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Abstract

Schizosaccharomyces pombe shares many genes and proteins with humans and is a good model for chromosome behavior
and DNA dynamics, which can be analyzed by visualizing the behavior of fluorescently tagged proteins in vivo. Performing a
genome-wide screen for changes in such proteins requires developing methods that automate analysis of a large amount of
images, the first step of which requires robust segmentation of the cell. We developed a segmentation system, PombeX,
that can segment cells from transmitted illumination images with focus gradient and varying contrast. Corrections for focus
gradient are applied to the image to aid in accurate detection of cell membrane and cytoplasm pixels, which is used to
generate initial contours for cells. Gradient vector flow snake evolution is used to obtain the final cell contours. Finally, a
machine learning-based validation of cell contours removes most incorrect or spurious contours. Quantitative evaluations
show overall good segmentation performance on a large set of images, regardless of differences in image quality, lighting
condition, focus condition and phenotypic profile. Comparisons with recent related methods for yeast cells show that
PombeX outperforms current methods, both in terms of segmentation accuracy and computational speed.
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Introduction

Fission yeast (S. pombe) and humans share many orthologous

genes required for the DNA damage response and maintenance of

an intact genome [1]. We derived a set of yeast mutants from a

collection of approximately 4,000 mutants [2], each of which

contains two fluorescently tagged marker proteins: RPA-CFP and

Rad52-YFP, in an attempt to identify mutations that create

genome instability and change the distribution of these proteins.

For each genotype (gene deletion) we acquired 3 to 5 sets of

microscopic images with three channels: a transmitted illumina-

tion channel, a CFP channel (RPA-CFP/ssb1-CFP/rad11-CFP)

and a YFP channel (Rad52-YFP/rad22-YFP). Details of this

screen and the results will be presented elsewhere.

The challenge now is to analyze more than 20,000 image files (2

markers63 images6,4,000 genes) to characterize representative

phenotypes, and ultimately construct DNA repair pathways by

correlating these quantitative phenotypes with known gene

networks. The first task in the high content analysis of these

images is to accurately segment cell boundaries, which may be

obscured by inhomogeneous focus and contrast across a single

image, due to imperfect alignment of substrate and the focal plane.

Also images acquired in multiple sessions by different people may

exhibit variant focus qualities, resulting in variable thickness and

intensity of the cell membrane in different images, and even

different intensity gradients from background to cell interior. In

this work, we present a robust cell segmentation system, PombeX,

for S. pombe cells in transillumination images.

Methods

Our pombe cell segmentation method consists of the following

steps: First we identify cell nucleus and background regions, which

are then used to adjust focus gradient differences and enhance

contrast between cell interior, membrane and background in the

transmitted light image. Next a distance transform-based pixel

classification method identifies approximate cell interiors to form

an initial cell contour, and an approximate cell membrane edge

map is generated to be used in the gradient vector flow (GVF)

snake model. After obtaining the final GVF snake contour,

machine learning classifiers are trained and employed to validate

the cell contours. Figure 1 presents an overview of our method, in

the following we present details of each step.

Nucleus and Background Region Detection
We first perform local shading correction of the transmitted

illumination and fluorescent images by subtracting the original

image by its average filtered image using a disk kernel of radius 40
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Figure 1. Overview of PombeX cell segmentation method.
doi:10.1371/journal.pone.0081434.g001
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pixels. Then we detect the background in transmitted illumination

images by Otsu’s thresholding of its gradient image. The

fluorescent signals are confined to the nucleus, so we further

apply Otsu’s thresholding on the fluorescent images to obtain the

final nucleus boundaries. From these we can then calculate the

average intensity of nucleus regions mN and background regions mB

in the transmitted illumination image, which are then used to

correct for the relative focus gradient across different images. If no

nuclear fluorescent images are available, we set mN = mB and skip

the focus correction step.

Note that not all cells exhibit fluorescent signals in the nucleus,

hence the intensity characteristics of the trans-illumination images

are still needed to infer the position of non-fluorescent cells. Our

system is able to correctly detect and segment most cells without

requiring all cells to exhibit fluorescence.

