, the number of

data points. Zero likelihood of validity (DAICc~?) is assigned to

fits where n§m{2 [43]. Under this criterion, the curve fits for

Gorgosaurus and Albertosaurus [25], each of which fits four

parameters to five data points, are also invalid. In cases of this

kind, when the number of data points is known to be small, two- or

three-parameter models must be used to obtain results that are

statistically meaningful under AICc. Overfitting cannot be avoided

merely by selecting arbitrary values for one or more parameters

(see Text S1).

Arbitrary model selection. Most prior studies of dinosaur

growth attempted to fit only one model [20,24,25,29,36]. Just two

[36,38] papers reported the use of formal statistical criteria to

select the best-fitting model among many plausible alternatives. All

of the other studies reviewed here employed ad hoc or arbitrary

means to choose among two or three growth models.

In a 2009 study [18], for example, the authors chose two

sigmoidal curves (logistic and Gompertz) to fit age–mass data for P.

lujiatunensis. Finding that ‘‘A Gompertz equation (black dashed

line) shows similar fit for the empirical data but predicts an

unreasonable asymptotic size (107-kg),’’ the investigators made a

subjective choice to favor the logistic model, which better matched

their personal judgment of what is reasonable for asymptotic size.

Such a reliance on intuition allows subjective opinions and

preconceptions to enter and even dominate the statistical analysis.

Limiting the models tested to just two excludes the possibility that

searching a wider suite of curves may yield one that is a better fit.

Moreover, model selection methods based on intuition are difficult

to replicate and can generate contradictory conclusions. Fig. 3 in

[18] shows that age is well fit by a linear function of femur length,

for example, and the authors use this linear relation to estimate the

ages of many of the specimens in the study. But they then use

DME to convert this linear age–femur length relationship to an

age–mass relationship, and they fit an asymptotic curve to the

latter. Given that they show the data set is already well fit by a

straight line, it is difficult to understand why only asymptotic

models were applied to the data in the next phase of the study.

In contrast, objective model-selection methods such as AICc

produce easily replicated estimates based either on the best-fit

curve or on an AICc-based weighted average across models [96].

Extrapolation without error estimates. Although the

purpose of growth analysis is to estimate growth rate, maximum

asymptotic size, and other biological parameters of interest, it is

not always possible to derive good estimates from a limited data

set. Unfortunately, confidence intervals, error estimates or other

self-consistency checks are rarely presented in published studies of

dinosaur growth. This omission limits the utility of the studies’

results, particularly for estimates of g ?ð Þ because, for 11 of the 14

taxa studied here, no data points fall within the asymptotic region.

Exclusive use of asymptotic models. Given the limitations

of the data discussed above, it is a source of concern that most

prior studies have excluded non-asymptotic curves when modeling

growth data. This choice overly constrains the growth analysis and

could result in important biological information being overlooked.

It also opens up the possibility of erroneous estimates from fitting

unsuitable models to the data.

The need to compare the performance of asymptotic models to

non-asymptotic alternatives is particularly acute when estimating a

biologically meaningful parameter such as g ?ð Þ, which does not

exist in increasing models. Although, as the example in Fig. 3

shows, one can fit asymptotic curves to data derived from

increasing functions, interpreting the fit parameter a as an estimate

for g ?ð Þ is invalid. The converse is also true; a finite data set

sampled from an asymptotic curve can appear to be increasing. To

be worthy of serious consideration, any estimate must be derived

from a model that produces the best fit to the data (or at least has

strong statistical support) among multiple alternatives, and even

then it must only be used in the vicinity of the data points.

Although many studies feature exclusive use of asymptotic

models, there have been notable exceptions. As early as 1993,

Chinsamy-Turan [6] found that the best fit for Massospondylus was

a power-law model, which was compared to exponential and other

non-asymptotic curves. In a more recent study [15], she showed

that growth data from Massospondylus, Syntarsus and Psittacosaurus

mongoliensis fit non-asymptotic curves well. Several studies have

applied power-law [32] or linear models [97]; Cooper et al. [38],

Revisiting the Estimation of Dinosaur Growth Rates

PLOS ONE | www.plosone.org 14 December 2013 | Volume 8 | Issue 12 | e81917



for example, noted that a linear model also fits the data for several

theropod taxa to which Erickson et al. [25] fit sigmoidal curves. In

a 2007 paper, Lee [36] analyzed 26 datasets and found that 21

were best fit by a linear model. Some later studies [18,27]

nevertheless employed asymptotic curve fits exclusively for age–

mass data, despite in one case [18] finding that linear models

provided an excellent fit to the femur length–age data, which

implies that growth was not asymptotic.

Comparison to Previous Results
As discussed above and also in greater detail in the Supporting

Information (Text S1), many previously published results in

dinosaur growth studies were obtained by using methods that

deviate from accepted statistical practices or are irreproducible

due to lack of published data or methodology. Additionally, prior

studies that presented mass growth rates depend crucially on

estimates of soft-tissue mass, which are obtained by DME or other

methods that involve intrinsically higher uncertainty than osteol-

ogy. These prior studies also used age as the independent variable,

whereas I use it as the dependent variable.