Focus Gradient Correction
To derive our focus gradient correction procedure, we imaged

pombe cells using changing focus positions, and investigated the

intensity changes when we vary the focus position from above the

coverslip and downward towards the specimen, going past optimal

focus. We performed k-means clustering (K = 3) of image pixels

using their intensity values at different focus positions as features.

The top and middle plots in Figure 2 show that pixels are

automatically clustered into cell interior, cell membrane and

background regions. These three regions undergo different

intensity changes through varying z-position (Figure 2, bottom

plot). If we only look at the middle range (z-step 16–34) where the

defocusing is not too severe, there seems to be a symmetry between

the mean intensity of cell interior and cell membrane about mean

background intensity. Thus we formulate a model where the

average background intensity stays constant at mB, and the

intensities of both the cell membrane and interior satisfies the

relation

Iz ~ 2mB {I{,
1

n

Xn

i~1

XiYi ð1Þ

where I+ is the pixel intensity when positively defocused, and I2 is

the intensity when negative defocused.

Thus to perform focus gradient correction, for each image we

first calculate the average intensity of nucleus regions mN

(representing cell interior intensity) and background regions mB

in the transmitted illumination image, and then linearly adjust the

intensity in the whole image so that mN–mB matches a predefined

value (for the entire dataset), complementing the image if

necessary. This procedure also enhances the overall contrast of

the image. After this correction, most images will have cell interior

regions consistently brighter than the background, and the cell

membrane consistently darker. This facilitates the subsequent

classification of pixels into cell interior, cell membrane and

background, which serves as a basis in determining initial snake

contours for each cell, and the gradient vector flow (GVF) edge

map.

Some of the transmitted illumination images exhibit a focus

gradient caused by the specimen plane not entirely in parallel to

the focal plane, resulting in the intensity characteristics of cell

interior and membrane changing across a single image. Conse-

quently, the global focus correction presented in the last paragraph

only works for part of the image. To analyze these images, we

assume that the specimen plane is flat, and use a bilinear model to

approximate the distance to the focal plane at each pixel position,

z ~ p00 z p10x z p01y, ð2Þ

where z can be positive or negative depending on whether the

specimen point is above or below the focal plane, and x, y is the

specimen point position in pixels. To approximate z values, we

make a second assumption that the intensity difference of nucleus

to background is linearly related to z, which is justified when the

defocusing is not too severe as shown in Figure 2.

Our adaptive focus gradient correction algorithm can be stated

as follows:

1. If the image has focus gradient, then

(a) Detect the location x, y of all nuclei and their intensity

difference to background z.

(b) Fit a bilinear model (eq. 2) to x, y, z.

(c) For every pixel where z , 0, complement the pixel

intensity i with respect to the average background

intensity mB by j = 2mB–i.

2. Globally and linearly adjust the intensity of the whole image

so that the difference between average nucleus intensity (of the

corrected image) and background intensity equal a predefined

value.

Figure 3 shows how our method is applied and examples of

corrected images. The original image contains a focus gradient

effect where the average intensity of cell interior and membrane

varies across the image and is higher than background intensity on

one side of the image and lower on the other. After adaptive focus

gradient correction, we can see that all image regions with

sufficient contrast now consistently have the cell interior brighter

than the background, and cell membrane darker, although the

final position of detected cell membrane would vary somewhat.

Since the ultimate goal is to detect fluorescence belonging to a

single cell, it is tolerable to allow small fluctuations in detected

membrane positions.

Cell Segmentation
We used active contour models [3] to obtain cell boundary

contours. We first use adaptive thresholds [4] to classify pixels into

four distinct sets: background, cell interior, cell membrane and

ambiguous. Cell membrane pixels have intensity that are below an

adaptive threshold calculated from all pixels darker than the

background, whereas cell interior pixels have intensity greater than

the average intensity of the nucleus region. Morphological close-

opening and removable of isolated pixels were performed to

smooth each region, then the remaining unclassified pixels X

(ambiguous) were classified by a distance transform-based

procedure (similar to watershed) that extends the background

and cell interior regions to neighboring ambiguous regions:

1. Calculate distance transforms Db of background set B, Dc of

cell interior set C, and Dm of cell membrane set M.