The study of bone growth offers a simpler and more informative

source of insight into dinosaur growth rates, so I present bone

growth rates (cm/year) in the tables and figures here as the

preferred way to present results. However, I also used DME and

the same mass estimates as the original papers to convert the bone

growth curves into mass curves, but only for the purpose of

comparison with previous work. Because this conversion results in

mass–age data points that are the same as those published in prior

work, my estimates of mean growth rate (i.e., averaged over

lifespan) must be identical to those in previous studies. Only the

growth trajectories–i.e., whether growth was slow and steady, or

concentrated in a rapid burst–may differ. In particular, I find peak

growth rates that differ, in many cases substantially, from those

previously reported and widely cited in the literature (Table 3).

Tyrannosaurus. A 2004 analysis by Erickson et al. [25]

estimated a peak growth rate of Tyrannosaurus of 767 kg/yr. This

cannot be replicated; the first derivative of the regression function

given in that paper actually peaks at 791 kg/yr – see Text S1 for a

discussion. A 2006 study by Bybee et al. [32] estimated a growth

rate for this species of 559 kg/yr, and in a subsequent paper,

Erickson et al. [17] published a revised estimate of 601 kg/yr. The

recent method of Hutchinson et al. [80] for estimating tyrannosaur

masses has so far been used on only four specimens, too few to fit

even a two-parameter model.

I was unable to replicate the published regression equation of

[25]. The best-fit regression that I found using their original stated

methodology yields a peak growth rate of 467 kg/yr (Table 3, see

also Fig. S1, Fig. S6 and the discussion in Text S1). However, the

more rigorous approach described above, which uses femur length

as the independent variable and formal model selection among a

wide set of growth functions, followed by conversion from femur

length to mass, results in an estimated peak growth rate of 365 kg/

yr (Table 5). This value is 22% less than that obtained by

attempted replication of [25], but is less than half that of the peak

rate derived from the equation published in that reference.

It is unclear whether the simple Monte Carlo error model used

here adequately describes the errors likely to occur when

estimating dinosaur ages. Horner and Padian [40] published

error estimates with their T. rex ages of 10+1, 18+2 and 14+2,

which correspond to 10% to 14% error. Few other growth studies

have reported error estimates. If the Monte Carlo model presented

here does adequately reflect the errors, the simulation results imply

that the Tyrannosaurus 2 growth curve is sensitive to estimation

error and that further work is needed to determine what value or

distribution of errors are appropriate.

Apatosaurus. A 2001 study [20] estimated a peak growth

rate of 5466 kg/yr for Apatosaurus. The results here find a far lower

rate of 485 kg/yr, which supports the conclusion of other authors

[35,37] that the earlier estimate was flawed, although the disparity

may also arise in part from differences in the data used. My

analysis draws on Woodward’s longitudinal reanalysis [35] of two

of the specimens reported by Curry [98]. The 2001 study used

four specimens from Curry to create a whole-bone data set, but

those data were not available.

In all three previous studies of Apatosaurus growth rates, the

authors fit asymptotic (von Bertalanffy) models exclusively. My

results do show strong statistical support for asymptotic models of

this data, but the estimates of maximum asymptotic size should be

treated very cautiously because, under the best-fit model, the

largest specimen is only 37% of full size.

Other dinosaur taxa. Results for other taxa are summarized

in Table 5. Reported rates in this table are limited to just the

eleven taxa in those five studies (out of the 26 listed in Table 1) for

which the data and details published were sufficient to reproduce

the regression results closely.

Table 5 presents growth rates from both asymptotic and

increasing functions. These rates can be compared because they

have been evaluated only at data points, thus avoiding issues of

extrapolation. In general, the results here are quite compatible

with those from previous studies, and the differences show no

overall pattern: in some cases the best-fit rates are faster, and in

others they are slower.

In the case of Alamosaurus, the earlier study estimated an

asymptotic size, whereas I find that the only model having strong

support is linear and thus does not approach an asymptote. I

similarly find strong support only for an increasing model to fit the

data set for the Northampton sauropod. The data for Janenschia

support both increasing and asymptotic models, but the range of

sizes in the data set does not extend far enough into the asymptotic

growth region to allow estimation of the asymptotic size with any

confidence.

A reanalysis of the Psittacosaurus l1 data set from [18], using

femur length as the independent variable, found that the data is in

fact best fit by an increasing model. Moreover, even when the

reanalysis is restricted to asymptotic models, logistic and Gompertz

curves do not garner the greatest support from AICc.

Quantitative comparison of the mass growth rates estimated

here to those made in longitudinal studies other than those

mentioned above is not possible because they do not explicitly

calculate mass growth rates. Those studies instead use growth rates

to draw conclusions about differences in ontogenetic growth

between bones of Allosaurus [32], or between Tyrannosaurus and

Hypacrosaurus [38]. The qualitative conclusions of these studies are

supported by the analysis here, as is the finding of non-isometric

growth in Bybee et al. [32], which provides the best longitudinal

data set available for any taxa of dinosaur.

The Case of Allosaurus
Bybee et al. [32] presents multiple data sets for A. fragilis,

including longitudinal data measured from humerus, tibia, ulna

and femur fossils. Curves were fit by eye, using integer age offsets,

to determine the ages (Table S6, data sets labeled hc1, tc1, uc1,

and fc1, respectively). I reanalyzed the data by using a least-

squares minimization procedure that does not constrain the age

offsets to integer values. The results (Table S6, data sets labeled

hc2, tc2, uc2, fc2, fc3 and fc4) are highly similar to those

previously reported [32] for the humerus (Fig. 1), ulna, and tibia.
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Table 5. Comparison to previous estimates of mass growth rate.

Taxon Reference Source of estimate

Age of data point
with highest
growth rate (yr)

Highest
growth rate
(kg/yr)

Highest
growth rate
(%/yr)

Tyrannosaurus [25] published result 767

[25] derived from regression equation 16 790 29%

[25] actual best fit to age, mass 16 460 18%

this paper bone dim. fit, scaled to mass 14 365 15%

Gorgosaurus [25] published result 114

[25] derived from regression equation 14 107 13%

[25] actual best fit to age, mass 18 126 11%

this paper bone dim. fit, scaled to mass 18 132 12%

Albertosaurus [25] published result 122

[25] derived from regression equation 15 126 17%

[25] actual best fit to age, mass 15 121 16%

this paper bone dim. fit, scaled to mass 24 155 9%

Massospondylus [20] published result 34.6

[20] derived from regression equation 12 33.3 19%

[20] actual best fit to age, mass 15 51.1 21%

this paper bone dim. fit, scaled to mass 15 42.30 17%

Syntarsus [20] published result 9.14

[20] derived from regression equation 3 7.46 100%

[20] actual best fit to age, mass 4 5.41 52%

this paper bone dim. fit, scaled to mass 6 4.83 25%

Psittacosaurus mongoliensis [20] published result 5.82

[20] derived from regression equation 7 5.43 52%

[20] actual best fit to age, mass 7 5.61 53%

this paper bone dim. fit, scaled to mass 9 9.37 41%

Psittacosaurus mongoliensis [24] published regression equation 7 4.59 41%

[24] actual best fit to age, mass 8 5.11 32%

this paper bone dim. fit, scaled to mass 9 9.37 41%

Psittacosaurus lujiatunensis [18] published regression equation 0.5 5.04 24%

[18] actual best fit to age, mass 10 5.24 22%

this paper bone dim. fit, scaled to mass 11 7.71 25%

Apatosaurus [20] published result 5466

[37] derived from regression equation 18 399 11%

[37] actual best fit to age, mass 18 482 11%

this paper bone dim. fit, scaled to mass 17 485 11%

Alamosaurus [37] derived from regression equation 13 890 15%

[37] actual best fit to age, mass 13 1083 16%

this paper bone dim. fit, scaled to mass 13 1271 19%

Janenschia [37] derived from regression equation 11 624 15%

[37] actual best fit to age, mass 12 657 14%

this paper bone dim. fit, scaled to mass 20 1430 10%

Northampton [37] derived from regression equation 24 180 7%

[37] actual best fit to age, mass 33 209 5%

this paper bone dim. fit, scaled to mass 25 281 4%

Note that the growth rates in this table are only evaluated at the data points, which have integer ages. The highest growth rate at a data point is less than or equal to
the maximum growth rate across the entire life span _ggmax , which in general occurs at a non-integer age tinf .
Comparison of maximum mass growth rates and age at peak growth rate from the best-fit models in this study (those for which DAICc~0) to corresponding values
published in other studies. Growth rates are expressed in terms of both mass and percentage of mass added per year.
doi:10.1371/journal.pone.0081917.t005
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The results for the femur vary substantially, however, depending

on which method is used to assign age offsets (Fig. 7). The femur

data for Allosaurus include six specimens. The alignment method

used in [32] assigns an age of 14 years at time of death to two

specimens whose femoral circumferences differ by a factor of 1.8

(190 mm vs. 338 mm, Fig. 7B). The corresponding mass

difference is a factor of 4.8, if calculated by using the Anderson

et al. bipedal formula [34] or a factor of 5.6 if calculated by

isometric scaling. A roughly five-fold difference in mass between

two individuals of the same age and same taxon seems biologically

implausible, although not impossible.

The least-squares alignment method combines data from the six

specimens into a single curve and yields a somewhat more

plausible result: an estimated age of 11 years for the smaller femur

and 14.5 years for the larger (Fig. 7C). The results of this method

suggest, however, that the growth rate accelerated dramatically

starting at about age 12, a pattern that seems biologically unlikely

and is not consistent with trajectories seen in the humerus, tibia, or

ulna data for Allosaurus.

Fig. 7D illustrates a third approach to assigning age offsets,

which splits the femur data sets into two groups and to cluster each

group separately by using the least-squares procedure. Splitting the

data in this manner would be appropriate if the femora in the data

set originated from two biologically distinct populations, such as

different species, subspecies, or genders. Data sets fc3 and fc4 have

been split and clustered separately.

Fig. 8 illustrates the relative growth rates of the bones by

plotting the ratio of the models that best fit to them. Isometric

growth implies that all bones grow at the same rate, which would

appear as horizontal lines on these charts. Instead, we see evidence

that growth was highly non-isometric, a finding that independently

supports the primary conclusions of Bybee et al. [32] by the use of

different models.

The ratio plots in Fig. 8 also test the consistency of the femur

data sets with those for other bones. The non-isometric trajectories

seen in Fig. 8A, with three of the four ratios increasing after an

initial drop to value well above 1.0, implies that late in life the

circumferences of the tibia and femur differ substantially. As a

matter of biomechanics, such wide differences seems implausible

because the strength of long bones under load is a function of

circumference [99] and one expects strengths to be similar in

different parts of the same leg.