2.
C/C|fx[X jDc(x)ƒDb(x) ^ Dc(x)ƒ

1

2
Dm(x)g;

B/B|fx[X jDb(x)vDc(x) ^ Db(x)

ƒ

1

2
Dm(x) ^Dm(x)ƒDc(x)g;

X/X{(C|B):
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3. Repeat Steps 1 and 2 until X is unchanged.

Figure 4 shows some example results of this procedure. The

initial snake contours are obtained from individual connected cell

interior regions, while the cell membrane edge map is obtained

from pixels classified as cell membrane.

Next we use the following snake model with energy functional

Esnake for contour x(s) = [x(s), y(s)], s M [0,1]:

Esnake ~ l1Eintzl2Eext, ð3Þ

where l1, l2 controls relative weighting between internal and

external energies. The conventional internal energy of the snake

contour is

Eint~
1

2

ð1

0

½ajx0(s)j2zbjx00(s)j2�ds, ð4Þ

where the weighting parameters a and b control the snake’s

tension and rigidity, respectively. For the external image energy

Eext, we used the gradient vector flow (GVF) snake [5]. Given an

edge map f(x, y) derived from the image I(x, y), the GVF field v(x,

y) = [u(x, y), v(x, y)] minimizes the energy functional

E ~

ð ð
m(u2

xzu2
yzv2

xzv2
y)zj+f j2jv{+f j2dxdy, ð5Þ

where v denotes –=Eext, and f is the cell membrane edge map

obtained previously. The parameter values used are l1 = 1, l2 = 1,

a = 0.03, b = 0.2 and m = 0.8. The computation of the gradient

vector flow (GVF) field from the edge map, and the snake

deformation iterations is as described in [5].

Cell Contour Validation
To further increase the robustness and efficiency of the system,

we also employ machine learning classifiers to automatically

Figure 2. Analysis of pixel intensity variation of the same specimen imaged at different z-focus position. Top plot: original image at
one z-position with red contours indicating k-means cluster boundaries. Middle plot: the same image with color-coded cluster membership for pixels.
Bottom plot: Mean intensity of each pixel cluster through z-position.
doi:10.1371/journal.pone.0081434.g002
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validate the final snake contours. Specifically, we aim to detect

errors such as merging of two or more cells, partial segmentation,

and false detection of background or artifacts. Manually labeled

training samples are generated for each type of error, and we used

support vector machines with radial basis function to learn and

classify partial segmentation and merging errors. False detection of

background and artifact are relatively rare and well distinguished

from normal cells, thus a simple binary classification tree is trained

Figure 3. Examples of images before (left) and after (right) adaptive focus gradient correction and contrast enhancement. In the left
panel the original images are overlaid with nucleus centroids (black and white spots) and the estimated z = 0 line (green line, where specimen plane
intersects focal plane). For the nucleus centroids, black means its average intensity is lower than background, and white means it is brighter than
background.
doi:10.1371/journal.pone.0081434.g003
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and used for this error type. Cells intersected by the image

boundary share the same characteristics as a partially segmented

cell, and are treated equivalently by our classifier.

Results

We applied PombeX to multi-channel images of S. pombe. The

whole data set contains about 4,000 mutant genotypes, each with

at least three sets of transmitted illumination (bright field), Rad52-

YFP and RPA-CFP images. Our system is able to correctly

segment a majority of cells in almost all images of sufficient quality.

The performance is consistent over a wide variety of focal distance,

field brightness, relative contrast and phenotypic characteristics.