The ratio of femur to tibia circumference for the data set

Allosaurus fc3, in contrast, monotonically approaches an asymptote

of 0.82 by age 20 (solid green curve in Fig. 8A). This is the

trajectory that one would expect, and it suggests that the splitting

and clustering of this femur data set is biologically valid and that

Allosaurus fc3 is the femur data set that matches the tibia data set

Allosaurus tc2. Similar patterns are seen in plots of the ratios of

femur models to the humerus hc2 and ulna uc2 models (Figs. 8B

and 8C). In each case, the ratio for the best-fit model to the fc3

data set approaches a plausible asymptote, whereas the other

ratios rise at advanced ages to unreasonable levels. Both the ratio

of tibia to humerus and that of ulna to humerus (Fig. 8D) approach

reasonable asymptotes, which confirms that those data sets are

compatible with one another.

Taken together, the asymptotic behavior of these ratios strongly

suggests that the specimens in the Allosaurus fc3, hc2, tc2, and uc2

data sets all originated from the same taxon. Conversely, it also

suggests that the three specimens in Allosaurus fc4 (UUVP 11164,

UUVP 2656, and UUVP 3694) represent a biologically distinct

group. The biological distinction could be a difference in taxon,

Figure 7. Longitudinal time series for A. fragilis femora. A, raw data from Bybee et al. [32]; the time series of LAGs from each specimen is
plotted as a separate curve. B, the data set Allosaurus fc1, in which age offsets, Si , were applied to line up the time series by eye, as published in [32].
C, the data set Allosaurus fc2, in which a least-squares minimization procedure was applied to optimize the age offsets to produce a single cluster. D,
splitting the A. fragilis femur data into two groups and separately clustering each group by using the least-squares method yields the Allosaurus fc3
(left cluster) and Allosaurus fc4 (right cluster) data sets.
doi:10.1371/journal.pone.0081917.g007
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sexual dimorphism, or perhaps an environmental factor, such as

more favorable habitat. Another possible, but less likely, explana-

tion is error in the data set, for example bone remodeling which

altered the LAGs.

Only increasing models have strong statistical support when fit

to the Allosaurus fc3 and fc4 data sets. We can therefore determine

only the lower bound on the maximum size at skeletal maturity,

which clearly must be larger than the largest specimens in the data

set. Whereas the previous study [32] found a ratio of 1.8 between

the femoral circumferences of two 14-year-old individuals, the split

and clustered data sets fc3 and fc4 differ in femoral circumference

by a factor of 2.1 at age 12, corresponding to a mass ratio of 7.6

(bipedal formula) or 9.3 (isometric scaling). Splitting the data sets

reduces the precision of the method used to determine relative age

offsets, so the actual size difference may be smaller than the mass

ratios suggest.

Nevertheless, such a large difference in size suggests that the two

groups may represent distinct taxa, especially considering the

difficulty of making precise taxonomic assignments based only on

isolated long bones. I conclude that, assuming the absence of

systematic errors in the data, the most likely explanation is that

UUVP 11164, UUVP 2656, and UUVP 3694 are from a fast-

growing, and likely gigantic, unidentified Allosaurid taxon distinct

from A. fragilis.

Although most taxonomic groups in paleontology are identified

by osteology, taxonomy also recognizes formal groups identified

from footprints (ichnotaxa), eggs (ootaxa), and other character-

istics. The Allosaurus results presented here would, if confirmed, be

the first of a new category, an anaptorythmic (from the ancient

Greek for ‘‘growth rate’’) taxon that is initially distinguished from

other groups by its growth curve. Although the current finding

must be regarded as tentative until confirmed by further research,

this example shows some of the potential value in using growth

curves to study dinosaurs.

Conclusions

In order to obtain robust, reproducible results in model-based

studies of dinosaur growth, it is essential that workers in this area

address the conceptual and methodological issues identified here.

Model selection and curve fitting should be performed in

accordance with standard statistical methodologies and with care

to recognize the assumptions and limitations of the models and

their interpretation.

The analyses reported here find that only a few dinosaur growth

data sets exhibit a marked slowing of growth with age and that

most previous qualitative assumptions of asymptotic growth were

incorrect. These findings have implications for the validity of other

kinds of dinosaur studies. Estimates of peak dinosaur growth rates

from Erickson et al. [20] have been incorporated, for example, in

calculations of dinosaur body temperatures [109]. Those studies–

as well as any others that make inferences from ages or maximum

Figure 8. Ratios of Allosaurus long-bone growth models. The growth models that best fit longitudinal time series of LAG circumference are
compared by plotting ratios of best-fit models for femur to the best-fit models for (A) the tc2 tibia, (B) hc2 humerus, and (C) uc2 ulna data sets. If
Allosaurus grew isometrically, the ratios would be constant and thus would appear on the charts as horizontal lines. Four alternative time series,
calculated using the models that best fit the femur data sets fc1, fc2, fc3 and fc4 (see Fig. 7), are plotted in each panel. Comparison of the ratio curves
suggests that data set Allosaurus fc3 (green curve) is the best match to the humerus, tibia and ulna time series. The dramatic change with age
observed in data set Allosaurus fc2 (red curve) suggests that the specimens it represents may be biologically different from those in the other data
sets. D, the ratios of the best-fit models for the tibia tc2 data set to those for the humerus hc2 data set, and similarly the ratios for ulna uc2 to
humerus hc2, both approach reasonable asymptotes, suggesting that those three data sets are compatible with one another.
doi:10.1371/journal.pone.0081917.g008
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sizes derived from prior studies–should be reexamined because

their inputs may not be valid.