Moreover, some images contain dead cells with autofluorescence

or no fluorescence, exhibited as enlarged nuclei or no nuclei, but

our system is still able to correctly segment the transmitted

illumination image given only a subset of nuclei positions. Figure 5

shows PombeX segmentation of a variety of phenotypes, including

small and elongated cell shapes, cells in septation, and cells with

various fluorescent signal profiles.

To further validate our method, we used heat treatment to

induce phenotypic changes in mutant cells, and test the

performance of PombeX on these classic phenotypes. In

Figure 6, asynchronous wild type cells were taken from a late-

exponential culture before treatment, causing a slightly smaller

distribution of asynchronous wild type cell lengths. mcm4ts cells are

an example of a classical cell division cycle (cdc) phenotype, which

elongate during temperature treatment (cdc21-M68 allele [6]). In

contrast, orp1ts cells (orp1-4 allele, the human ORC1 homologue

[7]) do not replicate their DNA at 36uC, causing an accumulation

of different cell sizes. The rad4ts (cut5) cells fail at both DNA

replication and in the DNA damage checkpoint (rad4-116 allele

[8]). As a result they form small cells with a septum slicing through

DNA in the centre of the cells, causing a cell untimely torn (cut)

morphology. From the results we can see that PombeX can

produce good segmentations for all of these phenotypes.

Finally, we performed quantitative evaluation and comparison

with two recent automated segmentation algorithms for yeast cells,

CellStat [9] and CellSerpent [10], using a set of hand produced

gold standard segmentations of pombe cells, representing different

image acquisition conditions and quality. CellStat first finds

Figure 4. Example results of distance transform-based procedure. Original images (left), pixel classification before (middle) and after (right)
distance transform-based procedure. Blue pixels indicate background, red is cell membrane and green is cell interior region.
doi:10.1371/journal.pone.0081434.g004
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candidate cell centers using a variation of the circular Hough

transform, and then cell contours surrounding the candidate cell

centers are extracted by directional derivatives and curve

matching. CellSerpent used nonlinear degenerate elliptic smooth-

ing to remove small features that are not cell membranes,

generating an edge penalization image. Starting from local

maxima in the edge penalization image, active contour models

are used to find the final cell contours.

We evaluated the percentage of cells detected, the segmentation

accuracy of the final snake contours, and the automatic error

classifier. The whole set of 64 gold standard images contain a total

of 16,170 pombe cells, averaging about 253 cells per image. The

quantitative performances of CellStat, CellSerpent and PombeX

are shown in Table 1. Figure 7 shows representative results from

all methods. We tuned the parameters of CellStat and CellSerpent

to optimize their performance on our data set. The parameter

Figure 5. Representative segmentation results on various pombe mutants. For each image pair, trans-illumination images with randomly
colored cell contours are shown on the left, and the corresponding RPA-CFP images on the right.
doi:10.1371/journal.pone.0081434.g005
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settings for CellStat are: Sigma Mult. Factor: 3 (default 7.5), Max

Eccentricity: 15 (default 1.5), Max Area: 15000 (default 1500), and

Max Radius to Centre: 100 (default 25). The parameter settings

for CellSerpent are: Inflating force b = 2.24 (default b = 2). Since

CellStat and CellSerpent did not use fluorescent signals, we also

tested a version of our method that do not make use of the

fluorescent channel images (listed as PombeX w/o FP in Table 1).

Our automatic cell contour validation system has an overall

classification accuracy of 86.4%, with sensitivity 85.7% and

specificity 85.4%. After erroneous cell contours are removed by

our cell contour validation classifier, the remaining cell contours

contain 97.8% true positives (precision, i.e. % relative to all

detected cell contours). This shows that the final cell contours

generated by our method after automatic validation are very

reliable. For large scale high-throughput applications with huge

amounts of data, in order to minimize the need for human

intervention, the high reliability and robustness achieved by our

system is valuable.

CellStat and CellSerpent were primarily designed for bright

field images of Saccharomyces cerevisiae cells, which are round cells

with good border contrast. This may in part account for their poor

performance for correctly segmenting elongated pombe cells, since

the final generated contours are biased toward circular shapes.