One motivation for studying dinosaur growth rates is to

compare them to extant animals such as crocodiles, birds and

mammals. This approach has been used to infer aspects of

dinosaur metabolism and other biological properties [5–

15,20,22,23,25,37]. The results here revise some growth rates

upward and others downward. They do not change the broad

conclusion that dinosaurs were relatively fast-growing creatures.

The lack of data points and lack of mature specimens, however,

implies that great caution should be used in drawing conclusions

from the quantitative rates until more data has been analyzed.

A second surprising conclusion from this study is that so few

skeletally mature specimens appear in the growth data sets.

Mature individuals seem to be missing or underrepresented in the

data on a wide range of taxonomic groups, including ornithopods,

theropods, ceratopsians, hadrosaurs, sauropods and prosauropods.

This latter conclusion is consistent with the results of Horner

and coworkers [110], who report that most of the dinosaur bone

histology specimens they have examined are skeletally immature.

It is also supported by the initial studies on dinosaur life tables that

show steep mortality curves [17–19,28]. A study by Sander and

Tückmantel [111] of bone growth lamina in specimens of

Apatosaurus, Barosaurus, Brachiosaurus, Janenschia and an unidentified

diplodocid found consistent lamina thickness across the range of

ages studied, which similarly implies a linear trend in bone growth

and thus a lack of skeletal maturity.

The most parsimonious explanation for this pattern is that most

dinosaur data sets to date are dominated by skeletally immature

specimens, even at the largest sizes. It is possible, however, that the

apparent bias is a result of random or systematic errors in the age

estimation process–including, perhaps, the retrocalculation step in

the whole-bone method. But, it is interesting that skeletally mature

specimens are also absent in many longitudinal data sets that

employ no retrocalculation.

One potential form of systematic error to consider is taxonomic

misclassification. If mature individuals are assigned to a different

taxon from juveniles, the result could appear as an absence of

mature specimens. Although this might seem unlikely, Scannella

and Horner [112] have argued, by analysis of an ontogenetic

sequence, that Triceratops and Torosaurus should be considered a

single taxon that includes both skeletally immature (Triceratops) and

mature (Torosaurus) specimens. In their view, the specimens were

misclassified as distinct taxa for many years because ontogenetic

changes in cranial anatomy late in life altered the appearance of

mature individuals so much that they initially seemed to warrant a

separate genus. Erickson et al. [18] have similarly suggested that

the Psittacosaurus major specimens should be united into a single

taxon with P. lujiatunensis. Perhaps even larger psittacosaur taxa,

representing the next stage of ontogeny, await discovery.

The new approach to estimation and analysis of growth rates

presented here suggest several directions for future study. One

high priority should be to improve the data sets available for

growth analysis so that conclusions made from them carry a high

degree of statistical confidence. A policy of transparency in

publishing both complete data and a description of methodology

detailed enough to enable independent replication of reported

analyses is very important to the further development of dinosaur

growth studies.

A straightforward approach would be to perform additional

longitudinal studies on specimens that were previously examined

by using the whole-bone method (see Table 1); for these

specimens, much of the hard work of collection and preparation

of histological slides has already been done. Measurements made

from digital micrographs of the slides would enable both new

analyses and verification of prior retrocalculation work.

I did not consider how the rate of tissue deposition may have

influenced LAG formation, a topic that has been examined in

histological studies [14,111,113]. Additional work could also

improve the confidence with which we are able to estimate body

masses from bone measurements, a task that is important but still

involves a high degree of uncertainty. Characterizing DME and

other mass estimation techniques by applying them to a range of

extant animals would greatly improve our understanding of the

potential sources of error in using this method to study extinct

taxa.

Finally, the use of split clustering of longitudinal LAG data sets

and of bone growth model ratios demonstrated here for Allosaurus

holds promise as a possible way to detect misclassification of

specimens, and perhaps even to detect previously unidentified

taxa. More insight could be obtained from a comparison of bone

ratios from articulated specimens, especially among specimens

thought to be of similar age at time of death. In the intriguing case

of Allosaurus, existing morphometric studies report bone length

rather than circumference [114–116], so such a comparison must

await further work.

Supporting Information

Figure S1 Plots of attempted replication of results from
references [20,24,25]. The published regression equations from

references [20,24,25] (red and brown) can be compared in these

plots to the published data points (blue dots) and the best-fit curve

for logistic function A (dark blue) and for function B (dashed

magenta) and B2 (green) or C (dashed magenta) and C2 (light

blue). Note that P. mongoliensis occurs in two different papers

[20,24] and thus has two regression equations. The fits for

Albertosaurus and for P. mongoliensis are fairly close (see Table S1),

but the other published curves are not very close to either the best-

fit curves or the data points.

(PDF)

Figure S2 Plots of prior study best fits and attempted
replication of results from reference [20]. The published

regression equations from reference [20] (red) are overlaid for

comparison with the published data points (blue dots) and data

points recovered from the curve via image processing (red dots).

The best-fit curves for logistic function A to the published points

(blue), A2 (dashed magenta) and to the recovered data A (green),

A2 (dashed black) differ substantially from the curves correspond-

ing to the published regression equations. A, B, data points for

Massospondylus and Syntarsus data from references [5] and [6], as

described in Text S1. C, D, adding the data points recovered from

the plots yields different data sets (see discussion in Text S1).

(PDF)

Figure S3 Plots of prior study best fits and attempted
replication of results from reference [37]. The fits

presented in reference [37] are shown in red, whereas the

attempted replication best fits are drawn in black, as are the data

points. Rather than best fits, the authors of [37] explicitly present

two or three fit scenarios for each taxon in an effort to place lower

and upper bounds on possible fits. In the case of Apatosaurus and

Alamosaurus, at least some of the fit scenarios are close to being best

fits. In the case of Janenschia and the Northampton sauropod, they

are less successful.

(PDF)

Figure S4 Detailed analysis of the Massospondylus plot
from [20]. A, a digital scan of the original plot from [20]. B,
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recovered data points have been overlaid in red. The close

correspondence with the original data points shows that the overlaid

plot is well registered with the scanned plot. C, the published data

set, a curve fit to the published data set (blue) and a fit to the

recovered points (green). Labeled features a, b and c are discussed

in the Text S1. Each of the colored lines shows attempts to replicate

the fit. The published regression equation (red curve) matches the

curve in the original plot well by overlapping it throughout its range.

None of the attempted replication fits, either to the full data set, or

the recovered data set, match the curve in the original plot.

(PDF)

Figure S5 Detailed analysis of the Syntarsus plot from
[20]. A, a digital scan of the original plot from [20]. B, the

recovered data points overlaid in red. The close correspondence

with the original data points shows that the overlap plot is

reasonably well registered with the scanned plot. C, the regression

equation (red), Chinsamy data set (blue dots), curves fit to the

Chinsamy data set (blue, dashed magenta) and a fit to the

recovered points (green, dashed black). Labeled features a, b and c
are discussed in the Text S1. The published regression equation

matches the curve in the original figure well, by overlapping it. So

do the various attempted replication curves based on the

recovered data set (green, dashed black). This strongly suggests

that the regression equation was derived from the recovered data

points (i.e., the data points that appear in the figure), rather than

from the full Chinsamy data set (blue dots). The attempted

replication fits to the full Chinsamy data set (blue and dashed

magenta) are substantially different than the regression equation.

(PDF)

Figure S6 Detailed analysis of the Tyrannosaurus plot
from [25]. A, a digital scan of the original plot from [25]. B, the

published data points overlaid in blue. The close correspondence

with the original data points shows that the overlap plot is well

registered with the scanned plot. One data point (labeled a in B
and C) is not well registered. The plotted data point appears to

correspond to a non-integer age (,22.25 years), whereas all of the

data points in the publish data set are LAG counts and thus are

integers. C, the published age–mass data points overlaid in blue,

along with the best-fit logistic function A (blue), best-fit logistic

function B (dashed light blue) and the published regression

equation (red). Labeled features a, b and c are discussed in the

Text S1. The published regression equation (red) differs

substantially from the plotted curve (see point c) in the plot.

Neither the plotted curve nor the published regression equation

matches any of the attempted replication fits.

(PDF)

Figure S7 Detailed analysis of the Psittacosaurus lujia-
tunensis plot from [18]. A, a digital scan of the original plot

from Fig. 6 of [18]. B, the full data set overlaid in red points and

the regression equation from the caption to Fig. 6 of [18]. Fits

from logistic functions A, D, E, F and G are also overlaid on top of

the plot. C, the original plot overlaid with the subset of data points

that are histologically aged, along with fits to that data set. D, the

data set modified to match the original plot data points, along with

fits to that data set. Features a, b, c, d and e labeled with arrows

are discussed in Text S1.

(PDF)

Figure S8 Logistic curve used in the Monte Carlo
examples. A, regularly spaced sample points, and B, points

displaced in time by a random amount drawn from a normal

distribution to create a Monte Carlo sample.

(PDF)

Figure S9 Estimates for maximum asymptotic growth
parameter a from synthetic data. Histograms of estimates

for maximum asymptotic size a from 500 data sets generated by

the Monte Carlo method with either homoscedastic or hetero-

scedastic error models as described in the text. In each case, the

same curve sampled to generate the data (Logistic 3z of Fig. S8)

was also used to do the fits; this is the original curve. The Monte

Carlo data was then fit with either the same or a different

asymptotic curve. Estimates of the parameter a made with age as

the independent variable (blue histogram) have much larger

standard deviation sD, than the standard deviation sR of those

made with time as the independent variable (red histogram): 208%

in the case of heteroscedastic errors and 409% in the case of

homoscedastic errors when the original and fit curve were the

same. The ratio of the standard deviation sR of the curve used to

analyze the fits to the standard deviation sRsampled of the curve

used to sample the data is 1 for the homoscedastic case because the

analyzing and sampling curves are the same. In the other cases,

however, the original curve and the one with which it is fit are

different. In general, estimates of the parameter a, made by using

age as the independent variable, have a much larger standard

deviation, than do those that used time as the independent

variable, although the ratio sD=sR varies for the curve. The ratio

of the standard deviation of each analyzing curve sR to the base

case for the curve used to sample sRoriginal varies widely, from a

low of 1% for Extreme Value 3a (i.e. a better estimate than using

the same curve), to 623% for Morgan Mercer Flodin 4b. This

shows that the choice of analysis curve used to fit can have a large

impact on the quality of the resulting statistical estimates.