CellSerpent was designed for images of crowded round budding

yeast cells, and the elongated fission yeast cells in our images may

be over-segmented into multiple round cells. On the other hand,

CellStat assumes that each cell has a major part of its border

touching the background, so cell misses and incorrect merging

occurs for clustered or elongated cells.

Discussion

There are some recent works on cell image segmentation [11–

13], which applied active contour models such as parametric

snakes or level sets. Most of these methods are designed for phase-

contrast images with higher contrast between cell membrane and

background, and are designed with objective functions that

Figure 6. Segmentation results on well-known phenotypes. Cell contours are colored randomly.
doi:10.1371/journal.pone.0081434.g006
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depend only on relative brightness. Suzuki et al. [14] segmented

and quantitatively characterized budding and fission yeast cells,

but their images are either stained with cell wall fluorescence

(which is trivial to segment) or phase contrast images. They did not

address the more complex problem of detecting and segmenting

cells from ordinary bright field images. Tscherepanow et al. [15]

analyzed images very similar to the ones presented here (bright

field images of Sf9 cells), but one of the main drawbacks of their

method is its inability to deal with images with different focus

properties, which are predominant in our dataset, and for which

we have developed both global and locally adaptive methods of

focus gradient correction.

Figure 7. Segmentation method comparison. Contours of different cells are colored randomly.
doi:10.1371/journal.pone.0081434.g007
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The adaptive focus gradient correction uses a bilinear model to

estimate the intersection between the specimen plane and the

objective focal plane, but this model may be too simplistic resulting

in many cells not being focus corrected. It may be possible to

improve this by explicitly using margin maximization methods,

such as support vector machines, to find the exact boundaries

between positively and negatively defocused regions. The adaptive

focus correction algorithm is designed so that even when only a

part of the image is complemented, C0 continuity of the pixel

intensities is still maintained because the complement is taken with

the background intensity as center. But sometimes cells cut by the

z = 0 boundary would still be severely distorted. This may require

warping the boundary so that it only crosses the background

pixels, though this solution is only feasible for images with cells not

too densely packed.

The proposed segmentation system, PombeX, can be applied to

a variety of experimental questions. For our screen, the next steps

will be to characterize the fluorescent signals both within the

nucleus and cytoplasm, as well as cell morphology. This will

require identification and quantification of individual puncta at

normal fluorescent intensity. Fluorescence that enters the cyto-

plasm can be used to automatically identify dead or dying cells.

Additional information that may be culled from these data will

include cell morphology to identify cell cycle stage. Finally,

changes in cell dimension including average length or length 6
width dimensions can be quantified.

In conclusion we have developed a robust cell segmentation

system for S. pombe cells that uses nucleus protein fluorescence to

correct varying focus and contrast in the transmitted illumination

image, combined with active contour segmentation and robust

automatic contour validation. This system can be applied to

similar bright-field microscopy images with or without corre-

sponding fluorescence signal within the cell nucleus or cytoplasm,

and can in principle be extended to deal with multiple cell types

and image modalities.
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Table 1. Quantitative performance results of yeast
segmentation algorithms.

Method %Cells %Cells
# of
Contours PPV3 CPU

Detected1 Segmented2 Generated time4

CellStat [9] 73.0% 10.2% 9164 18.8% 2382.5

CellSerpent [10] 99.8% 32.0% 104122 11.3% 1887.7

PombeX 97.0% 86.4% 18125 86.9% 135.7

PombeX w/o FP 94.5% 70.8% 19594 71.1% 125.0

1Relative to all cells.
2Defined as the percentage of cell contours with less than 10% pixel mismatch
compared to gold standard cell contours, relative to all cells.
3Relative to all contours.
4Average CPU time per image, measured using a regular desktop PC (Windows
7, Matlab R2011a, Intel(R) Core(TM) i7-2600 CPU@3.40 GHz, 4 GB RAM).
doi:10.1371/journal.pone.0081434.t001
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