(PDF)

Figure S10 Finite samples of a sigmoidal curve can be
best fit by increasing curves. This figure summarizes the

results of Monte Carlo experiments in which samples of N points

for N~5, 6, 7, 10, or 20 were chosen by a two-step method. The

age was drawn from a normal distribution with mean 11.5 years

and standard deviation 2.875 years to simulate the relative scarcity

of very young and very old specimens. The age was used to sample

the Logistic 3z curve of Fig S8. The ages may then have had error

added (either homoscedastic or heteroscedastic error models) as in

other Monte Carlo experiments (see Text S5) in this work. In a

control group set, no error was added. The resulting data sets of

500 N-point samples were then fit with both increasing and

asymptotic curves (see Text S5), and the fraction of best-fits that

were increasing were tallied. Because the original sampled curve is

sigmoidal, one would expect few if any of the zero-error data

samples to be fit by an increasing curve, but that is not the case: for

N~5, almost half of the N-point samples were best fit by

increasing curves in the zero-error case. In all cases–but especially

with zero error added–the tally of N-point samples best fit by

increasing curves dropped with larger numbers of points per

sample. I found that, with either heteroscedastic or homoscedastic

errors added, the higher the error rate, the larger the fraction of

best-fits that were increasing.

(PDF)

Figure S11 Scaling of Hutchinson et al. mass estimates
vs. DME. Mass estimates for four T. rex specimens reported by

Hutchinson et al. [41] are plotted (black dots) against femur size on

a log-log scale. The scenarios Min, Max, Ave, are the minimal,

maximal and average estimates. The Hybrid scenario uses the Ave

masses for all specimens except the largest one (‘‘Sue’’), for which

the Min estimate is used. Mass estimates for each specimen

obtained by using DME scaling are plotted in blue. DME has, by

definition, a scaling exponent of mass with femur size of p~3. A
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one-parameter, DME-like scaling law has been fit (black line) to

the black points, as has a two-parameter power law (red line).

(PDF)

Figure S12 Best-fit functions for each taxon. Each chart

plots the best-fit function obtained for the named data set from

regression analysis, using size as the independent variable. The

shaded area is the 95% confidence band, assuming normally

distributed homoscedastic errors.

(PDF)

Table S1 Functional form of growth functions g tð Þ. This

table includes both asymptotic functions, which approach a finite

asymptote of g ?ð Þ~a, and increasing functions for which

g ?ð Þ~?. For each growth function, its inverse function h yð Þ is

also presented (if y~g tð Þ, then t~h yð Þ), along with several

properties of the function such as the starting value g 0ð Þ, the

growth rate _gg~
dg tð Þ

dt
, the age at the inflection point tinf , the size

at the inflection point g tinfð Þ, and the maximum growth rate

_ggmax~ _gg tinfð Þ (which occurs at the inflection point). The inflection

point and related functions are meaningful for sigmoidal curves, as

they are not defined for increasing or attenuating curves. The

constraints given define the parameter values for which the growth

function are defined and real-valued. Most growth models in the

literature employ three or four parameters. Sample size (m) is small

for many of the dinosaur data sets, however, so it is important to

include variations of the functions that include just two

parameters. Although a two-parameter model is less flexible in

fitting data patterns than is a model having more parameters, a

two-parameter model can yield statistically valid results even when

fit to as few as five data points. The corrected Akaike information

criterion (AICc) is infinite whenever the number of parameters is

not less than m{2. N.M.: not meaningful.

(DOCX)

Table S2 Best fits and strongly supported fits. The 62

asymptotic models and 15 increasing models used in this study are

listed. For each model, counts are given of the number of age–

bone dimension data sets for which the model provided the best fit

(DAICc~0) or strong support (0vDAICcƒ2) when fit. Counts

are shown separately for direct fits (which used age as the

independent variable) and reverse fits (which used age as the

dependent variable). Of the functions shown, 41 had strong

statistical support when fit to at least one data set.

(XLSX)

Table S3 Fits to line and cubic data. For each of the 62

asymptotic models used in this study, the maximum asymptotic

parameter a and the correlation coefficient R2 are given for fits to the

same synthetically generated linear and cubic data sets plotted in

Fig. 3. The high values of R2 indicate that all of these sigmoid models

can achieve an excellent fit to linear data, and most to cubic data as

well. Attenuating curves are more variable, but the majority of these

also achieve excellent fits. The wide range of values obtained for the

maximum asymptotic size a, which varies from 2.89 to 8.4661055

for these fits to the same linear data (and a similarly wide range for

fits to the cubic data) demonstrates that these parameters are

mathematical artifacts that have no predictive value, although the fits

will work properly in the vicinity of the data points.

(XLSX)

Table S4 Detailed results of attempts to replicate
previously published findings. A. For each data set

examined, values of three biological parameters–maximum

asymptotic size g ?ð Þ~a, maximum growth rate _ggmax, and age

at maximum rate of growth (also called inflection point) tinf –are

given for both the regression equations published in previous

studies and for the best fits found to the data sets (see Text S1). In

cases where the reported value is zero, N.A. appears for the ratio.

B. Model parameters a, b, c and d for previously reported

regression equations and for the best-fit models from this study.

Table entries are blank where the model does not include the

parameter. The parameters given depend on the model. Numbers

listed in bold are fixed in order to investigate previously reported

fits. For any A2, C2 D2, E2, F2 or G2 fit, the value of a is fixed up

front and not part of the fit. For any B2 fit, the values of both a and

d are fixed up front and are not part of the fit.

(XLSX)

Table S5 Summary of replication results for 11 taxa
from five dinosaur growth studies. For each data set, values

of maximum asymptotic size g ?ð Þ, age at maximum rate of growth

(also called inflection point) tinf , and maximum growth rate, _ggmax,

expressed in absolute terms and as percentage of mass added per

year are given for both the regression equation published in

previous studies and for the best fits of replication attempts.

(XLSX)

Table S6 Data sets of dinosaur growth gathered from
the literature and used in this study. The size parameter is a

linear dimension (e.g., femur length), as described in Table 2.

Tyrannosaurus 2 comprises the Tyrannosaurus 1 data set supplemen-

ted with a specimen from [40] and one from [41]. All other data

sets are taken from a single original source (see Table 2 for

references). Age is reported as estimated age in years from the

original source. The data sets for Allosaurus include several

variations, as discussed in the paper. The Psittacosaurus l1 data set

contains all 80 data points from the source article. One fossil

specimen block in this data set includes 34 individuals, however,

only one of which was measured; the data points are thus not

independent measurements. Several other data points in that data

set similarly represent a single measurement duplicated to cover

multiple individuals in a find. To avoid overweighting the fits to

these duplicate data points (for which the age is only imprecisely

known), I prepared the Psittacosaurus l2 data set, which contains

each point listed only once (a total of 39 data points). Psittacosaurus

l3 is the subset of the data for which age was determined

histologically, according to the original reference; Psittacosaurus l4 is

the same set but with duplicate data points removed.

(XLSX)

Table S7 Age–mass data used to attempt replication of
prior results. The data was gathered from references (see

Table 2). In several cases, the scaling mass used for DME had to

be estimated from digital scans of published plots–see Text S1 for

details. The Psittacosaurus l5 data set is the recovered data set (see

Text S1 for details), made to conform to what appears to be

plotted in Fig. 6 of reference [18], and Psittacosaurus l6 is the same

data set but with only one point for each distinct age-mass pair.

(XLSX)

Table S8 Parameters for best-fit models. Growth models

and their associated parameters for each taxon are shown, along

with the DAICc values for each model. All models having strong

statistical support (DAICcƒ2) are shown; the best-fitting model

has DAICc~0. In addition, the best-fitting sigmoid and attenuat-

ing curves (i.e., those having the lowest DAICc) are shown for each

taxon even if they were not among the models garnering strong

support.

(XLSX)

Table S9 Scaling of DME vs. Hutchinson et al. for five
specimens of Tyrannosaurus rex. Femur length and mass
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estimates for minimal (Min), maximal (Max), average (Ave) and

Hybrid scenarios, as calculated by Hutchinson et al. [41], are

presented, along with the mass estimate derived by DME and the

ratio between the DME estimate and the Hutchinson mass

estimate. By construction, the DME mass is equal to the

Hutchinson et al. mass for the largest specimen (‘‘Sue’’), so the

ratios in that case are precisely 1.0.

(XLSX)

Table S10 Least squares verification spreadsheet. The

data from Table S8 is presented along with the original regression

equations from [20,24,25], and the attempted replication regres-

sion equations. For each regression equation, the sum of square of

errors is calculated to show that the attempted replication fits are

better fits (smaller sum of square errors) than the original fits. See

Text S1 for details.

(XLSX)

Text S1 Attempting to replicate prior results.
(DOCX)

Text S2 Impact of the choice of independent variable.
(DOCX)

Text S3 Impact of the choice of sigmoid curve.
(DOCX)

Text S4 R2 is not an adequate goodness-of-fit measure.

(DOCX)

Text S5 Impact of finite sample size.

(DOCX)

Text S6 Hutchinson et al. 2011 and DME.

(DOCX)

Text S7 Discussion of growth models and fitting.

(DOCX)
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114. Loewen MA (2009) Variation in the late Jurassic theropod dinosaur Allosaurus:

ontogenetic, functional, and taxonomic implications. University of Utah.
115. Smith DK (1998) A morphometric analysis of Allosaurus. J Vertebr Paleontol

18: 126–142.

116. Smith DK, Richmond DR, Bybee PJ (1999) Morphological variation in a large
specimen of Allosaurus fragilis, Upper Jurassic Morrison Formation, eastern

Utah. Vertebrate Paleontology in Utah. Utah Geol Surv, Vol. 99. 135–141.
117. Norell MA, Clark JM, Makovicky PJ (2001) Phylogenetic relationships among

coelurosaurian theropods: new perspectives on the origin and early evolution of
birds. In: Gauthier J, Gall LF, editors. Proceedings of the International

Symposium in Honor of John H. Ostrom. Yale Peabody Museum. 49–67.

118. Chinsamy-Turan A (2011) Dinosaur Growth: Egg to Adult. Encyclopedia of
Life Sciences: 1–9.

Revisiting the Estimation of Dinosaur Growth Rates

PLOS ONE | www.plosone.org 24 December 2013 | Volume 8 | Issue 12 | e81917


